code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class __lowercase (unittest.TestCase ): @parameterized.expand([(None,), ('foo.json',)]) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict): UpperCamelCase__ : int = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a , config_name=__a) UpperCamelCase__ : Union[str, Any] = GenerationConfig.from_pretrained(__a , config_name=__a) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , __a) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , __a) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : List[str] = AutoConfig.from_pretrained('gpt2') UpperCamelCase__ : Optional[int] = GenerationConfig.from_model_config(__a) UpperCamelCase__ : Dict = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(__a , __a) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : str = GenerationConfig() UpperCamelCase__ : Optional[int] = { """max_new_tokens""": 1_024, """foo""": """bar""", } UpperCamelCase__ : Any = copy.deepcopy(__a) UpperCamelCase__ : List[str] = generation_config.update(**__a) # update_kwargs was not modified (no side effects) self.assertEqual(__a , __a) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(__a , {'foo': 'bar'}) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Tuple = GenerationConfig() UpperCamelCase__ : Any = """bar""" with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir: generation_config.save_pretrained(__a) UpperCamelCase__ : List[str] = GenerationConfig.from_pretrained(__a) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , 'bar') UpperCamelCase__ : Dict = GenerationConfig.from_model_config(__a) assert not hasattr(__a , 'foo') # no new kwargs should be initialized if from config def __UpperCamelCase ( self : str): UpperCamelCase__ : Dict = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , __a) self.assertEqual(default_config.num_beams , 1) UpperCamelCase__ : int = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , __a) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__a) UpperCamelCase__ : Dict = GenerationConfig.from_pretrained(__a , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , __a) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class __lowercase (unittest.TestCase ): @classmethod def __UpperCamelCase ( cls : Any): UpperCamelCase__ : Dict = TOKEN HfFolder.save_token(__a) @classmethod def __UpperCamelCase ( cls : List[Any]): try: delete_repo(token=cls._token , repo_id='test-generation-config') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org') except HTTPError: pass def __UpperCamelCase ( self : int): UpperCamelCase__ : int = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('test-generation-config' , use_auth_token=self._token) UpperCamelCase__ : Union[str, Any] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a)) # Reset repo delete_repo(token=self._token , repo_id='test-generation-config') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='test-generation-config' , push_to_hub=__a , use_auth_token=self._token) UpperCamelCase__ : str = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a)) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = GenerationConfig( do_sample=__a , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token) UpperCamelCase__ : Any = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a)) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __a , repo_id='valid_org/test-generation-config-org' , push_to_hub=__a , use_auth_token=self._token) UpperCamelCase__ : Optional[Any] = GenerationConfig.from_pretrained('valid_org/test-generation-config-org') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__a , getattr(__a , __a))
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: for attribute in key.split('.'): UpperCamelCase__ : Optional[Any] = getattr(_UpperCamelCase , _UpperCamelCase) if weight_type is not None: UpperCamelCase__ : int = getattr(_UpperCamelCase , _UpperCamelCase).shape else: UpperCamelCase__ : Union[str, Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Tuple = value elif weight_type == "weight_g": UpperCamelCase__ : Tuple = value elif weight_type == "weight_v": UpperCamelCase__ : Dict = value elif weight_type == "bias": UpperCamelCase__ : Optional[Any] = value else: UpperCamelCase__ : Tuple = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Dict = fairseq_model.state_dict() UpperCamelCase__ : Optional[Any] = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : List[Any] = False if "conv_layers" in name: load_conv_layer( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : Union[str, Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : int = 'sew.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Optional[Any] = True if "*" in mapped_key: UpperCamelCase__ : int = name.split(_UpperCamelCase)[0].split('.')[-2] UpperCamelCase__ : Dict = mapped_key.replace('*' , _UpperCamelCase) if "weight_g" in name: UpperCamelCase__ : List[str] = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : List[Any] = 'weight_v' elif "weight" in name: UpperCamelCase__ : Dict = 'weight' elif "bias" in name: UpperCamelCase__ : Optional[Any] = 'bias' else: UpperCamelCase__ : Optional[int] = None set_recursively(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase) continue if not is_used: unused_weights.append(_UpperCamelCase) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Optional[int] = full_name.split('conv_layers.')[-1] UpperCamelCase__ : Union[str, Any] = name.split('.') UpperCamelCase__ : int = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : str = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Optional[int] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_UpperCamelCase) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : List[Any] = SEWConfig() if is_finetuned: UpperCamelCase__ : Optional[int] = model.wav_encoder.wav_model.cfg else: UpperCamelCase__ : Any = model.cfg UpperCamelCase__ : List[str] = fs_config.conv_bias UpperCamelCase__ : Optional[int] = eval(fs_config.conv_feature_layers) UpperCamelCase__ : Tuple = [x[0] for x in conv_layers] UpperCamelCase__ : List[str] = [x[1] for x in conv_layers] UpperCamelCase__ : str = [x[2] for x in conv_layers] UpperCamelCase__ : Any = 'gelu' UpperCamelCase__ : Optional[int] = 'layer' if fs_config.extractor_mode == 'layer_norm' else 'group' UpperCamelCase__ : Tuple = 0.0 UpperCamelCase__ : Dict = fs_config.activation_fn.name UpperCamelCase__ : Tuple = fs_config.encoder_embed_dim UpperCamelCase__ : Union[str, Any] = 0.02 UpperCamelCase__ : Any = fs_config.encoder_ffn_embed_dim UpperCamelCase__ : List[str] = 1e-5 UpperCamelCase__ : int = fs_config.encoder_layerdrop UpperCamelCase__ : List[Any] = fs_config.encoder_attention_heads UpperCamelCase__ : Union[str, Any] = fs_config.conv_pos_groups UpperCamelCase__ : Optional[Any] = fs_config.conv_pos UpperCamelCase__ : str = len(_UpperCamelCase) UpperCamelCase__ : List[Any] = fs_config.encoder_layers UpperCamelCase__ : Optional[Any] = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCamelCase__ : Optional[int] = model.cfg UpperCamelCase__ : int = fs_config.final_dropout UpperCamelCase__ : Dict = fs_config.layerdrop UpperCamelCase__ : Optional[int] = fs_config.activation_dropout UpperCamelCase__ : Optional[Any] = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCamelCase__ : Union[str, Any] = fs_config.attention_dropout UpperCamelCase__ : Optional[int] = fs_config.dropout_input UpperCamelCase__ : Dict = fs_config.dropout UpperCamelCase__ : str = fs_config.mask_channel_length UpperCamelCase__ : Dict = fs_config.mask_channel_prob UpperCamelCase__ : Union[str, Any] = fs_config.mask_length UpperCamelCase__ : Tuple = fs_config.mask_prob UpperCamelCase__ : Dict = 'Wav2Vec2FeatureExtractor' UpperCamelCase__ : List[str] = 'Wav2Vec2CTCTokenizer' return config @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Union[str, Any]: if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) if config_path is not None: UpperCamelCase__ : Union[str, Any] = SEWConfig.from_pretrained(_UpperCamelCase) else: UpperCamelCase__ : List[Any] = convert_config(model[0] , _UpperCamelCase) UpperCamelCase__ : Dict = model[0].eval() UpperCamelCase__ : List[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : List[str] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_UpperCamelCase , return_attention_mask=_UpperCamelCase , ) if is_finetuned: if dict_path: UpperCamelCase__ : List[Any] = Dictionary.load(_UpperCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : int = target_dict.pad_index UpperCamelCase__ : Any = target_dict.bos_index UpperCamelCase__ : Dict = target_dict.pad_index UpperCamelCase__ : Tuple = target_dict.bos_index UpperCamelCase__ : str = target_dict.eos_index UpperCamelCase__ : Union[str, Any] = len(target_dict.symbols) UpperCamelCase__ : Union[str, Any] = os.path.join(_UpperCamelCase , 'vocab.json') if not os.path.isdir(_UpperCamelCase): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_UpperCamelCase)) return os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase) with open(_UpperCamelCase , 'w' , encoding='utf-8') as vocab_handle: json.dump(target_dict.indices , _UpperCamelCase) UpperCamelCase__ : str = WavaVecaCTCTokenizer( _UpperCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_UpperCamelCase , ) UpperCamelCase__ : List[Any] = WavaVecaProcessor(feature_extractor=_UpperCamelCase , tokenizer=_UpperCamelCase) processor.save_pretrained(_UpperCamelCase) UpperCamelCase__ : List[Any] = SEWForCTC(_UpperCamelCase) else: UpperCamelCase__ : List[str] = SEWModel(_UpperCamelCase) feature_extractor.save_pretrained(_UpperCamelCase) recursively_load_weights(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase) hf_model.save_pretrained(_UpperCamelCase) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' import argparse import os import re lowerCAmelCase__ = 'src/transformers' # Pattern that looks at the indentation in a line. lowerCAmelCase__ = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. lowerCAmelCase__ = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowerCAmelCase__ = re.compile(R'\[([^\]]+)\]') def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : List[Any] = _re_indent.search(lowerCamelCase_) return "" if search is None else search.groups()[0] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_="" , lowerCamelCase_=None , lowerCamelCase_=None) -> Tuple: UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Dict = code.split('\n') if start_prompt is not None: while not lines[index].startswith(lowerCamelCase_): index += 1 UpperCamelCase__ : Any = ['\n'.join(lines[:index])] else: UpperCamelCase__ : Any = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCamelCase__ : List[str] = [lines[index]] index += 1 while index < len(lowerCamelCase_) and (end_prompt is None or not lines[index].startswith(lowerCamelCase_)): if len(lines[index]) > 0 and get_indent(lines[index]) == indent_level: if len(lowerCamelCase_) > 0 and get_indent(current_block[-1]).startswith(indent_level + ' '): current_block.append(lines[index]) blocks.append('\n'.join(lowerCamelCase_)) if index < len(lowerCamelCase_) - 1: UpperCamelCase__ : Optional[int] = [lines[index + 1]] index += 1 else: UpperCamelCase__ : int = [] else: blocks.append('\n'.join(lowerCamelCase_)) UpperCamelCase__ : Any = [lines[index]] else: current_block.append(lines[index]) index += 1 # Adds current block if it's nonempty. if len(lowerCamelCase_) > 0: blocks.append('\n'.join(lowerCamelCase_)) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCamelCase_): blocks.append('\n'.join(lines[index:])) return blocks def __UpperCAmelCase ( lowerCamelCase_) -> Dict: def _inner(lowerCamelCase_): return key(lowerCamelCase_).lower().replace('_' , '') return _inner def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Optional[int]: # If no key is provided, we use a noop. def noop(lowerCamelCase_): return x if key is None: UpperCamelCase__ : str = noop # Constants are all uppercase, they go first. UpperCamelCase__ : List[Any] = [obj for obj in objects if key(lowerCamelCase_).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCamelCase__ : str = [obj for obj in objects if key(lowerCamelCase_)[0].isupper() and not key(lowerCamelCase_).isupper()] # Functions begin with a lowercase, they go last. UpperCamelCase__ : str = [obj for obj in objects if not key(lowerCamelCase_)[0].isupper()] UpperCamelCase__ : List[Any] = ignore_underscore(lowerCamelCase_) return sorted(lowerCamelCase_ , key=lowerCamelCase_) + sorted(lowerCamelCase_ , key=lowerCamelCase_) + sorted(lowerCamelCase_ , key=lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: # This inner function sort imports between [ ]. def _replace(lowerCamelCase_): UpperCamelCase__ : List[str] = match.groups()[0] if "," not in imports: return f'[{imports}]' UpperCamelCase__ : List[Any] = [part.strip().replace('"' , '') for part in imports.split(',')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: UpperCamelCase__ : Optional[Any] = keys[:-1] return "[" + ", ".join([f'\"{k}\"' for k in sort_objects(lowerCamelCase_)]) + "]" UpperCamelCase__ : Dict = import_statement.split('\n') if len(lowerCamelCase_) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCamelCase__ : Tuple = 2 if lines[1].strip() == '[' else 1 UpperCamelCase__ : str = [(i, _re_strip_line.search(lowerCamelCase_).groups()[0]) for i, line in enumerate(lines[idx:-idx])] UpperCamelCase__ : Union[str, Any] = sort_objects(lowerCamelCase_ , key=lambda lowerCamelCase_: x[1]) UpperCamelCase__ : Dict = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:]) elif len(lowerCamelCase_) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1]) is not None: UpperCamelCase__ : Optional[Any] = _re_bracket_content.sub(_replace , lines[1]) else: UpperCamelCase__ : Tuple = [part.strip().replace('"' , '') for part in lines[1].split(',')] # We will have a final empty element if the line finished with a comma. if len(keys[-1]) == 0: UpperCamelCase__ : List[str] = keys[:-1] UpperCamelCase__ : Dict = get_indent(lines[1]) + ', '.join([f'\"{k}\"' for k in sort_objects(lowerCamelCase_)]) return "\n".join(lowerCamelCase_) else: # Finally we have to deal with imports fitting on one line UpperCamelCase__ : Dict = _re_bracket_content.sub(_replace , lowerCamelCase_) return import_statement def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=True) -> Dict: with open(lowerCamelCase_ , encoding='utf-8') as f: UpperCamelCase__ : str = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCamelCase__ : Tuple = split_code_in_indented_blocks( lowerCamelCase_ , start_prompt='_import_structure = {' , end_prompt='if TYPE_CHECKING:') # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCamelCase_) - 1): # Check if the block contains some `_import_structure`s thingy to sort. UpperCamelCase__ : int = main_blocks[block_idx] UpperCamelCase__ : str = block.split('\n') # Get to the start of the imports. UpperCamelCase__ : Optional[Any] = 0 while line_idx < len(lowerCamelCase_) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCamelCase__ : str = len(lowerCamelCase_) else: line_idx += 1 if line_idx >= len(lowerCamelCase_): continue # Ignore beginning and last line: they don't contain anything. UpperCamelCase__ : Dict = '\n'.join(block_lines[line_idx:-1]) UpperCamelCase__ : List[Any] = get_indent(block_lines[1]) # Slit the internal block into blocks of indent level 1. UpperCamelCase__ : Any = split_code_in_indented_blocks(lowerCamelCase_ , indent_level=lowerCamelCase_) # We have two categories of import key: list or _import_structure[key].append/extend UpperCamelCase__ : List[Any] = _re_direct_key if '_import_structure = {' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCamelCase__ : Tuple = [(pattern.search(lowerCamelCase_).groups()[0] if pattern.search(lowerCamelCase_) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCamelCase__ : Union[str, Any] = [(i, key) for i, key in enumerate(lowerCamelCase_) if key is not None] UpperCamelCase__ : int = [x[0] for x in sorted(lowerCamelCase_ , key=lambda lowerCamelCase_: x[1])] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCamelCase__ : Any = 0 UpperCamelCase__ : Optional[Any] = [] for i in range(len(lowerCamelCase_)): if keys[i] is None: reorderded_blocks.append(internal_blocks[i]) else: UpperCamelCase__ : List[str] = sort_objects_in_import(internal_blocks[sorted_indices[count]]) reorderded_blocks.append(lowerCamelCase_) count += 1 # And we put our main block back together with its first and last line. UpperCamelCase__ : Union[str, Any] = '\n'.join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]]) if code != "\n".join(lowerCamelCase_): if check_only: return True else: print(f'Overwriting {file}.') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as f: f.write('\n'.join(lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_=True) -> int: UpperCamelCase__ : Union[str, Any] = [] for root, _, files in os.walk(lowerCamelCase_): if "__init__.py" in files: UpperCamelCase__ : Any = sort_imports(os.path.join(lowerCamelCase_ , '__init__.py') , check_only=lowerCamelCase_) if result: UpperCamelCase__ : Tuple = [os.path.join(lowerCamelCase_ , '__init__.py')] if len(lowerCamelCase_) > 0: raise ValueError(f'Would overwrite {len(lowerCamelCase_)} files, run `make style`.') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') lowerCAmelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' from math import isqrt def __UpperCAmelCase ( lowerCamelCase_) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(_SCREAMING_SNAKE_CASE) + 1)) def __UpperCAmelCase ( lowerCamelCase_ = 10**6) -> int: UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(_SCREAMING_SNAKE_CASE) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'''{solution() = }''')
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase__ = { 'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'], 'tokenization_perceiver': ['PerceiverTokenizer'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['PerceiverFeatureExtractor'] lowerCAmelCase__ = ['PerceiverImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PerceiverForImageClassificationConvProcessing', 'PerceiverForImageClassificationFourier', 'PerceiverForImageClassificationLearned', 'PerceiverForMaskedLM', 'PerceiverForMultimodalAutoencoding', 'PerceiverForOpticalFlow', 'PerceiverForSequenceClassification', 'PerceiverLayer', 'PerceiverModel', 'PerceiverPreTrainedModel', ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __lowercase : def __init__( self : Optional[Any] , UpperCAmelCase_ : Any , ): UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Union[str, Any] = 13 UpperCamelCase__ : Dict = 7 UpperCamelCase__ : Optional[int] = 30 UpperCamelCase__ : Optional[Any] = self.seq_length + self.mem_len UpperCamelCase__ : Optional[Any] = 15 UpperCamelCase__ : Optional[int] = True UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : Dict = 99 UpperCamelCase__ : Optional[Any] = [10, 50, 80] UpperCamelCase__ : List[str] = 32 UpperCamelCase__ : str = 32 UpperCamelCase__ : Tuple = 4 UpperCamelCase__ : Tuple = 8 UpperCamelCase__ : Dict = 128 UpperCamelCase__ : str = 2 UpperCamelCase__ : Tuple = 2 UpperCamelCase__ : Tuple = None UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : List[str] = 3 UpperCamelCase__ : Dict = self.vocab_size - 1 UpperCamelCase__ : Tuple = 0.01 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : List[Any] = None if self.use_labels: UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : List[str] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __UpperCamelCase ( self : List[str]): random.seed(self.seed) tf.random.set_seed(self.seed) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict): UpperCamelCase__ : Optional[int] = TFTransfoXLModel(lowercase__) UpperCamelCase__ : List[Any] = model(lowercase__).to_tuple() UpperCamelCase__ : Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a} UpperCamelCase__ : Tuple = model(lowercase__).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : str = TFTransfoXLLMHeadModel(lowercase__) UpperCamelCase__ : Dict = model(lowercase__).to_tuple() UpperCamelCase__ : int = {'''input_ids''': input_ids_a, '''labels''': lm_labels} UpperCamelCase__ : Optional[int] = model(lowercase__).to_tuple() UpperCamelCase__ : List[str] = model([input_ids_a, mems_a]).to_tuple() UpperCamelCase__ : Optional[Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels} UpperCamelCase__ : List[str] = model(lowercase__).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Optional[Any] = TFTransfoXLForSequenceClassification(lowercase__) UpperCamelCase__ : Dict = model(lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() (UpperCamelCase__) : Tuple = config_and_inputs UpperCamelCase__ : int = {'''input_ids''': input_ids_a} return config, inputs_dict @require_tf class __lowercase (a__ , a__ , unittest.TestCase ): _lowerCamelCase = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _lowerCamelCase = () if is_tf_available() else () _lowerCamelCase = ( { """feature-extraction""": TFTransfoXLModel, """text-classification""": TFTransfoXLForSequenceClassification, """text-generation""": TFTransfoXLLMHeadModel, """zero-shot""": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any]): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[Any] = TFTransfoXLModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=lowercase__ , d_embed=37) def __UpperCamelCase ( self : str): self.config_tester.run_common_tests() def __UpperCamelCase ( self : Optional[int]): self.model_tester.set_seed() UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*lowercase__) def __UpperCamelCase ( self : Any): self.model_tester.set_seed() UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase__) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase__) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__ : Optional[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(lowercase__) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer) if model_class in list_other_models_with_output_ebd: UpperCamelCase__ : List[Any] = model.get_output_embeddings() assert isinstance(lowercase__ , tf.keras.layers.Layer) UpperCamelCase__ : str = model.get_bias() assert name is None else: UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() assert x is None UpperCamelCase__ : List[str] = model.get_bias() assert name is None def __UpperCamelCase ( self : int): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : List[str] = TFTransfoXLModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) @unittest.skip(reason='This model doesn\'t play well with fit() due to not returning a single loss.') def __UpperCamelCase ( self : int): pass @require_tf class __lowercase (unittest.TestCase ): @unittest.skip('Skip test until #12651 is resolved.') @slow def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = TFTransfoXLLMHeadModel.from_pretrained('transfo-xl-wt103') # fmt: off UpperCamelCase__ : Union[str, Any] = tf.convert_to_tensor([[33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off UpperCamelCase__ : Optional[int] = [33,1_297,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,22,1_706,17,20_098,5,3_215,21,37,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,6_224,831,16_002,2,8,603,78_967,29_546,23,803,20,25,416,5,8,232,4,277,6,1_855,4_601,3,29_546,54,8,3_609,5,57_211,49,4,1,277,18,8,1_755,15_691,3,341,25,416,693,42_573,71,17,401,94,31,17_919,2,29_546,7_873,18,1,435,23,11_011,755,5,5_167,3,7_983,98,84,2,29_546,3_267,8,3_609,4,1,4_865,1_075,2,6_087,71,6,346,8,5_854,3,29_546,824,1_400,1_868,2,19,160,2,311,8,5_496,2,20_920,17,25,15_097,3,24,24,0,33,1,1_857,2,1,1_009,4,1_109,11_739,4_762,358,5,25,245,28,1_110,3,13,1_041,4,24,603,490,2,71_477,20_098,104_447,2,20_961,1,2_604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> UpperCamelCase__ : str = model.generate(lowercase__ , max_length=200 , do_sample=lowercase__) self.assertListEqual(output_ids[0].numpy().tolist() , lowercase__)
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' from itertools import permutations def __UpperCAmelCase ( lowerCamelCase_) -> Dict: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase__ : Tuple = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE__): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __UpperCAmelCase ( lowerCamelCase_ = 10) -> Optional[int]: return sum( int(''.join(map(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__))) for num in permutations(range(SCREAMING_SNAKE_CASE__)) if is_substring_divisible(SCREAMING_SNAKE_CASE__)) if __name__ == "__main__": print(f'''{solution() = }''')
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : @staticmethod def __UpperCamelCase ( *UpperCAmelCase_ : str , **UpperCAmelCase_ : str): pass @is_pipeline_test @require_vision class __lowercase (unittest.TestCase ): @require_torch def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) UpperCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Dict = image_classifier(__snake_case , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__snake_case) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) UpperCamelCase__ : Tuple = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(__snake_case) , [ [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], ] , ) @require_tf def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Tuple = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') UpperCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Optional[Any] = image_classifier(__snake_case , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(__snake_case) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) UpperCamelCase__ : int = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(__snake_case) , [ [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], [ {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, {'score': 0.3_33, 'label': ANY(__snake_case)}, ], ] , ) @slow @require_torch def __UpperCamelCase ( self : Any): UpperCamelCase__ : str = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Optional[Any] = image_classifier(__snake_case , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(__snake_case) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) UpperCamelCase__ : Any = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(__snake_case) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Union[str, Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes UpperCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Dict = image_classifier(__snake_case , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(__snake_case) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) UpperCamelCase__ : Any = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(__snake_case) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger('transformers.models.speecht5') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: hf_model.apply_weight_norm() UpperCamelCase__ : List[Any] = checkpoint['input_conv.weight_g'] UpperCamelCase__ : Union[str, Any] = checkpoint['input_conv.weight_v'] UpperCamelCase__ : List[Any] = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates)): UpperCamelCase__ : Optional[Any] = checkpoint[f'upsamples.{i}.1.weight_g'] UpperCamelCase__ : Tuple = checkpoint[f'upsamples.{i}.1.weight_v'] UpperCamelCase__ : Optional[Any] = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates) * len(config.resblock_kernel_sizes)): for j in range(len(config.resblock_dilation_sizes)): UpperCamelCase__ : Optional[Any] = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] UpperCamelCase__ : Optional[Any] = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] UpperCamelCase__ : Any = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] UpperCamelCase__ : Dict = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] UpperCamelCase__ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] UpperCamelCase__ : List[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] UpperCamelCase__ : str = checkpoint['output_conv.1.weight_g'] UpperCamelCase__ : Dict = checkpoint['output_conv.1.weight_v'] UpperCamelCase__ : str = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , ) -> Optional[int]: if config_path is not None: UpperCamelCase__ : Dict = SpeechTaHifiGanConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : Tuple = SpeechTaHifiGanConfig() UpperCamelCase__ : List[str] = SpeechTaHifiGan(lowerCamelCase_) UpperCamelCase__ : Dict = torch.load(lowerCamelCase_) load_weights(orig_checkpoint['model']['generator'] , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[Any] = np.load(lowerCamelCase_) UpperCamelCase__ : Tuple = stats[0].reshape(-1) UpperCamelCase__ : List[str] = stats[1].reshape(-1) UpperCamelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_).float() UpperCamelCase__ : List[Any] = torch.from_numpy(lowerCamelCase_).float() model.save_pretrained(lowerCamelCase_) if repo_id: print('Pushing to the hub...') model.push_to_hub(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 'Muhammad Umer Farooq' lowerCAmelCase__ = 'MIT' lowerCAmelCase__ = '1.0.0' lowerCAmelCase__ = 'Muhammad Umer Farooq' lowerCAmelCase__ = '[email protected]' lowerCAmelCase__ = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class __lowercase (_UpperCamelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : str): super().__init__() UpperCamelCase__ : list[str] = [] UpperCamelCase__ : int = domain def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : list[tuple[str, str | None]]): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: UpperCamelCase__ : Union[str, Any] = parse.urljoin(self.domain , __a) self.urls.append(__a) def __UpperCAmelCase ( lowerCamelCase_) -> str: return ".".join(get_sub_domain_name(lowercase_).split('.')[-2:]) def __UpperCAmelCase ( lowerCamelCase_) -> str: return parse.urlparse(lowercase_).netloc def __UpperCAmelCase ( lowerCamelCase_ = "https://github.com") -> list[str]: UpperCamelCase__ : int = get_domain_name(lowercase_) # Initialize the parser UpperCamelCase__ : Any = Parser(lowercase_) try: # Open URL UpperCamelCase__ : Optional[int] = requests.get(lowercase_) # pass the raw HTML to the parser to get links parser.feed(r.text) # Get links and loop through UpperCamelCase__ : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: UpperCamelCase__ : Optional[int] = requests.get(lowercase_) # Get the valid email. UpperCamelCase__ : Union[str, Any] = re.findall('[a-zA-Z0-9]+@' + domain , read.text) # If not in list then append it. for email in emails: valid_emails.add(lowercase_) except ValueError: pass except ValueError: raise SystemExit(1) # Finally return a sorted list of email addresses with no duplicates. return sorted(lowercase_) if __name__ == "__main__": lowerCAmelCase__ = emails_from_url('https://github.com') print(f'''{len(emails)} emails found:''') print('\n'.join(sorted(emails)))
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> int: if not isinstance(__UpperCamelCase , __UpperCamelCase): raise TypeError('only integers accepted as input') else: UpperCamelCase__ : List[str] = str(abs(__UpperCamelCase)) UpperCamelCase__ : Dict = [list(__UpperCamelCase) for char in range(len(__UpperCamelCase))] for index in range(len(__UpperCamelCase)): num_transpositions[index].pop(__UpperCamelCase) return max( int(''.join(list(__UpperCamelCase))) for transposition in num_transpositions) if __name__ == "__main__": __import__('doctest').testmod()
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session') def __UpperCAmelCase ( ) -> int: UpperCamelCase__ : Tuple = 10 UpperCamelCase__ : List[str] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string')), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'])), 'answers': datasets.Sequence( { 'text': datasets.Value('string'), 'answer_start': datasets.Value('int32'), }), 'id': datasets.Value('int64'), }) UpperCamelCase__ : Tuple = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCamelCase_)), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : str = str(tmp_path_factory.mktemp('data') / 'file.arrow') dataset.map(cache_file_name=lowerCamelCase_) return filename # FILE_CONTENT + files lowerCAmelCase__ = """\ Text data. Second line of data.""" @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Tuple = tmp_path_factory.mktemp('data') / 'file.txt' UpperCamelCase__ : Tuple = FILE_CONTENT with open(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_) return filename @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: import bza UpperCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data') / 'file.txt.bz2' UpperCamelCase__ : Optional[int] = bytes(lowerCamelCase_ , 'utf-8') with bza.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: import gzip UpperCamelCase__ : List[str] = str(tmp_path_factory.mktemp('data') / 'file.txt.gz') UpperCamelCase__ : Dict = bytes(lowerCamelCase_ , 'utf-8') with gzip.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Any: if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / 'file.txt.lz4' UpperCamelCase__ : Union[str, Any] = bytes(lowerCamelCase_ , 'utf-8') with lza.frame.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data') / 'file.txt.7z' with pyazr.SevenZipFile(lowerCamelCase_ , 'w') as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: import tarfile UpperCamelCase__ : List[Any] = tmp_path_factory.mktemp('data') / 'file.txt.tar' with tarfile.TarFile(lowerCamelCase_ , 'w') as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> str: import lzma UpperCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data') / 'file.txt.xz' UpperCamelCase__ : Tuple = bytes(lowerCamelCase_ , 'utf-8') with lzma.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: import zipfile UpperCamelCase__ : Tuple = tmp_path_factory.mktemp('data') / 'file.txt.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data') / 'file.txt.zst' UpperCamelCase__ : Tuple = bytes(lowerCamelCase_ , 'utf-8') with zstd.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data') / 'file.xml' UpperCamelCase__ : Any = textwrap.dedent( '\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>') with open(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_) return filename lowerCAmelCase__ = [ {"""col_1""": """0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """3""", """col_2""": 3, """col_3""": 3.0}, ] lowerCAmelCase__ = [ {"""col_1""": """4""", """col_2""": 4, """col_3""": 4.0}, {"""col_1""": """5""", """col_2""": 5, """col_3""": 5.0}, ] lowerCAmelCase__ = { """col_1""": ["""0""", """1""", """2""", """3"""], """col_2""": [0, 1, 2, 3], """col_3""": [0.0, 1.0, 2.0, 3.0], } lowerCAmelCase__ = [ {"""col_3""": 0.0, """col_1""": """0""", """col_2""": 0}, {"""col_3""": 1.0, """col_1""": """1""", """col_2""": 1}, ] lowerCAmelCase__ = [ {"""col_1""": """s0""", """col_2""": 0, """col_3""": 0.0}, {"""col_1""": """s1""", """col_2""": 1, """col_3""": 1.0}, {"""col_1""": """s2""", """col_2""": 2, """col_3""": 2.0}, {"""col_1""": """s3""", """col_2""": 3, """col_3""": 3.0}, ] @pytest.fixture(scope='session') def __UpperCAmelCase ( ) -> Optional[int]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[int] = datasets.Dataset.from_dict(lowerCamelCase_) UpperCamelCase__ : Optional[int] = str(tmp_path_factory.mktemp('data') / 'dataset.arrow') dataset.map(cache_file_name=lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data') / 'dataset.sqlite') with contextlib.closing(sqlitea.connect(lowerCamelCase_)) as con: UpperCamelCase__ : List[Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)') for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values())) con.commit() return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data') / 'dataset.csv') with open(lowerCamelCase_ , 'w' , newline='') as f: UpperCamelCase__ : Tuple = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data') / 'dataset2.csv') with open(lowerCamelCase_ , 'w' , newline='') as f: UpperCamelCase__ : Optional[int] = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3']) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: import bza UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / 'dataset.csv.bz2' with open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : Any = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , 'wb') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data') / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV'))) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV'))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Optional[int] = tmp_path_factory.mktemp('data') / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data') / 'dataset.parquet') UpperCamelCase__ : str = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), }) with open(lowerCamelCase_ , 'wb') as f: UpperCamelCase__ : Dict = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_) UpperCamelCase__ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_))] for k in DATA[0]} , schema=lowerCamelCase_) writer.write_table(lowerCamelCase_) writer.close() return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data') / 'dataset.json') UpperCamelCase__ : List[str] = {'data': DATA} with open(lowerCamelCase_ , 'w') as f: json.dump(lowerCamelCase_ , lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : List[Any] = str(tmp_path_factory.mktemp('data') / 'dataset.json') UpperCamelCase__ : Dict = {'data': DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , 'w') as f: json.dump(lowerCamelCase_ , lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : int = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl') with open(lowerCamelCase_ , 'w') as f: for item in DATA: f.write(json.dumps(lowerCamelCase_) + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Union[str, Any] = str(tmp_path_factory.mktemp('data') / 'dataset2.jsonl') with open(lowerCamelCase_ , 'w') as f: for item in DATA: f.write(json.dumps(lowerCamelCase_) + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Tuple = str(tmp_path_factory.mktemp('data') / 'dataset_312.jsonl') with open(lowerCamelCase_ , 'w') as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_) + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : str = str(tmp_path_factory.mktemp('data') / 'dataset-str.jsonl') with open(lowerCamelCase_ , 'w') as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_) + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: import gzip UpperCamelCase__ : int = str(tmp_path_factory.mktemp('data') / 'dataset.txt.gz') with open(lowerCamelCase_ , 'rb') as orig_file: with gzip.open(lowerCamelCase_ , 'wb') as zipped_file: zipped_file.writelines(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: import gzip UpperCamelCase__ : Any = str(tmp_path_factory.mktemp('data') / 'dataset.jsonl.gz') with open(lowerCamelCase_ , 'rb') as orig_file: with gzip.open(lowerCamelCase_ , 'wb') as zipped_file: zipped_file.writelines(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : str = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data') / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data') / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w') as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w') as f: f.add(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[str] = ['0', '1', '2', '3'] UpperCamelCase__ : Dict = str(tmp_path_factory.mktemp('data') / 'dataset.txt') with open(lowerCamelCase_ , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : List[Any] = ['0', '1', '2', '3'] UpperCamelCase__ : Any = str(tmp_path_factory.mktemp('data') / 'dataset2.txt') with open(lowerCamelCase_ , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : str = ['0', '1', '2', '3'] UpperCamelCase__ : Tuple = tmp_path_factory.mktemp('data') / 'dataset.abc' with open(lowerCamelCase_ , 'w') as f: for item in data: f.write(item + '\n') return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / 'dataset.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Optional[Any] = tmp_path_factory.mktemp('data') / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_))) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Union[str, Any] = tmp_path_factory.mktemp('data') / 'dataset.ext.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported.ext')) f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported_2.ext')) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[int] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third']) UpperCamelCase__ : str = str(tmp_path_factory.mktemp('data') / 'dataset_with_unicode_new_lines.txt') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as f: f.write(lowerCamelCase_) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( ) -> List[Any]: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg') @pytest.fixture(scope='session') def __UpperCAmelCase ( ) -> Tuple: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav') @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Tuple = tmp_path_factory.mktemp('data') / 'dataset.img.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w') as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_)) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_).replace('.jpg' , '2.jpg')) return path @pytest.fixture(scope='session') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Dict = tmp_path_factory.mktemp('data_dir') (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / 'subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w') as f: f.write('bar\n' * 10) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w') as f: f.write('foo\n' * 10) with open(data_dir / '.subdir' / 'test.txt' , 'w') as f: f.write('bar\n' * 10) return data_dir
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } lowerCAmelCase__ = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } lowerCAmelCase__ = '▁' class __lowercase (UpperCamelCase__ ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Optional[int]="</s>" , UpperCAmelCase_ : Union[str, Any]="</s>" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : str="<mask>" , UpperCAmelCase_ : Union[str, Any] = None , **UpperCAmelCase_ : str , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : List[Any] = AddedToken(_a , lstrip=_a , rstrip=_a) if isinstance(_a , _a) else mask_token UpperCamelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , ) UpperCamelCase__ : int = vocab_file UpperCamelCase__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(_a)) UpperCamelCase__ : Union[str, Any] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase__ : Any = len(self.sp_model) - 1 UpperCamelCase__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] UpperCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : List[Any] = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a) if token_ids_a is None: return [1] + ([0] * len(_a)) + [1] return [1] + ([0] * len(_a)) + [1, 1] + ([0] * len(_a)) + [1] def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] = None): UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def __UpperCamelCase ( self : int): return len(self.sp_model) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(_a): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str]): return self.sp_model.encode(_a , out_type=_a) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase__ : Optional[int] = self.sp_model.PieceToId(_a) return spm_id if spm_id else self.unk_token_id def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int]): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_a) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : str = """""" UpperCamelCase__ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_a) + token UpperCamelCase__ : Tuple = True UpperCamelCase__ : Dict = [] else: current_sub_tokens.append(_a) UpperCamelCase__ : Optional[Any] = False out_string += self.sp_model.decode(_a) return out_string.strip() def __getstate__( self : Optional[int]): UpperCamelCase__ : List[Any] = self.__dict__.copy() UpperCamelCase__ : Union[str, Any] = None return state def __setstate__( self : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): UpperCamelCase__ : Tuple = {} UpperCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] = None): if not os.path.isdir(_a): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : Optional[Any] = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_a) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _a) elif not os.path.isfile(self.vocab_file): with open(_a , 'wb') as fi: UpperCamelCase__ : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_a) return (out_vocab_file,)
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
from __future__ import annotations import math import random from typing import Any class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : list[Any] = [] UpperCamelCase__ : int = 0 UpperCamelCase__ : int = 0 def __UpperCamelCase ( self : str): return self.head == self.tail def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str]): self.data.append(UpperCamelCase__) UpperCamelCase__ : List[Any] = self.tail + 1 def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Tuple = self.data[self.head] UpperCamelCase__ : List[str] = self.head + 1 return ret def __UpperCamelCase ( self : Dict): return self.tail - self.head def __UpperCamelCase ( self : Union[str, Any]): print(self.data) print('**************') print(self.data[self.head : self.tail]) class __lowercase : def __init__( self : int , UpperCAmelCase_ : int): UpperCamelCase__ : Union[str, Any] = data UpperCamelCase__ : MyNode | None = None UpperCamelCase__ : MyNode | None = None UpperCamelCase__ : int = 1 def __UpperCamelCase ( self : Optional[int]): return self.data def __UpperCamelCase ( self : Optional[int]): return self.left def __UpperCamelCase ( self : Dict): return self.right def __UpperCamelCase ( self : List[str]): return self.height def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int): UpperCamelCase__ : int = data def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Any = node def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Union[str, Any] = node def __UpperCamelCase ( self : int , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Tuple = height def __UpperCAmelCase ( lowerCamelCase_) -> int: if node is None: return 0 return node.get_height() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: if a > b: return a return b def __UpperCAmelCase ( lowerCamelCase_) -> MyNode: print('left rotation node:' , node.get_data()) UpperCamelCase__ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right()) ret.set_right(__UpperCamelCase) UpperCamelCase__ : int = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(__UpperCamelCase) UpperCamelCase__ : Optional[Any] = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(__UpperCamelCase) return ret def __UpperCAmelCase ( lowerCamelCase_) -> MyNode: print('right rotation node:' , node.get_data()) UpperCamelCase__ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left()) ret.set_left(__UpperCamelCase) UpperCamelCase__ : Optional[int] = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(__UpperCamelCase) UpperCamelCase__ : List[str] = my_max(get_height(ret.get_right()) , get_height(ret.get_left())) + 1 ret.set_height(__UpperCamelCase) return ret def __UpperCAmelCase ( lowerCamelCase_) -> MyNode: UpperCamelCase__ : Dict = node.get_left() assert left_child is not None node.set_left(left_rotation(__UpperCamelCase)) return right_rotation(__UpperCamelCase) def __UpperCAmelCase ( lowerCamelCase_) -> MyNode: UpperCamelCase__ : List[str] = node.get_right() assert right_child is not None node.set_right(right_rotation(__UpperCamelCase)) return left_rotation(__UpperCamelCase) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> MyNode | None: if node is None: return MyNode(__UpperCamelCase) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __UpperCamelCase)) if ( get_height(node.get_left()) - get_height(node.get_right()) == 2 ): # an unbalance detected UpperCamelCase__ : List[Any] = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child UpperCamelCase__ : int = right_rotation(__UpperCamelCase) else: UpperCamelCase__ : Dict = lr_rotation(__UpperCamelCase) else: node.set_right(insert_node(node.get_right() , __UpperCamelCase)) if get_height(node.get_right()) - get_height(node.get_left()) == 2: UpperCamelCase__ : List[Any] = node.get_right() assert right_child is not None if data < right_child.get_data(): UpperCamelCase__ : List[Any] = rl_rotation(__UpperCamelCase) else: UpperCamelCase__ : Optional[Any] = left_rotation(__UpperCamelCase) UpperCamelCase__ : Optional[Any] = my_max(get_height(node.get_right()) , get_height(node.get_left())) + 1 node.set_height(__UpperCamelCase) return node def __UpperCAmelCase ( lowerCamelCase_) -> Any: while True: UpperCamelCase__ : Optional[Any] = root.get_right() if right_child is None: break UpperCamelCase__ : Union[str, Any] = right_child return root.get_data() def __UpperCAmelCase ( lowerCamelCase_) -> Any: while True: UpperCamelCase__ : str = root.get_left() if left_child is None: break UpperCamelCase__ : List[str] = left_child return root.get_data() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> MyNode | None: UpperCamelCase__ : str = root.get_left() UpperCamelCase__ : Optional[Any] = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: UpperCamelCase__ : str = get_left_most(__UpperCamelCase) root.set_data(__UpperCamelCase) root.set_right(del_node(__UpperCamelCase , __UpperCamelCase)) elif left_child is not None: UpperCamelCase__ : str = left_child elif right_child is not None: UpperCamelCase__ : Any = right_child else: return None elif root.get_data() > data: if left_child is None: print('No such data') return root else: root.set_left(del_node(__UpperCamelCase , __UpperCamelCase)) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__UpperCamelCase , __UpperCamelCase)) if get_height(__UpperCamelCase) - get_height(__UpperCamelCase) == 2: assert right_child is not None if get_height(right_child.get_right()) > get_height(right_child.get_left()): UpperCamelCase__ : int = left_rotation(__UpperCamelCase) else: UpperCamelCase__ : Any = rl_rotation(__UpperCamelCase) elif get_height(__UpperCamelCase) - get_height(__UpperCamelCase) == -2: assert left_child is not None if get_height(left_child.get_left()) > get_height(left_child.get_right()): UpperCamelCase__ : Dict = right_rotation(__UpperCamelCase) else: UpperCamelCase__ : Optional[Any] = lr_rotation(__UpperCamelCase) UpperCamelCase__ : int = my_max(get_height(root.get_right()) , get_height(root.get_left())) + 1 root.set_height(__UpperCamelCase) return root class __lowercase : def __init__( self : Dict): UpperCamelCase__ : MyNode | None = None def __UpperCamelCase ( self : Optional[Any]): return get_height(self.root) def __UpperCamelCase ( self : str , UpperCAmelCase_ : int): print('insert:' + str(UpperCamelCase__)) UpperCamelCase__ : Tuple = insert_node(self.root , UpperCamelCase__) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[Any]): print('delete:' + str(UpperCamelCase__)) if self.root is None: print('Tree is empty!') return UpperCamelCase__ : Union[str, Any] = del_node(self.root , UpperCamelCase__) def __str__( self : Dict , ): # a level traversale, gives a more intuitive look on the tree UpperCamelCase__ : Union[str, Any] = '''''' UpperCamelCase__ : Union[str, Any] = MyQueue() q.push(self.root) UpperCamelCase__ : int = self.get_height() if layer == 0: return output UpperCamelCase__ : List[Any] = 0 while not q.is_empty(): UpperCamelCase__ : Optional[int] = q.pop() UpperCamelCase__ : int = ''' ''' * int(math.pow(2 , layer - 1)) output += space if node is None: output += "*" q.push(UpperCamelCase__) q.push(UpperCamelCase__) else: output += str(node.get_data()) q.push(node.get_left()) q.push(node.get_right()) output += space UpperCamelCase__ : Dict = cnt + 1 for i in range(100): if cnt == math.pow(2 , UpperCamelCase__) - 1: UpperCamelCase__ : Tuple = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() lowerCAmelCase__ = AVLtree() lowerCAmelCase__ = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : str = downstream_dict['projector.weight'] UpperCamelCase__ : Union[str, Any] = downstream_dict['projector.bias'] UpperCamelCase__ : str = downstream_dict['model.post_net.linear.weight'] UpperCamelCase__ : List[Any] = downstream_dict['model.post_net.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[str] = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : str = downstream_dict['model.linear.weight'] UpperCamelCase__ : Union[str, Any] = downstream_dict['model.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : List[Any] = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : str = downstream_dict['connector.weight'] UpperCamelCase__ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel): UpperCamelCase__ : Optional[Any] = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] UpperCamelCase__ : Union[str, Any] = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] UpperCamelCase__ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase__ : str = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase__ : Optional[int] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase__ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase__ : str = downstream_dict['objective.W'] return model @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Dict = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : List[str] = checkpoint['Downstream'] UpperCamelCase__ : Union[str, Any] = UniSpeechSatConfig.from_pretrained(lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_) UpperCamelCase__ : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification'): UpperCamelCase__ : Tuple = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForAudioFrameClassification'): UpperCamelCase__ : Dict = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForXVector'): UpperCamelCase__ : str = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}') if hf_config.use_weighted_layer_sum: UpperCamelCase__ : Union[str, Any] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowerCamelCase_) hf_model.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowercase (_A ): _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , UpperCAmelCase_ : int = "" , UpperCAmelCase_ : Any = None , UpperCAmelCase_ : Tuple = None , **UpperCAmelCase_ : List[Any]): super().__init__(self , **UpperCAmelCase_) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase__ : str = fsspec.open( UpperCAmelCase_ , mode='rb' , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase__ : Any = os.path.basename(self.file.path.split('::')[0]) UpperCamelCase__ : List[Any] = ( self.compressed_name[: self.compressed_name.rindex('.')] if "." in self.compressed_name else self.compressed_name ) UpperCamelCase__ : Optional[int] = None @classmethod def __UpperCamelCase ( cls : Union[str, Any] , UpperCAmelCase_ : Tuple): # compressed file paths are always relative to the archive root return super()._strip_protocol(UpperCAmelCase_).lstrip('/') def __UpperCamelCase ( self : List[str]): if self.dir_cache is None: UpperCamelCase__ : Any = {**self.file.fs.info(self.file.path), "name": self.uncompressed_name} UpperCamelCase__ : List[str] = {f["name"]: f} def __UpperCamelCase ( self : str , UpperCAmelCase_ : Optional[int]): return self.file.open().read() def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] = "rb" , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]=None , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : List[str] = self._strip_protocol(UpperCAmelCase_) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'') return self.file.open() class __lowercase (_A ): _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class __lowercase (_A ): _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class __lowercase (_A ): _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class __lowercase (_A ): _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class __lowercase (_A ): _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] = "rb" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Dict = None , UpperCAmelCase_ : List[str] = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : Any , ): super().__init__( fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase__ : Optional[Any] = self.file.__enter__ class __lowercase : def __init__( self : Any , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = file_ def __enter__( self : Union[str, Any]): self._file.__enter__() return self def __exit__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def __iter__( self : Tuple): return iter(self._file) def __UpperCamelCase ( self : Tuple): return next(self._file) def __getattr__( self : List[str] , UpperCAmelCase_ : Optional[Any]): return getattr(self._file , UpperCAmelCase_) def fixed_enter(*UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int]): return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_)) UpperCamelCase__ : List[str] = fixed_enter
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowercase : @staticmethod def __UpperCamelCase ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any]): pass @is_pipeline_test @require_vision class __lowercase (unittest.TestCase ): @require_torch def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) UpperCamelCase__ : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Optional[Any] = image_classifier(__A , candidate_labels=['a', 'b', 'c']) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(__A) , [ [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}], [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'c'}, {'score': 0.3_33, 'label': 'b'}], ] , ) UpperCamelCase__ : int = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(__A) , [ [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], ] , ) @require_tf def __UpperCamelCase ( self : str): UpperCamelCase__ : int = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf') UpperCamelCase__ : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Union[str, Any] = image_classifier(__A , candidate_labels=['a', 'b', 'c']) self.assertEqual( nested_simplify(__A) , [{'score': 0.3_33, 'label': 'a'}, {'score': 0.3_33, 'label': 'b'}, {'score': 0.3_33, 'label': 'c'}] , ) UpperCamelCase__ : str = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2) self.assertEqual( nested_simplify(__A) , [ [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], [ {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, {'score': 0.3_33, 'label': ANY(__A)}, ], ] , ) @slow @require_torch def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : str = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes UpperCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : Optional[int] = image_classifier(__A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(__A) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) UpperCamelCase__ : str = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(__A) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Optional[int] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf') # This is an image of 2 cats with remotes and no planes UpperCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') UpperCamelCase__ : List[str] = image_classifier(__A , candidate_labels=['cat', 'plane', 'remote']) self.assertEqual( nested_simplify(__A) , [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ] , ) UpperCamelCase__ : str = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2) self.assertEqual( nested_simplify(__A) , [ [ {'score': 0.5_11, 'label': 'remote'}, {'score': 0.4_85, 'label': 'cat'}, {'score': 0.0_04, 'label': 'plane'}, ], ] * 5 , )
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __lowercase (UpperCamelCase__ ): def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(__A , 'hidden_sizes')) self.parent.assertTrue(hasattr(__A , 'neck_hidden_sizes')) self.parent.assertTrue(hasattr(__A , 'num_attention_heads')) class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Tuple=640 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Optional[int]="silu" , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : str = image_size UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Optional[Any] = last_hidden_size UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : Union[str, Any] = conv_kernel_size UpperCamelCase__ : List[str] = output_stride UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : int = classifier_dropout_prob UpperCamelCase__ : Tuple = use_labels UpperCamelCase__ : Any = is_training UpperCamelCase__ : Union[str, Any] = num_labels UpperCamelCase__ : Optional[Any] = initializer_range UpperCamelCase__ : Optional[Any] = scope def __UpperCamelCase ( self : str): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : int = None UpperCamelCase__ : Tuple = None if self.use_labels: UpperCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels) UpperCamelCase__ : str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) UpperCamelCase__ : Dict = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self : Tuple): return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict): UpperCamelCase__ : List[Any] = MobileViTModel(config=__A) model.to(__A) model.eval() UpperCamelCase__ : Any = model(__A) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Tuple = self.num_labels UpperCamelCase__ : List[Any] = MobileViTForImageClassification(__A) model.to(__A) model.eval() UpperCamelCase__ : str = model(__A , labels=__A) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Optional[int] = self.num_labels UpperCamelCase__ : Any = MobileViTForSemanticSegmentation(__A) model.to(__A) model.eval() UpperCamelCase__ : List[str] = model(__A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase__ : Optional[Any] = model(__A , labels=__A) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = config_and_inputs UpperCamelCase__ : List[Any] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowerCamelCase = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = MobileViTModelTester(self) UpperCamelCase__ : Tuple = MobileViTConfigTester(self , config_class=__A , has_text_modality=__A) def __UpperCamelCase ( self : List[str]): self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='MobileViT does not support input and output embeddings') def __UpperCamelCase ( self : Dict): pass @unittest.skip(reason='MobileViT does not output attentions') def __UpperCamelCase ( self : Dict): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(__A) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : str = [*signature.parameters.keys()] UpperCamelCase__ : List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , __A) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : str): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A) def __UpperCamelCase ( self : Any): def check_hidden_states_output(UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = model_class(__A) model.to(__A) model.eval() with torch.no_grad(): UpperCamelCase__ : int = model(**self._prepare_for_class(__A , __A)) UpperCamelCase__ : Union[str, Any] = outputs.hidden_states UpperCamelCase__ : int = 5 self.assertEqual(len(__A) , __A) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase__ : Tuple = 2 for i in range(len(__A)): self.assertListEqual( list(hidden_states[i].shape[-2:]) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2) UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = True check_hidden_states_output(__A , __A , __A) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase__ : Tuple = True check_hidden_states_output(__A , __A , __A) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__A) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__A) @slow def __UpperCamelCase ( self : List[Any]): for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Optional[Any] = MobileViTModel.from_pretrained(__A) self.assertIsNotNone(__A) def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : Optional[int]): return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small') if is_vision_available() else None @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[Any] = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small').to(__A) UpperCamelCase__ : Union[str, Any] = self.default_image_processor UpperCamelCase__ : List[Any] = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=__A , return_tensors='pt').to(__A) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[int] = model(**__A) # verify the logits UpperCamelCase__ : Union[str, Any] = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , __A) UpperCamelCase__ : Optional[int] = torch.tensor([-1.93_64, -1.23_27, -0.46_53]).to(__A) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4)) @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Dict = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') UpperCamelCase__ : Any = model.to(__A) UpperCamelCase__ : Optional[int] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') UpperCamelCase__ : str = prepare_img() UpperCamelCase__ : Dict = image_processor(images=__A , return_tensors='pt').to(__A) # forward pass with torch.no_grad(): UpperCamelCase__ : str = model(**__A) UpperCamelCase__ : List[Any] = outputs.logits # verify the logits UpperCamelCase__ : Dict = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape , __A) UpperCamelCase__ : int = torch.tensor( [ [[6.97_13, 6.97_86, 7.24_22], [7.28_93, 7.28_25, 7.44_46], [7.65_80, 7.87_97, 7.94_20]], [[-10.6_869, -10.3_250, -10.3_471], [-10.4_228, -9.98_68, -9.71_32], [-11.0_405, -11.0_221, -10.7_318]], [[-3.30_89, -2.85_39, -2.67_40], [-3.27_06, -2.56_21, -2.51_08], [-3.25_34, -2.66_15, -2.66_51]], ] , device=__A , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __A , atol=1e-4)) @slow def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : str = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small') UpperCamelCase__ : int = model.to(__A) UpperCamelCase__ : List[str] = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small') UpperCamelCase__ : Union[str, Any] = prepare_img() UpperCamelCase__ : Any = image_processor(images=__A , return_tensors='pt').to(__A) # forward pass with torch.no_grad(): UpperCamelCase__ : int = model(**__A) UpperCamelCase__ : Any = outputs.logits.detach().cpu() UpperCamelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__A , target_sizes=[(50, 60)]) UpperCamelCase__ : Optional[int] = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape , __A) UpperCamelCase__ : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=__A) UpperCamelCase__ : Any = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape , __A)
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline lowerCAmelCase__ = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = '''cpu''' lowerCAmelCase__ = '''a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings''' lowerCAmelCase__ = '''path-to-your-trained-model''' lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: lowerCAmelCase__ = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lowerCAmelCase__ = pipe.to(device) # to channels last lowerCAmelCase__ = pipe.unet.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.vae.to(memory_format=torch.channels_last) lowerCAmelCase__ = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: lowerCAmelCase__ = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex lowerCAmelCase__ = torch.randn(2, 4, 64, 64) lowerCAmelCase__ = torch.rand(1) * 999 lowerCAmelCase__ = torch.randn(2, 77, 768) lowerCAmelCase__ = (sample, timestep, encoder_hidden_status) try: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: lowerCAmelCase__ = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) lowerCAmelCase__ = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: lowerCAmelCase__ = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute lowerCAmelCase__ = 666 lowerCAmelCase__ = torch.Generator(device).manual_seed(seed) lowerCAmelCase__ = {'''generator''': generator} if args.steps is not None: lowerCAmelCase__ = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): lowerCAmelCase__ = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase__ = abspath(join(dirname(dirname(__file__)), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( lowerCamelCase_) -> str: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase__ : Any = terminalreporter.config.getoption('--make-reports') if make_reports: pytest_terminal_summary_main(lowerCamelCase_ , id=lowerCamelCase_)
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = BlenderbotSmallTokenizer _lowerCamelCase = False def __UpperCamelCase ( self : List[str]): super().setUp() UpperCamelCase__ : Union[str, Any] = ['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] UpperCamelCase__ : List[Any] = dict(zip(__A , range(len(__A)))) UpperCamelCase__ : Dict = ['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] UpperCamelCase__ : str = {'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} UpperCamelCase__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(__A) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(__A)) def __UpperCamelCase ( self : str , **UpperCAmelCase_ : Optional[Any]): kwargs.update(self.special_tokens_map) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__A) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Tuple = 'adapt act apte' UpperCamelCase__ : Tuple = 'adapt act apte' return input_text, output_text def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[Any] = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase__ : int = 'adapt act apte' UpperCamelCase__ : str = ['adapt', 'act', 'ap@@', 'te'] UpperCamelCase__ : Optional[int] = tokenizer.tokenize(__A) self.assertListEqual(__A , __A) UpperCamelCase__ : Tuple = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] UpperCamelCase__ : List[Any] = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A) , __A) def __UpperCamelCase ( self : Any): UpperCamelCase__ : int = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') assert tok('sam').input_ids == [1_384] UpperCamelCase__ : Union[str, Any] = 'I am a small frog.' UpperCamelCase__ : Tuple = tok([src_text] , padding=__A , truncation=__A)['input_ids'] UpperCamelCase__ : int = tok.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A)[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') UpperCamelCase__ : Dict = 'I am a small frog .' UpperCamelCase__ : str = '.' UpperCamelCase__ : Optional[int] = tok(__A)['input_ids'] UpperCamelCase__ : List[Any] = tok(__A)['input_ids'] assert encoded[-1] == encoded_dot[0]
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__snake_case ): def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Union[str, Any]): warnings.warn( 'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use YolosImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase)
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: def wrapper(*lowerCamelCase_ , **lowerCamelCase_): UpperCamelCase__ : List[Any] = timeit.default_timer() UpperCamelCase__ : List[str] = func(*lowercase_ , **lowercase_) UpperCamelCase__ : Any = timeit.default_timer() - starttime return delta UpperCamelCase__ : List[str] = func.__name__ return wrapper def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=100 , lowerCamelCase_=None) -> str: UpperCamelCase__ : Dict = [] UpperCamelCase__ : List[Any] = seq_shapes or {} for i in range(lowercase_): UpperCamelCase__ : Any = {} for col_id, (k, v) in enumerate(features.items()): if isinstance(lowercase_ , _ArrayXD): UpperCamelCase__ : Union[str, Any] = np.random.rand(*v.shape).astype(v.dtype) elif isinstance(lowercase_ , datasets.Value): if v.dtype == "string": UpperCamelCase__ : Optional[Any] = """The small grey turtle was surprisingly fast when challenged.""" else: UpperCamelCase__ : List[str] = np.random.randint(10 , size=1).astype(v.dtype).item() elif isinstance(lowercase_ , datasets.Sequence): while isinstance(lowercase_ , datasets.Sequence): UpperCamelCase__ : Optional[Any] = v.feature UpperCamelCase__ : str = seq_shapes[k] UpperCamelCase__ : Dict = np.random.rand(*lowercase_).astype(v.dtype) UpperCamelCase__ : List[Any] = data dummy_data.append((i, example)) return dummy_data def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=100 , lowerCamelCase_=None) -> str: UpperCamelCase__ : Union[str, Any] = generate_examples(lowercase_ , num_examples=lowercase_ , seq_shapes=lowercase_) with ArrowWriter(features=lowercase_ , path=lowercase_) as writer: for key, record in dummy_data: UpperCamelCase__ : List[Any] = features.encode_example(lowercase_) writer.write(lowercase_) UpperCamelCase__ : List[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f'Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.') UpperCamelCase__ : Optional[Any] = datasets.Dataset.from_file(filename=lowercase_ , info=datasets.DatasetInfo(features=lowercase_)) return dataset
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = None _lowerCamelCase = None def __UpperCAmelCase ( ) -> Node | None: UpperCamelCase__ : Union[str, Any] = Node(1) UpperCamelCase__ : str = Node(2) UpperCamelCase__ : List[str] = Node(3) UpperCamelCase__ : Optional[int] = Node(4) UpperCamelCase__ : Tuple = Node(5) return tree def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: return [root.data, *preorder(root.left), *preorder(root.right)] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: return postorder(root.left) + postorder(root.right) + [root.data] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: return [*inorder(root.left), root.data, *inorder(root.right)] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> int: return (max(height(root.left) , height(root.right)) + 1) if root else 0 def __UpperCAmelCase ( lowerCamelCase_) -> Sequence[Node | None]: UpperCamelCase__ : Optional[Any] = [] if root is None: return output UpperCamelCase__ : int = deque([root]) while process_queue: UpperCamelCase__ : Optional[int] = process_queue.popleft() output.append(node.data) if node.left: process_queue.append(node.left) if node.right: process_queue.append(node.right) return output def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Sequence[Node | None]: UpperCamelCase__ : int = [] def populate_output(lowerCamelCase_ , lowerCamelCase_) -> None: if not root: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.left , level - 1) populate_output(root.right , level - 1) populate_output(lowerCAmelCase__ , lowerCAmelCase__) return output def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Sequence[Node | None]: UpperCamelCase__ : Union[str, Any] = [] def populate_output(lowerCamelCase_ , lowerCamelCase_) -> None: if root is None: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.right , level - 1) populate_output(root.left , level - 1) populate_output(lowerCAmelCase__ , lowerCAmelCase__) return output def __UpperCAmelCase ( lowerCamelCase_) -> Sequence[Node | None] | list[Any]: if root is None: return [] UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : List[Any] = height(lowerCAmelCase__) for h in range(1 , height_tree + 1): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase__ , lowerCAmelCase__)) UpperCamelCase__ : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase__ , lowerCAmelCase__)) UpperCamelCase__ : Union[str, Any] = 0 return output def __UpperCAmelCase ( ) -> None: # Main function for testing. UpperCamelCase__ : int = make_tree() print(f'In-order Traversal: {inorder(lowerCAmelCase__)}') print(f'Pre-order Traversal: {preorder(lowerCAmelCase__)}') print(f'Post-order Traversal: {postorder(lowerCAmelCase__)}' , '\n') print(f'Height of Tree: {height(lowerCAmelCase__)}' , '\n') print('Complete Level Order Traversal: ') print(level_order(lowerCAmelCase__) , '\n') print('Level-wise order Traversal: ') for level in range(1 , height(lowerCAmelCase__) + 1): print(f'Level {level}:' , get_nodes_from_left_to_right(lowerCAmelCase__ , level=lowerCAmelCase__)) print('\nZigZag order Traversal: ') print(zigzag(lowerCAmelCase__)) if __name__ == "__main__": import doctest doctest.testmod() main()
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = """Hello, World!""" lowerCAmelCase__ = """en_XX""" def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : Any = Path('data_bin') UpperCamelCase__ : int = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(_lowerCamelCase).parent) , checkpoint_file=Path(_lowerCamelCase).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(_lowerCamelCase) , bpe='sentencepiece' , sentencepiece_model=str(Path(_lowerCamelCase).parent / 'sentencepiece.bpe.model') , src_dict=str(data_dir / 'dict.txt') , ) xmod.eval() # disable dropout print(_lowerCamelCase) UpperCamelCase__ : Dict = xmod.model.encoder.sentence_encoder UpperCamelCase__ : str = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: UpperCamelCase__ : Tuple = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , _lowerCamelCase) UpperCamelCase__ : List[str] = XmodForSequenceClassification(_lowerCamelCase) if classification_head else XmodForMaskedLM(_lowerCamelCase) model.eval() # Now let's copy all the weights. # Embeddings UpperCamelCase__ : str = xmod_sent_encoder.embed_tokens.weight UpperCamelCase__ : int = xmod_sent_encoder.embed_positions.weight UpperCamelCase__ : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight) # just zero them out b/c xmod doesn't use them. UpperCamelCase__ : Any = xmod_sent_encoder.layernorm_embedding.weight UpperCamelCase__ : Tuple = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers): # Encoder: start of layer UpperCamelCase__ : Any = model.roberta.encoder.layer[i] UpperCamelCase__ : List[Any] = xmod_sent_encoder.layers[i] # self attention UpperCamelCase__ : Any = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size)) ): raise AssertionError('Dimensions of self-attention weights do not match.') UpperCamelCase__ : List[Any] = xmod_layer.self_attn.q_proj.weight UpperCamelCase__ : Tuple = xmod_layer.self_attn.q_proj.bias UpperCamelCase__ : str = xmod_layer.self_attn.k_proj.weight UpperCamelCase__ : Optional[Any] = xmod_layer.self_attn.k_proj.bias UpperCamelCase__ : Tuple = xmod_layer.self_attn.v_proj.weight UpperCamelCase__ : List[str] = xmod_layer.self_attn.v_proj.bias # self-attention output UpperCamelCase__ : List[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.') UpperCamelCase__ : Optional[Any] = xmod_layer.self_attn.out_proj.weight UpperCamelCase__ : int = xmod_layer.self_attn.out_proj.bias UpperCamelCase__ : Any = xmod_layer.self_attn_layer_norm.weight UpperCamelCase__ : List[Any] = xmod_layer.self_attn_layer_norm.bias # intermediate UpperCamelCase__ : int = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.') UpperCamelCase__ : int = xmod_layer.fca.weight UpperCamelCase__ : List[str] = xmod_layer.fca.bias # output UpperCamelCase__ : int = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.') UpperCamelCase__ : Optional[Any] = xmod_layer.fca.weight UpperCamelCase__ : int = xmod_layer.fca.bias UpperCamelCase__ : Union[str, Any] = xmod_layer.final_layer_norm.weight UpperCamelCase__ : int = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: UpperCamelCase__ : str = xmod_layer.adapter_layer_norm.weight UpperCamelCase__ : int = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys()) != sorted(xmod_layer.adapter_modules.keys()): raise AssertionError('Lists of language adapters do not match.') for lang_code, adapter in xmod_layer.adapter_modules.items(): UpperCamelCase__ : Optional[int] = bert_output.adapter_modules[lang_code] UpperCamelCase__ : Optional[int] = xmod_layer.adapter_modules[lang_code] UpperCamelCase__ : Union[str, Any] = from_adapter.fca.weight UpperCamelCase__ : Tuple = from_adapter.fca.bias UpperCamelCase__ : Optional[int] = from_adapter.fca.weight UpperCamelCase__ : Dict = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: UpperCamelCase__ : Any = xmod_sent_encoder.layer_norm.weight UpperCamelCase__ : Optional[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: UpperCamelCase__ : Optional[Any] = xmod.model.classification_heads['mnli'].dense.weight UpperCamelCase__ : List[str] = xmod.model.classification_heads['mnli'].dense.bias UpperCamelCase__ : Any = xmod.model.classification_heads['mnli'].out_proj.weight UpperCamelCase__ : Any = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head UpperCamelCase__ : List[str] = xmod.model.encoder.lm_head.dense.weight UpperCamelCase__ : Tuple = xmod.model.encoder.lm_head.dense.bias UpperCamelCase__ : Optional[Any] = xmod.model.encoder.lm_head.layer_norm.weight UpperCamelCase__ : Dict = xmod.model.encoder.lm_head.layer_norm.bias UpperCamelCase__ : List[str] = xmod.model.encoder.lm_head.weight UpperCamelCase__ : Optional[int] = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. UpperCamelCase__ : Tuple = xmod.encode(_lowerCamelCase).unsqueeze(0) # batch of size 1 model.roberta.set_default_language(_lowerCamelCase) UpperCamelCase__ : Any = model(_lowerCamelCase)[0] if classification_head: UpperCamelCase__ : str = xmod.model.classification_heads['mnli'](xmod.extract_features(_lowerCamelCase)) else: UpperCamelCase__ : Union[str, Any] = xmod.model(_lowerCamelCase , lang_id=[SAMPLE_LANGUAGE])[0] print(our_output.shape , their_output.shape) UpperCamelCase__ : List[Any] = torch.max(torch.abs(our_output - their_output)).item() print(f'max_absolute_diff = {max_absolute_diff}') # ~ 1e-7 UpperCamelCase__ : Dict = torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3) print('Do both models output the same tensors?' , '🔥' if success else '💩') if not success: raise Exception('Something went wRoNg') Path(_lowerCamelCase).mkdir(parents=_lowerCamelCase , exist_ok=_lowerCamelCase) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowerCAmelCase__ = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: # noqa: E741 while r - l > 1: UpperCamelCase__ : List[str] = (l + r) // 2 if v[m] >= key: UpperCamelCase__ : Dict = m else: UpperCamelCase__ : Any = m # noqa: E741 return r def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if len(lowerCamelCase_) == 0: return 0 UpperCamelCase__ : Optional[int] = [0] * len(lowerCamelCase_) UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = v[0] for i in range(1 , len(lowerCamelCase_)): if v[i] < tail[0]: UpperCamelCase__ : Tuple = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ : Dict = v[i] length += 1 else: UpperCamelCase__ : Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' from itertools import permutations def __UpperCAmelCase ( lowerCamelCase_) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCamelCase__ : Any = [7, 11, 13, 17] for i, test in enumerate(SCREAMING_SNAKE_CASE_): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def __UpperCAmelCase ( lowerCamelCase_ = 10) -> int: return sum( int(''.join(map(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_))) for num in permutations(range(SCREAMING_SNAKE_CASE_)) if is_substring_divisible(SCREAMING_SNAKE_CASE_)) if __name__ == "__main__": print(f'''{solution() = }''')
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' import math def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Union[str, Any] = int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_))) UpperCamelCase__ : Union[str, Any] = 0 while arr[min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) - 1] < x: UpperCamelCase__ : Any = step step += int(math.floor(math.sqrt(SCREAMING_SNAKE_CASE_))) if prev >= n: return -1 while arr[prev] < x: UpperCamelCase__ : str = prev + 1 if prev == min(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): return -1 if arr[prev] == x: return prev return -1 if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] lowerCAmelCase__ = int(input('Enter the number to be searched:\n')) lowerCAmelCase__ = jump_search(arr, x) if res == -1: print('Number not found!') else: print(f'''Number {x} is at index {res}''')
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__A ): _lowerCamelCase = '''segformer''' def __init__( self : List[Any] , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : Optional[int]=[8, 4, 2, 1] , UpperCAmelCase_ : int=[32, 64, 160, 256] , UpperCAmelCase_ : str=[7, 3, 3, 3] , UpperCAmelCase_ : int=[4, 2, 2, 2] , UpperCAmelCase_ : Optional[Any]=[1, 2, 5, 8] , UpperCAmelCase_ : List[str]=[4, 4, 4, 4] , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]=1e-6 , UpperCAmelCase_ : Tuple=256 , UpperCAmelCase_ : Any=255 , **UpperCAmelCase_ : Optional[int] , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : int = num_encoder_blocks UpperCamelCase__ : Optional[int] = depths UpperCamelCase__ : Optional[int] = sr_ratios UpperCamelCase__ : int = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Any = strides UpperCamelCase__ : Union[str, Any] = mlp_ratios UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : Union[str, Any] = classifier_dropout_prob UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Any = drop_path_rate UpperCamelCase__ : Dict = layer_norm_eps UpperCamelCase__ : Optional[int] = decoder_hidden_size UpperCamelCase__ : Any = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : Tuple = semantic_loss_ignore_index class __lowercase (__A ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Dict): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = 0) -> Optional[Any]: UpperCamelCase__ : Any = length or len(lowerCAmelCase__) UpperCamelCase__ : Dict = False for i in range(length - 1): if list_data[i] > list_data[i + 1]: UpperCamelCase__, UpperCamelCase__ : Optional[Any] = list_data[i + 1], list_data[i] UpperCamelCase__ : int = True return list_data if not swapped else bubble_sort(lowerCAmelCase__ , length - 1) if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''ctrl''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[Any] , UpperCAmelCase_ : Any=246_534 , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : List[Any]=1_280 , UpperCAmelCase_ : Dict=8_192 , UpperCAmelCase_ : List[str]=48 , UpperCAmelCase_ : int=16 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=1e-6 , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Any , ): UpperCamelCase__ : Dict = vocab_size UpperCamelCase__ : Any = n_positions UpperCamelCase__ : Optional[int] = n_embd UpperCamelCase__ : List[Any] = n_layer UpperCamelCase__ : Union[str, Any] = n_head UpperCamelCase__ : str = dff UpperCamelCase__ : Tuple = resid_pdrop UpperCamelCase__ : Any = embd_pdrop UpperCamelCase__ : Dict = layer_norm_epsilon UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Any = use_cache super().__init__(**a_)
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/owlvit-base-patch32': 'https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json', 'google/owlvit-base-patch16': 'https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json', 'google/owlvit-large-patch14': 'https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''owlvit_text_model''' def __init__( self : Tuple , UpperCAmelCase_ : Any=49_408 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : int=2_048 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Any=8 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : Dict="quick_gelu" , UpperCAmelCase_ : Optional[int]=1e-5 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Tuple=1.0 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : Dict=49_406 , UpperCAmelCase_ : str=49_407 , **UpperCAmelCase_ : List[str] , ): super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : List[Any] = num_hidden_layers UpperCamelCase__ : Dict = num_attention_heads UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Tuple = attention_dropout UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Optional[int] = initializer_factor @classmethod def __UpperCamelCase ( cls : List[Any] , UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Tuple): cls._set_token_in_kwargs(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Dict = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type') == "owlvit": UpperCamelCase__ : str = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''owlvit_vision_model''' def __init__( self : List[Any] , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : int=3_072 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Tuple="quick_gelu" , UpperCAmelCase_ : List[str]=1e-5 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : Tuple = intermediate_size UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Any = num_attention_heads UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Union[str, Any] = layer_norm_eps UpperCamelCase__ : Union[str, Any] = attention_dropout UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Any = initializer_factor @classmethod def __UpperCamelCase ( cls : Union[str, Any] , UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): cls._set_token_in_kwargs(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Tuple = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type') == "owlvit": UpperCamelCase__ : Optional[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''owlvit''' _lowerCamelCase = True def __init__( self : Tuple , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2.65_92 , UpperCAmelCase_ : Tuple=True , **UpperCAmelCase_ : Any , ): super().__init__(**UpperCAmelCase_) if text_config is None: UpperCamelCase__ : Any = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.') if vision_config is None: UpperCamelCase__ : Any = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.') UpperCamelCase__ : int = OwlViTTextConfig(**UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = OwlViTVisionConfig(**UpperCAmelCase_) UpperCamelCase__ : Tuple = projection_dim UpperCamelCase__ : Optional[int] = logit_scale_init_value UpperCamelCase__ : Optional[Any] = return_dict UpperCamelCase__ : int = 1.0 @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[int]): cls._set_token_in_kwargs(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : List[str] = cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = text_config UpperCamelCase__ : List[str] = vision_config return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = copy.deepcopy(self.__dict__) UpperCamelCase__ : Union[str, Any] = self.text_config.to_dict() UpperCamelCase__ : str = self.vision_config.to_dict() UpperCamelCase__ : Union[str, Any] = self.__class__.model_type return output class __lowercase (__lowerCamelCase ): @property def __UpperCamelCase ( self : List[str]): return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ]) @property def __UpperCamelCase ( self : Dict): return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ]) @property def __UpperCamelCase ( self : Optional[int]): return 1e-4 def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] = -1 , UpperCAmelCase_ : List[str] = -1 , UpperCAmelCase_ : Optional[Any] = None , ): UpperCamelCase__ : int = super().generate_dummy_inputs( processor.tokenizer , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , framework=UpperCAmelCase_) UpperCamelCase__ : List[str] = super().generate_dummy_inputs( processor.image_processor , batch_size=UpperCAmelCase_ , framework=UpperCAmelCase_) return {**text_input_dict, **image_input_dict} @property def __UpperCamelCase ( self : Dict): return 14
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase__ = Lock() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_A) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase__ : str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase__ : Union[str, Any] = min(_A , _A) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_A) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase__ : List[str] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase__ : Optional[Any] = max(_A , _A) # after all swaps are performed, send the values back to main result_pipe[1].send(_A) def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[str] = [] UpperCamelCase__ : List[str] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase__ : Optional[Any] = Pipe() UpperCamelCase__ : Optional[Any] = Pipe() process_array_.append( Process( target=_A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) UpperCamelCase__ : int = temp_rs UpperCamelCase__ : Optional[int] = temp_rr for i in range(1 , len(_A) - 1): UpperCamelCase__ : List[str] = Pipe() UpperCamelCase__ : Dict = Pipe() process_array_.append( Process( target=_A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) UpperCamelCase__ : Optional[Any] = temp_rs UpperCamelCase__ : Any = temp_rr process_array_.append( Process( target=_A , args=( len(_A) - 1, arr[len(_A) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_A) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_A)): UpperCamelCase__ : Any = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : int = list(range(10 , 0 , -1)) print('Initial List') print(*_A) UpperCamelCase__ : Dict = odd_even_transposition(_A) print('Sorted List\n') print(*_A) if __name__ == "__main__": main()
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class __lowercase : _lowerCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(glue_processors.keys() )} ) _lowerCamelCase = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _lowerCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _lowerCamelCase = field( default=_A , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.task_name.lower() class __lowercase (_A ): _lowerCamelCase = '''train''' _lowerCamelCase = '''dev''' _lowerCamelCase = '''test''' class __lowercase (_A ): _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self : Tuple , UpperCAmelCase_ : GlueDataTrainingArguments , UpperCAmelCase_ : PreTrainedTokenizerBase , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Union[str, Split] = Split.train , UpperCAmelCase_ : Optional[str] = None , ): warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , UpperCamelCase__ , ) UpperCamelCase__ : Any = args UpperCamelCase__ : Any = glue_processors[args.task_name]() UpperCamelCase__ : Any = glue_output_modes[args.task_name] if isinstance(UpperCamelCase__ , UpperCamelCase__): try: UpperCamelCase__ : str = Split[mode] except KeyError: raise KeyError('mode is not a valid split name') # Load data features from cache or dataset file UpperCamelCase__ : List[Any] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) UpperCamelCase__ : Any = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) UpperCamelCase__, UpperCamelCase__ : List[Any] = label_list[2], label_list[1] UpperCamelCase__ : List[str] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCamelCase__ : Any = cached_features_file + '.lock' with FileLock(UpperCamelCase__): if os.path.exists(UpperCamelCase__) and not args.overwrite_cache: UpperCamelCase__ : Union[str, Any] = time.time() UpperCamelCase__ : List[Any] = torch.load(UpperCamelCase__) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start) else: logger.info(F'Creating features from dataset file at {args.data_dir}') if mode == Split.dev: UpperCamelCase__ : Union[str, Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: UpperCamelCase__ : int = self.processor.get_test_examples(args.data_dir) else: UpperCamelCase__ : int = self.processor.get_train_examples(args.data_dir) if limit_length is not None: UpperCamelCase__ : Tuple = examples[:limit_length] UpperCamelCase__ : Optional[Any] = glue_convert_examples_to_features( UpperCamelCase__ , UpperCamelCase__ , max_length=args.max_seq_length , label_list=UpperCamelCase__ , output_mode=self.output_mode , ) UpperCamelCase__ : Any = time.time() torch.save(self.features , UpperCamelCase__) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]') def __len__( self : Optional[int]): return len(self.features) def __getitem__( self : List[Any] , UpperCAmelCase_ : List[str]): return self.features[i] def __UpperCamelCase ( self : Union[str, Any]): return self.label_list
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: # Checks if the entire collection has been sorted if len(lowerCamelCase_) <= 1 or n <= 1: return insert_next(lowerCamelCase_ , n - 1) rec_insertion_sort(lowerCamelCase_ , n - 1) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: # Checks order between adjacent elements if index >= len(lowerCamelCase_) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order UpperCamelCase__ : Union[str, Any] = ( collection[index], collection[index - 1], ) insert_next(lowerCamelCase_ , index + 1) if __name__ == "__main__": lowerCAmelCase__ = input('Enter integers separated by spaces: ') lowerCAmelCase__ = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''van''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Dict=224 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Dict=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[64, 128, 320, 512] , UpperCAmelCase_ : int=[3, 3, 12, 3] , UpperCAmelCase_ : Any=[8, 8, 4, 4] , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : str=1e-6 , UpperCAmelCase_ : Optional[Any]=1e-2 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , **UpperCAmelCase_ : List[Any] , ): super().__init__(**__a) UpperCamelCase__ : List[Any] = image_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : List[str] = strides UpperCamelCase__ : List[Any] = hidden_sizes UpperCamelCase__ : Any = depths UpperCamelCase__ : Optional[int] = mlp_ratios UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : Tuple = layer_norm_eps UpperCamelCase__ : Dict = layer_scale_init_value UpperCamelCase__ : int = drop_path_rate UpperCamelCase__ : Any = dropout_rate
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' import requests lowerCAmelCase__ = '' # <-- Put your OpenWeatherMap appid here! lowerCAmelCase__ = 'https://api.openweathermap.org/data/2.5/' def __UpperCAmelCase ( lowerCamelCase_ = "Chicago" , lowerCamelCase_ = APPID): return requests.get(URL_BASE + 'weather' , params=locals()).json() def __UpperCAmelCase ( lowerCamelCase_ = "Kolkata, India" , lowerCamelCase_ = APPID): return requests.get(URL_BASE + 'forecast' , params=locals()).json() def __UpperCAmelCase ( lowerCamelCase_ = 55.68 , lowerCamelCase_ = 12.57 , lowerCamelCase_ = APPID): return requests.get(URL_BASE + 'onecall' , params=locals()).json() if __name__ == "__main__": from pprint import pprint while True: lowerCAmelCase__ = input('Enter a location:').strip() if location: pprint(current_weather(location)) else: break
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_informer': [ 'INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'InformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'InformerForPrediction', 'InformerModel', 'InformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str]): warnings.warn( 'The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use OwlViTImageProcessor instead.' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' import argparse from collections import defaultdict import yaml lowerCAmelCase__ = 'docs/source/en/_toctree.yml' def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : str = defaultdict(snake_case__) for doc in model_doc: counts[doc["local"]] += 1 UpperCamelCase__ : str = [key for key, value in counts.items() if value > 1] UpperCamelCase__ : List[str] = [] for duplicate_key in duplicates: UpperCamelCase__ : int = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key}) if len(snake_case__) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.') # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]}) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1]) # Sort return sorted(snake_case__ , key=lambda lowerCamelCase_: s["title"].lower()) def __UpperCAmelCase ( lowerCamelCase_=False) -> Optional[Any]: with open(snake_case__ , encoding='utf-8') as f: UpperCamelCase__ : Optional[int] = yaml.safe_load(f.read()) # Get to the API doc UpperCamelCase__ : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 UpperCamelCase__ : Optional[Any] = content[api_idx]['sections'] # Then to the model doc UpperCamelCase__ : Optional[int] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 UpperCamelCase__ : Union[str, Any] = api_doc[model_idx]['sections'] UpperCamelCase__ : List[str] = [(idx, section) for idx, section in enumerate(snake_case__) if 'sections' in section] UpperCamelCase__ : List[str] = False for idx, modality_doc in modalities_docs: UpperCamelCase__ : Dict = modality_doc['sections'] UpperCamelCase__ : int = clean_model_doc_toc(snake_case__) if old_modality_doc != new_modality_doc: UpperCamelCase__ : Optional[Any] = True if overwrite: UpperCamelCase__ : Union[str, Any] = new_modality_doc if diff: if overwrite: UpperCamelCase__ : Union[str, Any] = model_doc UpperCamelCase__ : Tuple = api_doc with open(snake_case__ , 'w' , encoding='utf-8') as f: f.write(yaml.dump(snake_case__ , allow_unicode=snake_case__)) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase__ = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class __lowercase (SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = (DEISMultistepScheduler,) _lowerCamelCase = (('''num_inference_steps''', 25),) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__) return config def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple=0 , **UpperCAmelCase_ : Tuple): UpperCamelCase__ : Tuple = dict(self.forward_default_kwargs) UpperCamelCase__ : str = kwargs.pop('num_inference_steps' , snake_case__) UpperCamelCase__ : Optional[Any] = self.dummy_sample UpperCamelCase__ : Tuple = 0.1 * sample UpperCamelCase__ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : List[Any] = self.get_scheduler_config(**snake_case__) UpperCamelCase__ : List[Any] = scheduler_class(**snake_case__) scheduler.set_timesteps(snake_case__) # copy over dummy past residuals UpperCamelCase__ : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__) UpperCamelCase__ : Union[str, Any] = scheduler_class.from_pretrained(snake_case__) new_scheduler.set_timesteps(snake_case__) # copy over dummy past residuals UpperCamelCase__ : int = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ : Optional[Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1): UpperCamelCase__ : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample UpperCamelCase__ : Union[str, Any] = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : str): pass def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any]=0 , **UpperCAmelCase_ : List[str]): UpperCamelCase__ : Dict = dict(self.forward_default_kwargs) UpperCamelCase__ : Dict = kwargs.pop('num_inference_steps' , snake_case__) UpperCamelCase__ : str = self.dummy_sample UpperCamelCase__ : Tuple = 0.1 * sample UpperCamelCase__ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : List[Any] = self.get_scheduler_config() UpperCamelCase__ : Dict = scheduler_class(**snake_case__) scheduler.set_timesteps(snake_case__) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__) UpperCamelCase__ : Tuple = scheduler_class.from_pretrained(snake_case__) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase__ : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample UpperCamelCase__ : Union[str, Any] = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : Union[str, Any]): if scheduler is None: UpperCamelCase__ : str = self.scheduler_classes[0] UpperCamelCase__ : int = self.get_scheduler_config(**snake_case__) UpperCamelCase__ : Dict = scheduler_class(**snake_case__) UpperCamelCase__ : int = self.scheduler_classes[0] UpperCamelCase__ : List[Any] = self.get_scheduler_config(**snake_case__) UpperCamelCase__ : List[Any] = scheduler_class(**snake_case__) UpperCamelCase__ : Any = 10 UpperCamelCase__ : Any = self.dummy_model() UpperCamelCase__ : int = self.dummy_sample_deter scheduler.set_timesteps(snake_case__) for i, t in enumerate(scheduler.timesteps): UpperCamelCase__ : List[str] = model(snake_case__ , snake_case__) UpperCamelCase__ : int = scheduler.step(snake_case__ , snake_case__ , snake_case__).prev_sample return sample def __UpperCamelCase ( self : str): UpperCamelCase__ : int = dict(self.forward_default_kwargs) UpperCamelCase__ : int = kwargs.pop('num_inference_steps' , snake_case__) for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Dict = self.get_scheduler_config() UpperCamelCase__ : Optional[int] = scheduler_class(**snake_case__) UpperCamelCase__ : Any = self.dummy_sample UpperCamelCase__ : List[str] = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , 'set_timesteps'): scheduler.set_timesteps(snake_case__) elif num_inference_steps is not None and not hasattr(snake_case__ , 'set_timesteps'): UpperCamelCase__ : Any = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ : Any = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase__ : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase__ : int = scheduler.timesteps[5] UpperCamelCase__ : int = scheduler.timesteps[6] UpperCamelCase__ : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample UpperCamelCase__ : Dict = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Union[str, Any] = DEISMultistepScheduler(**self.get_scheduler_config()) UpperCamelCase__ : Any = self.full_loop(scheduler=snake_case__) UpperCamelCase__ : Dict = torch.mean(torch.abs(snake_case__)) assert abs(result_mean.item() - 0.2_39_16) < 1e-3 UpperCamelCase__ : Tuple = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCamelCase__ : List[str] = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCamelCase__ : Optional[int] = UniPCMultistepScheduler.from_config(scheduler.config) UpperCamelCase__ : Optional[int] = DEISMultistepScheduler.from_config(scheduler.config) UpperCamelCase__ : Dict = self.full_loop(scheduler=snake_case__) UpperCamelCase__ : List[Any] = torch.mean(torch.abs(snake_case__)) assert abs(result_mean.item() - 0.2_39_16) < 1e-3 def __UpperCamelCase ( self : List[str]): for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__) def __UpperCamelCase ( self : List[Any]): self.check_over_configs(thresholding=snake_case__) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type='deis' , solver_order=snake_case__ , solver_type=snake_case__ , ) def __UpperCamelCase ( self : Any): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__) def __UpperCamelCase ( self : str): for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) UpperCamelCase__ : int = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__).any(), "Samples have nan numbers" def __UpperCamelCase ( self : Any): self.check_over_configs(lower_order_final=snake_case__) self.check_over_configs(lower_order_final=snake_case__) def __UpperCamelCase ( self : Tuple): for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : str = self.full_loop() UpperCamelCase__ : Union[str, Any] = torch.mean(torch.abs(snake_case__)) assert abs(result_mean.item() - 0.2_39_16) < 1e-3 def __UpperCamelCase ( self : str): UpperCamelCase__ : Tuple = self.full_loop(prediction_type='v_prediction') UpperCamelCase__ : List[Any] = torch.mean(torch.abs(snake_case__)) assert abs(result_mean.item() - 0.0_91) < 1e-3 def __UpperCamelCase ( self : str): UpperCamelCase__ : str = self.scheduler_classes[0] UpperCamelCase__ : Tuple = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0) UpperCamelCase__ : Optional[int] = scheduler_class(**snake_case__) UpperCamelCase__ : Tuple = 10 UpperCamelCase__ : Dict = self.dummy_model() UpperCamelCase__ : Optional[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__) for i, t in enumerate(scheduler.timesteps): UpperCamelCase__ : Union[str, Any] = model(snake_case__ , snake_case__) UpperCamelCase__ : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__).prev_sample assert sample.dtype == torch.floataa
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: # This function is recursive UpperCamelCase__ : Tuple = len(__a) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCamelCase__ : List[Any] = array[0] UpperCamelCase__ : Optional[int] = False UpperCamelCase__ : int = 1 UpperCamelCase__ : List[str] = [] while not is_found and i < array_length: if array[i] < pivot: UpperCamelCase__ : Tuple = True UpperCamelCase__ : Optional[Any] = [element for element in array[i:] if element >= array[i]] UpperCamelCase__ : str = longest_subsequence(__a) if len(__a) > len(__a): UpperCamelCase__ : int = temp_array else: i += 1 UpperCamelCase__ : Optional[Any] = [element for element in array[1:] if element >= pivot] UpperCamelCase__ : Union[str, Any] = [pivot, *longest_subsequence(__a)] if len(__a) > len(__a): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __lowercase (unittest.TestCase ): @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[Any] = self.dummy_uncond_unet UpperCamelCase__ : Optional[int] = KarrasVeScheduler() UpperCamelCase__ : Optional[int] = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_) pipe.to(snake_case_) pipe.set_progress_bar_config(disable=snake_case_) UpperCamelCase__ : Dict = torch.manual_seed(0) UpperCamelCase__ : Dict = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy').images UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : List[str] = pipe(num_inference_steps=2 , generator=snake_case_ , output_type='numpy' , return_dict=snake_case_)[0] UpperCamelCase__ : int = image[0, -3:, -3:, -1] UpperCamelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase__ : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = "google/ncsnpp-celebahq-256" UpperCamelCase__ : Tuple = UNetaDModel.from_pretrained(snake_case_) UpperCamelCase__ : Tuple = KarrasVeScheduler() UpperCamelCase__ : Optional[int] = KarrasVePipeline(unet=snake_case_ , scheduler=snake_case_) pipe.to(snake_case_) pipe.set_progress_bar_config(disable=snake_case_) UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : List[str] = pipe(num_inference_steps=20 , generator=snake_case_ , output_type='numpy').images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCamelCase__ : Dict = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __lowercase (unittest.TestCase ): def __init__( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : Any=5 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : Dict=0.02 , ): UpperCamelCase__ : Optional[Any] = parent UpperCamelCase__ : Optional[int] = batch_size UpperCamelCase__ : List[str] = image_size UpperCamelCase__ : Dict = patch_size UpperCamelCase__ : int = num_channels UpperCamelCase__ : Any = is_training UpperCamelCase__ : Optional[Any] = use_labels UpperCamelCase__ : Any = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : Optional[int] = num_attention_heads UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : Dict = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : Optional[int] = type_sequence_label_size UpperCamelCase__ : str = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : int = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = num_patches + 1 def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : Tuple = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , ) return config, pixel_values def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Optional[Any] = FlaxViTModel(config=UpperCAmelCase__) UpperCamelCase__ : Any = model(UpperCAmelCase__) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase__ : List[Any] = (self.image_size, self.image_size) UpperCamelCase__ : Tuple = (self.patch_size, self.patch_size) UpperCamelCase__ : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str): UpperCamelCase__ : Union[str, Any] = self.type_sequence_label_size UpperCamelCase__ : Dict = FlaxViTForImageClassification(config=UpperCAmelCase__) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images UpperCamelCase__ : Tuple = 1 UpperCamelCase__ : Any = FlaxViTForImageClassification(UpperCAmelCase__) UpperCamelCase__ : Optional[int] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase__) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : str = self.prepare_config_and_inputs() ( UpperCamelCase__ ) : Optional[Any] = config_and_inputs UpperCamelCase__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __lowercase (lowercase__ , unittest.TestCase ): _lowerCamelCase = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[Any] = FlaxViTModelTester(self) UpperCamelCase__ : List[str] = ConfigTester(self , config_class=UpperCAmelCase__ , has_text_modality=UpperCAmelCase__ , hidden_size=37) def __UpperCamelCase ( self : Dict): self.config_tester.run_common_tests() def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase__) def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Dict = model_class(UpperCAmelCase__) UpperCamelCase__ : Tuple = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Tuple = [*signature.parameters.keys()] UpperCamelCase__ : List[str] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , UpperCAmelCase__) def __UpperCamelCase ( self : str): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): UpperCamelCase__ : Dict = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__) UpperCamelCase__ : Union[str, Any] = model_class(UpperCAmelCase__) @jax.jit def model_jitted(UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Dict): return model(pixel_values=UpperCAmelCase__ , **UpperCAmelCase__) with self.subTest('JIT Enabled'): UpperCamelCase__ : Dict = model_jitted(**UpperCAmelCase__).to_tuple() with self.subTest('JIT Disabled'): with jax.disable_jit(): UpperCamelCase__ : Tuple = model_jitted(**UpperCAmelCase__).to_tuple() self.assertEqual(len(UpperCAmelCase__) , len(UpperCAmelCase__)) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__): self.assertEqual(jitted_output.shape , output.shape) @slow def __UpperCamelCase ( self : Tuple): for model_class_name in self.all_model_classes: UpperCamelCase__ : Union[str, Any] = model_class_name.from_pretrained('google/vit-base-patch16-224') UpperCamelCase__ : Tuple = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(UpperCAmelCase__)
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'moussaKam/mbarthez': 1024, 'moussaKam/barthez': 1024, 'moussaKam/barthez-orangesum-title': 1024, } lowerCAmelCase__ = '▁' class __lowercase (__UpperCAmelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ["input_ids", "attention_mask"] _lowerCamelCase = BarthezTokenizer def __init__( self : str , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Optional[Any]="</s>" , UpperCAmelCase_ : Dict="<s>" , UpperCAmelCase_ : str="<unk>" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Any="<mask>" , **UpperCAmelCase_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Dict = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase) if isinstance(_lowerCamelCase , _lowerCamelCase) else mask_token super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , ) UpperCamelCase__ : Dict = vocab_file UpperCamelCase__ : List[Any] = False if not self.vocab_file else True def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : Optional[Any] = [self.cls_token_id] UpperCamelCase__ : str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Tuple = [self.sep_token_id] UpperCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(_lowerCamelCase): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : Union[str, Any] = os.path.join( _lowerCamelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_lowerCamelCase): copyfile(self.vocab_file , _lowerCamelCase) return (out_vocab_file,)
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = 'MobileNetV1Config' # Base docstring lowerCAmelCase__ = 'google/mobilenet_v1_1.0_224' lowerCAmelCase__ = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase__ = 'google/mobilenet_v1_1.0_224' lowerCAmelCase__ = 'tabby, tabby cat' lowerCAmelCase__ = [ 'google/mobilenet_v1_1.0_224', 'google/mobilenet_v1_0.75_192', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> Optional[Any]: UpperCamelCase__ : int = {} if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = model.mobilenet_va else: UpperCamelCase__ : str = model UpperCamelCase__ : int = '''MobilenetV1/Conv2d_0/''' UpperCamelCase__ : Optional[int] = backbone.conv_stem.convolution.weight UpperCamelCase__ : Dict = backbone.conv_stem.normalization.bias UpperCamelCase__ : Any = backbone.conv_stem.normalization.weight UpperCamelCase__ : Optional[int] = backbone.conv_stem.normalization.running_mean UpperCamelCase__ : int = backbone.conv_stem.normalization.running_var for i in range(13): UpperCamelCase__ : Union[str, Any] = i + 1 UpperCamelCase__ : Any = i * 2 UpperCamelCase__ : List[Any] = backbone.layer[pt_index] UpperCamelCase__ : List[Any] = f'MobilenetV1/Conv2d_{tf_index}_depthwise/' UpperCamelCase__ : Union[str, Any] = pointer.convolution.weight UpperCamelCase__ : Dict = pointer.normalization.bias UpperCamelCase__ : Tuple = pointer.normalization.weight UpperCamelCase__ : int = pointer.normalization.running_mean UpperCamelCase__ : List[Any] = pointer.normalization.running_var UpperCamelCase__ : Optional[Any] = backbone.layer[pt_index + 1] UpperCamelCase__ : Dict = f'MobilenetV1/Conv2d_{tf_index}_pointwise/' UpperCamelCase__ : Any = pointer.convolution.weight UpperCamelCase__ : Dict = pointer.normalization.bias UpperCamelCase__ : Optional[int] = pointer.normalization.weight UpperCamelCase__ : int = pointer.normalization.running_mean UpperCamelCase__ : Dict = pointer.normalization.running_var if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[Any] = '''MobilenetV1/Logits/Conv2d_1c_1x1/''' UpperCamelCase__ : Optional[int] = model.classifier.weight UpperCamelCase__ : Optional[int] = model.classifier.bias return tf_to_pt_map def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.') raise # Load weights from TF model UpperCamelCase__ : str = tf.train.list_variables(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = {} for name, shape in init_vars: logger.info(f'Loading TF weight {name} with shape {shape}') UpperCamelCase__ : Optional[Any] = tf.train.load_variable(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = array # Build TF to PyTorch weights loading map UpperCamelCase__ : List[str] = _build_tf_to_pytorch_map(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for name, pointer in tf_to_pt_map.items(): logger.info(f'Importing {name}') if name not in tf_weights: logger.info(f'{name} not in tf pre-trained weights, skipping') continue UpperCamelCase__ : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise') UpperCamelCase__ : List[str] = np.transpose(lowerCamelCase_ , (2, 3, 0, 1)) elif "weights" in name: logger.info('Transposing') if len(pointer.shape) == 2: # copying into linear layer UpperCamelCase__ : Any = array.squeeze().transpose() else: UpperCamelCase__ : Optional[Any] = np.transpose(lowerCamelCase_ , (3, 2, 0, 1)) if pointer.shape != array.shape: raise ValueError(f'Pointer shape {pointer.shape} and array shape {array.shape} mismatched') logger.info(f'Initialize PyTorch weight {name} {array.shape}') UpperCamelCase__ : Optional[int] = torch.from_numpy(lowerCamelCase_) tf_weights.pop(lowerCamelCase_ , lowerCamelCase_) tf_weights.pop(name + '/RMSProp' , lowerCamelCase_) tf_weights.pop(name + '/RMSProp_1' , lowerCamelCase_) tf_weights.pop(name + '/ExponentialMovingAverage' , lowerCamelCase_) logger.info(f'Weights not copied to PyTorch model: {", ".join(tf_weights.keys())}') return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[str] = features.shape[-2:] UpperCamelCase__ : List[str] = conv_layer.stride UpperCamelCase__ : Tuple = conv_layer.kernel_size if in_height % stride_height == 0: UpperCamelCase__ : List[Any] = max(kernel_height - stride_height , 0) else: UpperCamelCase__ : List[Any] = max(kernel_height - (in_height % stride_height) , 0) if in_width % stride_width == 0: UpperCamelCase__ : str = max(kernel_width - stride_width , 0) else: UpperCamelCase__ : Dict = max(kernel_width - (in_width % stride_width) , 0) UpperCamelCase__ : Union[str, Any] = pad_along_width // 2 UpperCamelCase__ : List[str] = pad_along_width - pad_left UpperCamelCase__ : Union[str, Any] = pad_along_height // 2 UpperCamelCase__ : Tuple = pad_along_height - pad_top UpperCamelCase__ : str = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(lowerCamelCase_ , lowerCamelCase_ , 'constant' , 0.0) class __lowercase (nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] = 1 , UpperCAmelCase_ : Optional[Any] = 1 , UpperCAmelCase_ : List[str] = False , UpperCAmelCase_ : str = True , UpperCAmelCase_ : Tuple = True , ): super().__init__() UpperCamelCase__ : int = config if in_channels % groups != 0: raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.') if out_channels % groups != 0: raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.') UpperCamelCase__ : Union[str, Any] = 0 if config.tf_padding else int((kernel_size - 1) / 2) UpperCamelCase__ : List[Any] = nn.Convad( in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=__lowerCamelCase , stride=__lowerCamelCase , padding=__lowerCamelCase , groups=__lowerCamelCase , bias=__lowerCamelCase , padding_mode='zeros' , ) if use_normalization: UpperCamelCase__ : Optional[int] = nn.BatchNormad( num_features=__lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=__lowerCamelCase , track_running_stats=__lowerCamelCase , ) else: UpperCamelCase__ : List[str] = None if use_activation: if isinstance(__lowerCamelCase , __lowerCamelCase): UpperCamelCase__ : Any = ACTaFN[use_activation] elif isinstance(config.hidden_act , __lowerCamelCase): UpperCamelCase__ : Dict = ACTaFN[config.hidden_act] else: UpperCamelCase__ : Optional[int] = config.hidden_act else: UpperCamelCase__ : Union[str, Any] = None def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[str]): if self.config.tf_padding: UpperCamelCase__ : int = apply_tf_padding(__lowerCamelCase , self.convolution) UpperCamelCase__ : List[Any] = self.convolution(__lowerCamelCase) if self.normalization is not None: UpperCamelCase__ : Optional[int] = self.normalization(__lowerCamelCase) if self.activation is not None: UpperCamelCase__ : Any = self.activation(__lowerCamelCase) return features class __lowercase (lowerCamelCase__ ): _lowerCamelCase = MobileNetVaConfig _lowerCamelCase = load_tf_weights_in_mobilenet_va _lowerCamelCase = '''mobilenet_v1''' _lowerCamelCase = '''pixel_values''' _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any]): if isinstance(__lowerCamelCase , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(__lowerCamelCase , nn.BatchNormad): module.bias.data.zero_() module.weight.data.fill_(1.0) lowerCAmelCase__ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase__ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( '''The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.''' , lowerCamelCase__ , ) class __lowercase (lowerCamelCase__ ): def __init__( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = True): super().__init__(__lowerCamelCase) UpperCamelCase__ : str = config UpperCamelCase__ : List[Any] = 32 UpperCamelCase__ : Dict = max(int(depth * config.depth_multiplier) , config.min_depth) UpperCamelCase__ : List[Any] = MobileNetVaConvLayer( __lowerCamelCase , in_channels=config.num_channels , out_channels=__lowerCamelCase , kernel_size=3 , stride=2 , ) UpperCamelCase__ : Tuple = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] UpperCamelCase__ : str = nn.ModuleList() for i in range(13): UpperCamelCase__ : Optional[int] = out_channels if strides[i] == 2 or i == 0: depth *= 2 UpperCamelCase__ : Optional[Any] = max(int(depth * config.depth_multiplier) , config.min_depth) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=__lowerCamelCase , )) self.layer.append( MobileNetVaConvLayer( __lowerCamelCase , in_channels=__lowerCamelCase , out_channels=__lowerCamelCase , kernel_size=1 , )) UpperCamelCase__ : Optional[int] = nn.AdaptiveAvgPoolad((1, 1)) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): raise NotImplementedError @add_start_docstrings_to_model_forward(__lowerCamelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Tuple = None , UpperCAmelCase_ : Union[str, Any] = None , UpperCAmelCase_ : List[str] = None , ): UpperCamelCase__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Any = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values') UpperCamelCase__ : Any = self.conv_stem(__lowerCamelCase) UpperCamelCase__ : int = () if output_hidden_states else None for i, layer_module in enumerate(self.layer): UpperCamelCase__ : Any = layer_module(__lowerCamelCase) if output_hidden_states: UpperCamelCase__ : Union[str, Any] = all_hidden_states + (hidden_states,) UpperCamelCase__ : List[str] = hidden_states if self.pooler is not None: UpperCamelCase__ : List[Any] = torch.flatten(self.pooler(__lowerCamelCase) , start_dim=1) else: UpperCamelCase__ : int = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowerCamelCase , pooler_output=__lowerCamelCase , hidden_states=__lowerCamelCase , ) @add_start_docstrings( ''' MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , lowerCamelCase__ , ) class __lowercase (lowerCamelCase__ ): def __init__( self : Optional[Any] , UpperCAmelCase_ : str): super().__init__(__lowerCamelCase) UpperCamelCase__ : List[str] = config.num_labels UpperCamelCase__ : Optional[Any] = MobileNetVaModel(__lowerCamelCase) UpperCamelCase__ : Tuple = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head UpperCamelCase__ : Any = nn.Dropout(config.classifier_dropout_prob , inplace=__lowerCamelCase) UpperCamelCase__ : Dict = nn.Linear(__lowerCamelCase , config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__lowerCamelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Optional[Any] = None , UpperCAmelCase_ : Dict = None , ): UpperCamelCase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : Dict = self.mobilenet_va(__lowerCamelCase , output_hidden_states=__lowerCamelCase , return_dict=__lowerCamelCase) UpperCamelCase__ : Optional[Any] = outputs.pooler_output if return_dict else outputs[1] UpperCamelCase__ : Optional[int] = self.classifier(self.dropout(__lowerCamelCase)) UpperCamelCase__ : Tuple = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : Union[str, Any] = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : Optional[int] = '''single_label_classification''' else: UpperCamelCase__ : Dict = '''multi_label_classification''' if self.config.problem_type == "regression": UpperCamelCase__ : int = MSELoss() if self.num_labels == 1: UpperCamelCase__ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze()) else: UpperCamelCase__ : Any = loss_fct(__lowerCamelCase , __lowerCamelCase) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[str] = CrossEntropyLoss() UpperCamelCase__ : Dict = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[int] = BCEWithLogitsLoss() UpperCamelCase__ : Dict = loss_fct(__lowerCamelCase , __lowerCamelCase) if not return_dict: UpperCamelCase__ : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=__lowerCamelCase , logits=__lowerCamelCase , hidden_states=outputs.hidden_states , )
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Optional[Any] = len(UpperCamelCase__) UpperCamelCase__ : Union[str, Any] = len(matrix[0]) UpperCamelCase__ : str = min(UpperCamelCase__ , UpperCamelCase__) for row in range(UpperCamelCase__): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , UpperCamelCase__): UpperCamelCase__ : Any = matrix[col][row] / matrix[row][row] for i in range(UpperCamelCase__ , UpperCamelCase__): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase__ : Any = True for i in range(row + 1 , UpperCamelCase__): if matrix[i][row] != 0: UpperCamelCase__, UpperCamelCase__ : Optional[int] = matrix[i], matrix[row] UpperCamelCase__ : List[Any] = False break if reduce: rank -= 1 for i in range(UpperCamelCase__): UpperCamelCase__ : Union[str, Any] = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/data2vec-vision-base-ft': ( 'https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json' ), } class __lowercase (snake_case__ ): _lowerCamelCase = '''data2vec-vision''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : List[str]=3_072 , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=1e-12 , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=[3, 5, 7, 11] , UpperCAmelCase_ : List[Any]=[1, 2, 3, 6] , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=0.4 , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : Dict=1 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[Any]=255 , **UpperCAmelCase_ : List[Any] , ): super().__init__(**lowercase_) UpperCamelCase__ : int = hidden_size UpperCamelCase__ : Dict = num_hidden_layers UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : int = intermediate_size UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Tuple = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : str = patch_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Any = use_mask_token UpperCamelCase__ : Dict = use_absolute_position_embeddings UpperCamelCase__ : Union[str, Any] = use_relative_position_bias UpperCamelCase__ : Any = use_shared_relative_position_bias UpperCamelCase__ : Tuple = layer_scale_init_value UpperCamelCase__ : Optional[Any] = drop_path_rate UpperCamelCase__ : str = use_mean_pooling # decode head attributes (semantic segmentation) UpperCamelCase__ : Dict = out_indices UpperCamelCase__ : Dict = pool_scales # auxiliary head attributes (semantic segmentation) UpperCamelCase__ : Any = use_auxiliary_head UpperCamelCase__ : Union[str, Any] = auxiliary_loss_weight UpperCamelCase__ : Any = auxiliary_channels UpperCamelCase__ : int = auxiliary_num_convs UpperCamelCase__ : List[str] = auxiliary_concat_input UpperCamelCase__ : Any = semantic_loss_ignore_index class __lowercase (snake_case__ ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[int]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : int): return 1e-4
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowerCAmelCase__ = "http://www.mocksite.com/file1.txt" lowerCAmelCase__ = "\"text\": [\"foo\", \"foo\"]" lowerCAmelCase__ = "6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8" class __lowercase : _lowerCamelCase = 200 _lowerCamelCase = {'''Content-Length''': '''100'''} _lowerCamelCase = {} def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Tuple): return [bytes(A_ , 'utf-8')] def __UpperCAmelCase ( *lowerCamelCase_ , **lowerCamelCase_) -> Any: return MockResponse() @pytest.mark.parametrize('urls_type' , [str, list, dict]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: import requests monkeypatch.setattr(lowerCamelCase_ , 'request' , lowerCamelCase_) UpperCamelCase__ : str = URL if issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : int = url elif issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[int] = [url] elif issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[int] = {'train': url} UpperCamelCase__ : Any = 'dummy' UpperCamelCase__ : Optional[int] = 'downloads' UpperCamelCase__ : str = tmp_path UpperCamelCase__ : Optional[int] = DownloadConfig( cache_dir=os.path.join(lowerCamelCase_ , lowerCamelCase_) , use_etag=lowerCamelCase_ , ) UpperCamelCase__ : List[str] = DownloadManager(dataset_name=lowerCamelCase_ , download_config=lowerCamelCase_) UpperCamelCase__ : List[Any] = dl_manager.download(lowerCamelCase_) UpperCamelCase__ : Any = urls for downloaded_paths in [downloaded_paths]: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : str = [downloaded_paths] UpperCamelCase__ : Tuple = [urls] elif isinstance(lowerCamelCase_ , lowerCamelCase_): assert "train" in downloaded_paths.keys() UpperCamelCase__ : int = downloaded_paths.values() UpperCamelCase__ : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(lowerCamelCase_ , lowerCamelCase_): assert downloaded_path == dl_manager.downloaded_paths[input_url] UpperCamelCase__ : Optional[int] = Path(lowerCamelCase_) UpperCamelCase__ : int = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() UpperCamelCase__ : List[Any] = downloaded_path.read_text() assert content == CONTENT UpperCamelCase__ : int = downloaded_path.with_suffix('.json') assert metadata_downloaded_path.exists() UpperCamelCase__ : Optional[int] = json.loads(metadata_downloaded_path.read_text()) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('paths_type' , [str, list, dict]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : int = str(lowerCamelCase_) if issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : List[str] = filename elif issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : List[str] = [filename] elif issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Any = {'train': filename} UpperCamelCase__ : Tuple = 'dummy' UpperCamelCase__ : List[Any] = xz_file.parent UpperCamelCase__ : Any = 'extracted' UpperCamelCase__ : Optional[int] = DownloadConfig( cache_dir=lowerCamelCase_ , use_etag=lowerCamelCase_ , ) UpperCamelCase__ : Optional[int] = DownloadManager(dataset_name=lowerCamelCase_ , download_config=lowerCamelCase_) UpperCamelCase__ : str = dl_manager.extract(lowerCamelCase_) UpperCamelCase__ : Tuple = paths for extracted_paths in [extracted_paths]: if isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = [extracted_paths] UpperCamelCase__ : Any = [paths] elif isinstance(lowerCamelCase_ , lowerCamelCase_): assert "train" in extracted_paths.keys() UpperCamelCase__ : List[str] = extracted_paths.values() UpperCamelCase__ : Any = paths.values() assert extracted_paths for extracted_path, input_path in zip(lowerCamelCase_ , lowerCamelCase_): assert extracted_path == dl_manager.extracted_paths[input_path] UpperCamelCase__ : Union[str, Any] = Path(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = extracted_path.parts assert parts[-1] == hash_url_to_filename(lowerCamelCase_ , etag=lowerCamelCase_) assert parts[-2] == extracted_subdir assert extracted_path.exists() UpperCamelCase__ : List[Any] = extracted_path.read_text() UpperCamelCase__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: assert path.endswith('.jsonl') for num_items, line in enumerate(lowerCamelCase_ , start=1): UpperCamelCase__ : List[Any] = json.loads(line.decode('utf-8')) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('archive_jsonl' , ['tar_jsonl_path', 'zip_jsonl_path']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : List[str] = request.getfixturevalue(lowerCamelCase_) UpperCamelCase__ : Optional[int] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase_) , start=1): _test_jsonl(lowerCamelCase_ , lowerCamelCase_) assert num_jsonl == 2 @pytest.mark.parametrize('archive_nested_jsonl' , ['tar_nested_jsonl_path', 'zip_nested_jsonl_path']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : str = request.getfixturevalue(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(lowerCamelCase_) , start=1): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(lowerCamelCase_) , start=1): _test_jsonl(lowerCamelCase_ , lowerCamelCase_) assert num_tar == 1 assert num_jsonl == 2 def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(lowerCamelCase_) , start=1): assert os.path.basename(lowerCamelCase_) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> bool: return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' from scipy.stats import pearsonr import datasets lowerCAmelCase__ = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n" lowerCAmelCase__ = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n" lowerCAmelCase__ = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def __UpperCamelCase ( self : List[str]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float'), 'references': datasets.Value('float'), }) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=False): if return_pvalue: UpperCamelCase__ : Tuple = pearsonr(__UpperCamelCase , __UpperCamelCase) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(__UpperCamelCase , __UpperCamelCase)[0])}
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=A_ ) class __lowercase (A_ ): _lowerCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''audio''': Audio()} ) _lowerCamelCase = Features({'''transcription''': Value('''string''' )} ) _lowerCamelCase = "audio" _lowerCamelCase = "transcription" def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : str): if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.') if not isinstance(features[self.audio_column] , UpperCAmelCase_): raise ValueError(F'Column {self.audio_column} is not an Audio type.') UpperCamelCase__ : int = copy.deepcopy(self) UpperCamelCase__ : Tuple = self.input_schema.copy() UpperCamelCase__ : Tuple = features[self.audio_column] UpperCamelCase__ : List[str] = input_schema return task_template @property def __UpperCamelCase ( self : str): return {self.audio_column: "audio", self.transcription_column: "transcription"}
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = filter(lambda lowerCamelCase_: p.requires_grad , model.parameters()) UpperCamelCase__ : List[Any] = sum([np.prod(p.size()) for p in model_parameters]) return params lowerCAmelCase__ = logging.getLogger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: if metric == "rouge2": UpperCamelCase__ : str = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCamelCase__ : Dict = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCamelCase__ : List[str] = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": UpperCamelCase__ : List[Any] = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.') UpperCamelCase__ : Tuple = ModelCheckpoint( dirpath=lowerCAmelCase__ , filename=lowerCAmelCase__ , monitor=f'val_{metric}' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCAmelCase__ , verbose=lowerCAmelCase__ , ) class __lowercase (pl.Callback ): def __UpperCamelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : int = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(UpperCamelCase__) @rank_zero_only def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=True): logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') UpperCamelCase__ : Optional[int] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results UpperCamelCase__ : List[str] = Path(pl_module.hparams.output_dir) if type_path == "test": UpperCamelCase__ : List[str] = od / 'test_results.txt' UpperCamelCase__ : Optional[Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase__ : List[Any] = od / F'{type_path}_results/{trainer.global_step:05d}.txt' UpperCamelCase__ : str = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=UpperCamelCase__) generations_file.parent.mkdir(exist_ok=UpperCamelCase__) with open(UpperCamelCase__ , 'a+') as writer: for key in sorted(UpperCamelCase__): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase__ : Any = metrics[key] if isinstance(UpperCamelCase__ , torch.Tensor): UpperCamelCase__ : Tuple = val.item() UpperCamelCase__ : Optional[Any] = F'{key}: {val:.6f}\n' writer.write(UpperCamelCase__) if not save_generations: return if "preds" in metrics: UpperCamelCase__ : List[Any] = '\n'.join(metrics['preds']) generations_file.open('w+').write(UpperCamelCase__) @rank_zero_only def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict): try: UpperCamelCase__ : Tuple = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase__ : Optional[int] = pl_module.model.num_parameters() UpperCamelCase__ : Any = count_trainable_parameters(UpperCamelCase__) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6}) @rank_zero_only def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(UpperCamelCase__ , UpperCamelCase__ , 'test') @rank_zero_only def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> float: UpperCamelCase__ : List[Any] = (num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def __UpperCAmelCase ( ) -> List[str]: print(sum_of_series(1 , 1 , 10)) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class __lowercase (datasets.BeamBasedBuilder ): def __UpperCamelCase ( self : Optional[Any]): return datasets.DatasetInfo( features=datasets.Features({'content': datasets.Value('string')}) , supervised_keys=UpperCamelCase__ , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]): return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_dummy_examples()})] def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__) class __lowercase (datasets.BeamBasedBuilder ): def __UpperCamelCase ( self : Dict): return datasets.DatasetInfo( features=datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string')})}) , supervised_keys=UpperCamelCase__ , ) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict): return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'examples': get_test_nested_examples()}) ] def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str): import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(UpperCamelCase__) def __UpperCAmelCase ( ) -> Any: return [(i, {"content": content}) for i, content in enumerate(['foo', 'bar', 'foobar'])] def __UpperCAmelCase ( ) -> Union[str, Any]: return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['foo', 'bar', 'foobar'])] class __lowercase (lowercase_ ): @require_beam def __UpperCamelCase ( self : Any): UpperCamelCase__ : Any = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Dict = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow'))) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string')})) UpperCamelCase__ : Optional[Any] = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__) self.assertDictEqual(dset['train'][0] , get_test_dummy_examples()[0][1]) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json'))) del dset @require_beam def __UpperCamelCase ( self : Dict): import apache_beam as beam UpperCamelCase__ : Optional[int] = beam.io.parquetio.WriteToParquet UpperCamelCase__ : str = len(get_test_dummy_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Optional[Any] = DummyBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner') with patch('apache_beam.io.parquetio.WriteToParquet') as write_parquet_mock: UpperCamelCase__ : Union[str, Any] = partial(UpperCamelCase__ , num_shards=2) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow'))) self.assertTrue( os.path.exists( os.path.join( UpperCamelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train-00000-of-00002.arrow'))) self.assertDictEqual(builder.info.features , datasets.Features({'content': datasets.Value('string')})) UpperCamelCase__ : Optional[int] = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset['train']['content']) , sorted(['foo', 'bar', 'foobar'])) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json'))) del dset @require_beam def __UpperCamelCase ( self : Any): with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Tuple = DummyBeamDataset(cache_dir=UpperCamelCase__) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare) @require_beam def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[Any] = len(get_test_nested_examples()) with tempfile.TemporaryDirectory() as tmp_cache_dir: UpperCamelCase__ : Union[str, Any] = NestedBeamDataset(cache_dir=UpperCamelCase__ , beam_runner='DirectRunner') builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , F'{builder.name}-train.arrow'))) self.assertDictEqual( builder.info.features , datasets.Features({'a': datasets.Sequence({'b': datasets.Value('string')})})) UpperCamelCase__ : Dict = builder.as_dataset() self.assertEqual(dset['train'].num_rows , UpperCamelCase__) self.assertEqual(dset['train'].info.splits['train'].num_examples , UpperCamelCase__) self.assertDictEqual(dset['train'][0] , get_test_nested_examples()[0][1]) self.assertDictEqual( dset['train'][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1]) self.assertTrue( os.path.exists(os.path.join(UpperCamelCase__ , builder.name , 'default' , '0.0.0' , 'dataset_info.json'))) del dset
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) lowerCAmelCase__ = logging.getLogger(__name__) lowerCAmelCase__ = {"facebook/bart-base": BartForConditionalGeneration} lowerCAmelCase__ = {"facebook/bart-base": BartTokenizer} def __UpperCAmelCase ( ) -> Any: UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser(description='Export Bart model + Beam Search to ONNX graph.') parser.add_argument( '--validation_file' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='A csv or a json file containing the validation data.') parser.add_argument( '--max_length' , type=__lowerCAmelCase , default=5 , help='The maximum total input sequence length after tokenization.' , ) parser.add_argument( '--num_beams' , type=__lowerCAmelCase , default=__lowerCAmelCase , help=( 'Number of beams to use for evaluation. This argument will be ' 'passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.' ) , ) parser.add_argument( '--model_name_or_path' , type=__lowerCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models.' , required=__lowerCAmelCase , ) parser.add_argument( '--config_name' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='Pretrained config name or path if not the same as model_name' , ) parser.add_argument( '--device' , type=__lowerCAmelCase , default='cpu' , help='Device where the model will be run' , ) parser.add_argument('--output_file_path' , type=__lowerCAmelCase , default=__lowerCAmelCase , help='Where to store the final ONNX file.') UpperCamelCase__ : List[str] = parser.parse_args() return args def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_="cpu") -> int: UpperCamelCase__ : Optional[int] = model_dict[model_name].from_pretrained(__lowerCAmelCase).to(__lowerCAmelCase) UpperCamelCase__ : List[str] = tokenizer_dict[model_name].from_pretrained(__lowerCAmelCase) if model_name in ["facebook/bart-base"]: UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Dict = None UpperCamelCase__ : Union[str, Any] = 0 return huggingface_model, tokenizer def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: model.eval() UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Union[str, Any] = torch.jit.script(BARTBeamSearchGenerator(__lowerCAmelCase)) with torch.no_grad(): UpperCamelCase__ : Optional[Any] = 'My friends are cool but they eat too many carbs.' UpperCamelCase__ : str = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_024 , return_tensors='pt').to(model.device) UpperCamelCase__ : Optional[int] = model.generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , num_beams=__lowerCAmelCase , max_length=__lowerCAmelCase , early_stopping=__lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( __lowerCAmelCase , ( inputs['input_ids'], inputs['attention_mask'], num_beams, max_length, model.config.decoder_start_token_id, ) , __lowerCAmelCase , opset_version=14 , input_names=['input_ids', 'attention_mask', 'num_beams', 'max_length', 'decoder_start_token_id'] , output_names=['output_ids'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'seq'}, 'output_ids': {0: 'batch', 1: 'seq_out'}, } , example_outputs=__lowerCAmelCase , ) logger.info('Model exported to {}'.format(__lowerCAmelCase)) UpperCamelCase__ : str = remove_dup_initializers(os.path.abspath(__lowerCAmelCase)) logger.info('Deduplicated and optimized model written to {}'.format(__lowerCAmelCase)) UpperCamelCase__ : int = onnxruntime.InferenceSession(__lowerCAmelCase) UpperCamelCase__ : Any = ort_sess.run( __lowerCAmelCase , { 'input_ids': inputs['input_ids'].cpu().numpy(), 'attention_mask': inputs['attention_mask'].cpu().numpy(), 'num_beams': np.array(__lowerCAmelCase), 'max_length': np.array(__lowerCAmelCase), 'decoder_start_token_id': np.array(model.config.decoder_start_token_id), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1e-3 , atol=1e-3) logger.info('Model outputs from torch and ONNX Runtime are similar.') logger.info('Success.') def __UpperCAmelCase ( ) -> Any: UpperCamelCase__ : Union[str, Any] = parse_args() UpperCamelCase__ : Optional[Any] = 5 UpperCamelCase__ : List[Any] = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.setLevel(logging.INFO) transformers.utils.logging.set_verbosity_error() UpperCamelCase__ : List[Any] = torch.device(args.device) UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = load_model_tokenizer(args.model_name_or_path , __lowerCAmelCase) if model.config.decoder_start_token_id is None: raise ValueError('Make sure that `config.decoder_start_token_id` is correctly defined') model.to(__lowerCAmelCase) if args.max_length: UpperCamelCase__ : str = args.max_length if args.num_beams: UpperCamelCase__ : str = args.num_beams if args.output_file_path: UpperCamelCase__ : List[str] = args.output_file_path else: UpperCamelCase__ : int = 'BART.onnx' logger.info('Exporting model to ONNX') export_and_validate_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) if __name__ == "__main__": main()
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=_UpperCamelCase ): _lowerCamelCase = ['''note_seq'''] def __init__( self : str , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[int]): requires_backends(self , ['note_seq']) @classmethod def __UpperCamelCase ( cls : Any , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['note_seq']) @classmethod def __UpperCamelCase ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Any): requires_backends(cls , ['note_seq'])
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node lowerCAmelCase__ = 4 lowerCAmelCase__ = 3 class __lowercase (__lowerCamelCase ): pass def __UpperCAmelCase ( lowerCamelCase_) -> Any: for shard in shards: for i in range(UpperCAmelCase__): yield {"i": i, "shard": shard} def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : List[str] = int(os.environ['RANK']) UpperCamelCase__ : List[str] = int(os.environ['WORLD_SIZE']) UpperCamelCase__ : Union[str, Any] = ArgumentParser() parser.add_argument('--streaming' , type=UpperCAmelCase__) parser.add_argument('--local_rank' , type=UpperCAmelCase__) parser.add_argument('--num_workers' , type=UpperCAmelCase__ , default=0) UpperCamelCase__ : List[Any] = parser.parse_args() UpperCamelCase__ : Optional[Any] = args.streaming UpperCamelCase__ : Optional[int] = args.num_workers UpperCamelCase__ : Dict = {'shards': [f'shard_{shard_idx}' for shard_idx in range(UpperCAmelCase__)]} UpperCamelCase__ : str = IterableDataset.from_generator(UpperCAmelCase__ , gen_kwargs=UpperCAmelCase__) if not streaming: UpperCamelCase__ : Any = Dataset.from_list(list(UpperCAmelCase__)) UpperCamelCase__ : Optional[int] = split_dataset_by_node(UpperCAmelCase__ , rank=UpperCAmelCase__ , world_size=UpperCAmelCase__) UpperCamelCase__ : Dict = torch.utils.data.DataLoader(UpperCAmelCase__ , num_workers=UpperCAmelCase__) UpperCamelCase__ : Union[str, Any] = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCamelCase__ : int = full_size // world_size expected_local_size += int(rank < (full_size % world_size)) UpperCamelCase__ : Any = sum(1 for _ in dataloader) if local_size != expected_local_size: raise FailedTestError(f'local_size {local_size} != expected_local_size {expected_local_size}') if __name__ == "__main__": main()
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/layoutlmv3-base': 'https://huggingface.co/microsoft/layoutlmv3-base/resolve/main/config.json', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = """layoutlmv3""" def __init__( self : Optional[int] , UpperCAmelCase_ : int=50_265 , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Any=3_072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : List[Any]=512 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : List[str]=1e-5 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Tuple=2 , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Dict=128 , UpperCAmelCase_ : Any=128 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : Tuple=128 , UpperCAmelCase_ : str=64 , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=224 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( vocab_size=UpperCAmelCase_ , hidden_size=UpperCAmelCase_ , num_hidden_layers=UpperCAmelCase_ , num_attention_heads=UpperCAmelCase_ , intermediate_size=UpperCAmelCase_ , hidden_act=UpperCAmelCase_ , hidden_dropout_prob=UpperCAmelCase_ , attention_probs_dropout_prob=UpperCAmelCase_ , max_position_embeddings=UpperCAmelCase_ , type_vocab_size=UpperCAmelCase_ , initializer_range=UpperCAmelCase_ , layer_norm_eps=UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : str = max_ad_position_embeddings UpperCamelCase__ : Tuple = coordinate_size UpperCamelCase__ : Any = shape_size UpperCamelCase__ : List[Any] = has_relative_attention_bias UpperCamelCase__ : List[str] = rel_pos_bins UpperCamelCase__ : Union[str, Any] = max_rel_pos UpperCamelCase__ : Any = has_spatial_attention_bias UpperCamelCase__ : Optional[Any] = rel_ad_pos_bins UpperCamelCase__ : Optional[Any] = max_rel_ad_pos UpperCamelCase__ : Union[str, Any] = text_embed UpperCamelCase__ : Dict = visual_embed UpperCamelCase__ : List[Any] = input_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : int = patch_size UpperCamelCase__ : Any = classifier_dropout class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.12''' ) @property def __UpperCamelCase ( self : Tuple): if self.task in ["question-answering", "sequence-classification"]: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) else: return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('bbox', {0: 'batch', 1: 'sequence'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels'}), ]) @property def __UpperCamelCase ( self : Any): return 1e-5 @property def __UpperCamelCase ( self : str): return 12 def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] = -1 , UpperCAmelCase_ : Optional[int] = -1 , UpperCAmelCase_ : Optional[Any] = False , UpperCAmelCase_ : int = None , UpperCAmelCase_ : List[Any] = 3 , UpperCAmelCase_ : Dict = 40 , UpperCAmelCase_ : Optional[Any] = 40 , ): setattr(processor.image_processor , 'apply_ocr' , UpperCAmelCase_) # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ : Any = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ : Tuple = processor.tokenizer.num_special_tokens_to_add(UpperCAmelCase_) UpperCamelCase__ : Tuple = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ : int = [[' '.join([processor.tokenizer.unk_token]) * seq_length]] * batch_size # Generate dummy bounding boxes UpperCamelCase__ : int = [[[48, 84, 73, 128]]] * batch_size # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX # batch_size = compute_effective_axis_dimension(batch_size, fixed_dimension=OnnxConfig.default_fixed_batch) UpperCamelCase__ : Union[str, Any] = self._generate_dummy_images(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = dict( processor( UpperCAmelCase_ , text=UpperCAmelCase_ , boxes=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , )) return inputs
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' lowerCAmelCase__ = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: # Return True if there is node that has not iterated. UpperCamelCase__ : List[Any] = [False] * len(lowerCamelCase_) UpperCamelCase__ : List[str] = [s] UpperCamelCase__ : List[Any] = True while queue: UpperCamelCase__ : Union[str, Any] = queue.pop(0) for ind in range(len(graph[u])): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase_) UpperCamelCase__ : Any = True UpperCamelCase__ : Dict = u return visited[t] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : Dict = [-1] * (len(lowerCamelCase_)) UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : int = [i[:] for i in graph] # Record original cut, copy. while bfs(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = float('Inf') UpperCamelCase__ : Any = sink while s != source: # Find the minimum value in select path UpperCamelCase__ : int = min(lowerCamelCase_ , graph[parent[s]][s]) UpperCamelCase__ : Optional[int] = parent[s] max_flow += path_flow UpperCamelCase__ : Any = sink while v != source: UpperCamelCase__ : Optional[Any] = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow UpperCamelCase__ : Union[str, Any] = parent[v] for i in range(len(lowerCamelCase_)): for j in range(len(graph[0])): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j)) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : Union[str, Any] = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4']) UpperCamelCase__ : str = MaskFormerConfig(backbone_config=lowerCamelCase_) UpperCamelCase__ : Any = '''huggingface/label-files''' if "ade20k-full" in model_name: # this should be ok UpperCamelCase__ : List[str] = 847 UpperCamelCase__ : str = '''maskformer-ade20k-full-id2label.json''' elif "ade" in model_name: # this should be ok UpperCamelCase__ : Any = 150 UpperCamelCase__ : Union[str, Any] = '''ade20k-id2label.json''' elif "coco-stuff" in model_name: # this should be ok UpperCamelCase__ : List[str] = 171 UpperCamelCase__ : str = '''maskformer-coco-stuff-id2label.json''' elif "coco" in model_name: # TODO UpperCamelCase__ : Tuple = 133 UpperCamelCase__ : List[str] = '''coco-panoptic-id2label.json''' elif "cityscapes" in model_name: # this should be ok UpperCamelCase__ : Dict = 19 UpperCamelCase__ : Tuple = '''cityscapes-id2label.json''' elif "vistas" in model_name: # this should be ok UpperCamelCase__ : List[str] = 65 UpperCamelCase__ : str = '''mapillary-vistas-id2label.json''' UpperCamelCase__ : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r')) UpperCamelCase__ : str = {int(lowerCamelCase_): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : str = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight')) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias')) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight')) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight')) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias')) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight')) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias')) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight')) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight')) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias')) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight')) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight')) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias')) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight')) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias')) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias')) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias')) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias')) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias')) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias')) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias')) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias')) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight')) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias')) for i in range(3): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight')) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias')) # fmt: on return rename_keys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : str = dct.pop(lowerCamelCase_) UpperCamelCase__ : Tuple = val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : int = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): UpperCamelCase__ : List[str] = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase__ : int = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight') UpperCamelCase__ : List[Any] = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[Any] = in_proj_weight[:dim, :] UpperCamelCase__ : Optional[Any] = in_proj_bias[: dim] UpperCamelCase__ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase__ : int = in_proj_bias[ dim : dim * 2 ] UpperCamelCase__ : Any = in_proj_weight[ -dim :, : ] UpperCamelCase__ : str = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ : Tuple = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight') UpperCamelCase__ : Optional[Any] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : int = in_proj_weight[: hidden_size, :] UpperCamelCase__ : Any = in_proj_bias[:config.hidden_size] UpperCamelCase__ : Any = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ : Any = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ : int = in_proj_weight[-hidden_size :, :] UpperCamelCase__ : str = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight') UpperCamelCase__ : Optional[Any] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Dict = in_proj_weight[: hidden_size, :] UpperCamelCase__ : Tuple = in_proj_bias[:config.hidden_size] UpperCamelCase__ : Optional[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ : Union[str, Any] = in_proj_weight[-hidden_size :, :] UpperCamelCase__ : int = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False) -> int: UpperCamelCase__ : Union[str, Any] = get_maskformer_config(lowerCamelCase_) # load original state_dict with open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : Dict = pickle.load(lowerCamelCase_) UpperCamelCase__ : List[Any] = data['''model'''] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCamelCase__ : Optional[int] = create_rename_keys(lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) read_in_swin_q_k_v(lowerCamelCase_ , config.backbone_config) read_in_decoder_q_k_v(lowerCamelCase_ , lowerCamelCase_) # update to torch tensors for key, value in state_dict.items(): UpperCamelCase__ : int = torch.from_numpy(lowerCamelCase_) # load 🤗 model UpperCamelCase__ : Dict = MaskFormerForInstanceSegmentation(lowerCamelCase_) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase_ , param.shape) UpperCamelCase__ : Any = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase_) == 0, f'Unexpected keys: {unexpected_keys}' # verify results UpperCamelCase__ : List[Any] = prepare_img() if "vistas" in model_name: UpperCamelCase__ : Optional[Any] = 65 elif "cityscapes" in model_name: UpperCamelCase__ : int = 65_535 else: UpperCamelCase__ : str = 255 UpperCamelCase__ : Optional[Any] = True if '''ade''' in model_name else False UpperCamelCase__ : Tuple = MaskFormerImageProcessor(ignore_index=lowerCamelCase_ , reduce_labels=lowerCamelCase_) UpperCamelCase__ : Tuple = image_processor(lowerCamelCase_ , return_tensors='pt') UpperCamelCase__ : Any = model(**lowerCamelCase_) print('Logits:' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": UpperCamelCase__ : Dict = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}') Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model and image processor to the hub...') model.push_to_hub(f'nielsr/{model_name}') image_processor.push_to_hub(f'nielsr/{model_name}') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : str = 1.5 UpperCamelCase__ : Dict = int(factor * num_class_images) UpperCamelCase__ : Optional[int] = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=snake_case_ , aesthetic_weight=0.1) os.makedirs(f'{class_data_dir}/images' , exist_ok=snake_case_) if len(list(Path(f'{class_data_dir}/images').iterdir())) >= num_class_images: return while True: UpperCamelCase__ : int = client.query(text=snake_case_) if len(snake_case_) >= factor * num_class_images or num_images > 1e4: break else: UpperCamelCase__ : Dict = int(factor * num_images) UpperCamelCase__ : Any = ClipClient( url='https://knn.laion.ai/knn-service' , indice_name='laion_400m' , num_images=snake_case_ , aesthetic_weight=0.1 , ) UpperCamelCase__ : int = 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Dict = tqdm(desc='downloading real regularization images' , total=snake_case_) with open(f'{class_data_dir}/caption.txt' , 'w') as fa, open(f'{class_data_dir}/urls.txt' , 'w') as fa, open( f'{class_data_dir}/images.txt' , 'w') as fa: while total < num_class_images: UpperCamelCase__ : Dict = class_images[count] count += 1 try: UpperCamelCase__ : Union[str, Any] = requests.get(images['url']) if img.status_code == 200: UpperCamelCase__ : List[str] = Image.open(BytesIO(img.content)) with open(f'{class_data_dir}/images/{total}.jpg' , 'wb') as f: f.write(img.content) fa.write(images['caption'] + '\n') fa.write(images['url'] + '\n') fa.write(f'{class_data_dir}/images/{total}.jpg' + '\n') total += 1 pbar.update(1) else: continue except Exception: continue return def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser('' , add_help=snake_case_) parser.add_argument('--class_prompt' , help='text prompt to retrieve images' , required=snake_case_ , type=snake_case_) parser.add_argument('--class_data_dir' , help='path to save images' , required=snake_case_ , type=snake_case_) parser.add_argument('--num_class_images' , help='number of images to download' , default=200 , type=snake_case_) return parser.parse_args() if __name__ == "__main__": lowerCAmelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class __lowercase (lowercase_ ): _lowerCamelCase = '''bloom''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = { '''num_hidden_layers''': '''n_layer''', '''num_attention_heads''': '''n_head''', } def __init__( self : List[str] , UpperCAmelCase_ : Dict=250_880 , UpperCAmelCase_ : Any=64 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=8 , UpperCAmelCase_ : str=1e-5 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Union[str, Any]=1 , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : Any = vocab_size # Backward compatibility with n_embed kwarg UpperCamelCase__ : int = kwargs.pop('n_embed' , UpperCAmelCase_) UpperCamelCase__ : List[Any] = hidden_size if n_embed is None else n_embed UpperCamelCase__ : Union[str, Any] = n_layer UpperCamelCase__ : Tuple = n_head UpperCamelCase__ : List[Any] = layer_norm_epsilon UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : List[Any] = use_cache UpperCamelCase__ : Dict = pretraining_tp UpperCamelCase__ : Optional[Any] = apply_residual_connection_post_layernorm UpperCamelCase__ : Dict = hidden_dropout UpperCamelCase__ : Tuple = attention_dropout UpperCamelCase__ : List[str] = bos_token_id UpperCamelCase__ : Optional[Any] = eos_token_id UpperCamelCase__ : Tuple = slow_but_exact super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_) class __lowercase (lowercase_ ): _lowerCamelCase = version.parse('''1.12''' ) def __init__( self : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple = "default" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = False , ): super().__init__(UpperCAmelCase_ , task=UpperCAmelCase_ , patching_specs=UpperCAmelCase_ , use_past=UpperCAmelCase_) if not getattr(self._config , 'pad_token_id' , UpperCAmelCase_): # TODO: how to do that better? UpperCamelCase__ : Dict = 0 @property def __UpperCamelCase ( self : str): UpperCamelCase__ : Any = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}}) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs' , inverted_values_shape=UpperCAmelCase_) UpperCamelCase__ : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase__ : List[str] = {0: 'batch', 1: 'sequence'} return common_inputs @property def __UpperCamelCase ( self : Optional[Any]): return self._config.n_layer @property def __UpperCamelCase ( self : int): return self._config.n_head @property def __UpperCamelCase ( self : Optional[Any]): return 1e-3 def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : Dict = -1 , UpperCAmelCase_ : Any = False , UpperCAmelCase_ : List[str] = None , ): UpperCamelCase__ : Optional[int] = super(UpperCAmelCase_ , self).generate_dummy_inputs( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) # We need to order the input in the way they appears in the forward() UpperCamelCase__ : Optional[Any] = OrderedDict({'input_ids': common_inputs['input_ids']}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch UpperCamelCase__, UpperCamelCase__ : Any = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase__ : List[Any] = seqlen + 2 UpperCamelCase__ : List[Any] = self._config.hidden_size // self.num_attention_heads UpperCamelCase__ : List[Any] = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) UpperCamelCase__ : str = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) UpperCamelCase__ : List[str] = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(self.num_layers) ] UpperCamelCase__ : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: UpperCamelCase__ : Tuple = ordered_inputs['attention_mask'].dtype UpperCamelCase__ : Any = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) return ordered_inputs @property def __UpperCamelCase ( self : List[str]): return 13
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/wavlm-base': 'https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class __lowercase (__lowerCamelCase ): _lowerCamelCase = """wavlm""" def __init__( self : int , UpperCAmelCase_ : Any=32 , UpperCAmelCase_ : List[str]=768 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : int=1e-5 , UpperCAmelCase_ : Optional[int]="group" , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Optional[int]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : str=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Any=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Tuple=128 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : int=320 , UpperCAmelCase_ : Optional[int]=800 , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Union[str, Any]=0.05 , UpperCAmelCase_ : Any=10 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : str=320 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : int=100 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[str]="mean" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[Any]=256 , UpperCAmelCase_ : Tuple=(512, 512, 512, 512, 1_500) , UpperCAmelCase_ : Optional[int]=(5, 3, 3, 1, 1) , UpperCAmelCase_ : List[str]=(1, 2, 3, 1, 1) , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=3 , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Dict = feat_extract_norm UpperCamelCase__ : List[str] = feat_extract_activation UpperCamelCase__ : Optional[int] = list(UpperCAmelCase_) UpperCamelCase__ : List[Any] = list(UpperCAmelCase_) UpperCamelCase__ : Tuple = list(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = conv_bias UpperCamelCase__ : Tuple = num_buckets UpperCamelCase__ : Tuple = max_bucket_distance UpperCamelCase__ : str = num_conv_pos_embeddings UpperCamelCase__ : List[Any] = num_conv_pos_embedding_groups UpperCamelCase__ : int = len(self.conv_dim) UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : Optional[Any] = hidden_dropout UpperCamelCase__ : int = attention_dropout UpperCamelCase__ : Union[str, Any] = activation_dropout UpperCamelCase__ : Tuple = feat_proj_dropout UpperCamelCase__ : Optional[int] = final_dropout UpperCamelCase__ : List[str] = layerdrop UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : str = num_ctc_classes UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : Optional[int] = do_stable_layer_norm UpperCamelCase__ : Any = use_weighted_layer_sum UpperCamelCase__ : str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : Any = apply_spec_augment UpperCamelCase__ : Optional[Any] = mask_time_prob UpperCamelCase__ : Optional[int] = mask_time_length UpperCamelCase__ : List[Any] = mask_time_min_masks UpperCamelCase__ : Optional[Any] = mask_feature_prob UpperCamelCase__ : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations UpperCamelCase__ : Optional[Any] = num_codevectors_per_group UpperCamelCase__ : Optional[Any] = num_codevector_groups UpperCamelCase__ : Union[str, Any] = contrastive_logits_temperature UpperCamelCase__ : List[Any] = num_negatives UpperCamelCase__ : Any = codevector_dim UpperCamelCase__ : Optional[int] = proj_codevector_dim UpperCamelCase__ : Union[str, Any] = diversity_loss_weight # ctc loss UpperCamelCase__ : Optional[Any] = ctc_loss_reduction UpperCamelCase__ : Any = ctc_zero_infinity # adapter UpperCamelCase__ : Optional[int] = add_adapter UpperCamelCase__ : List[Any] = adapter_kernel_size UpperCamelCase__ : List[str] = adapter_stride UpperCamelCase__ : int = num_adapter_layers UpperCamelCase__ : Union[str, Any] = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase__ : Optional[Any] = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase__ : List[str] = list(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = list(UpperCAmelCase_) UpperCamelCase__ : Dict = list(UpperCAmelCase_) UpperCamelCase__ : Any = xvector_output_dim @property def __UpperCamelCase ( self : str): return functools.reduce(operator.mul , self.conv_stride , 1)
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: if not isinstance(lowerCamelCase_ , lowerCamelCase_) or number < 0: raise ValueError('Input must be a non-negative integer') UpperCamelCase__ : Union[str, Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Dict = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Any): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Optional[int] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : int = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : List[str] = self.prepare_image_inputs() UpperCamelCase__ : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : str = processor(images=UpperCAmelCase_ , return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) @require_torch def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : str = self.get_image_processor() UpperCamelCase__ : Union[str, Any] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : str = [torch.ones((1, 3, 5, 5))] UpperCamelCase__ : List[Any] = [[1_764, 2_646]] UpperCamelCase__ : Optional[int] = [[683, 1_024]] UpperCamelCase__ : int = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Tuple = processor.post_process_masks( UpperCAmelCase_ , torch.tensor(UpperCAmelCase_) , torch.tensor(UpperCAmelCase_)) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) # should also work with np UpperCamelCase__ : Union[str, Any] = [np.ones((1, 3, 5, 5))] UpperCamelCase__ : Optional[int] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_)) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Union[str, Any] = [[1, 0], [0, 1]] with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : List[Any] = processor.post_process_masks(UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_)) @require_vision @require_tf class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Tuple = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : Optional[Any] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Tuple = SamProcessor(image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Union[str, Any] = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Dict = self.get_image_processor() UpperCamelCase__ : Optional[Any] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : Optional[Any] = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[Any] = processor(images=UpperCAmelCase_ , return_tensors='np') input_feat_extract.pop('original_sizes') # pop original_sizes as it is popped in the processor input_feat_extract.pop('reshaped_input_sizes') # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) @require_tf def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Tuple = self.get_image_processor() UpperCamelCase__ : Optional[int] = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [tf.ones((1, 3, 5, 5))] UpperCamelCase__ : Optional[int] = [[1_764, 2_646]] UpperCamelCase__ : Optional[int] = [[683, 1_024]] UpperCamelCase__ : Optional[Any] = processor.post_process_masks(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf') self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : int = processor.post_process_masks( UpperCAmelCase_ , tf.convert_to_tensor(UpperCAmelCase_) , tf.convert_to_tensor(UpperCAmelCase_) , return_tensors='tf' , ) self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) # should also work with np UpperCamelCase__ : List[Any] = [np.ones((1, 3, 5, 5))] UpperCamelCase__ : int = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_) , return_tensors='tf') self.assertEqual(masks[0].shape , (1, 3, 1_764, 2_646)) UpperCamelCase__ : Optional[Any] = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError): UpperCamelCase__ : List[Any] = processor.post_process_masks( UpperCAmelCase_ , np.array(UpperCAmelCase_) , np.array(UpperCAmelCase_) , return_tensors='tf') @require_vision @require_torchvision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): UpperCamelCase__ : str = tempfile.mkdtemp() UpperCamelCase__ : Union[str, Any] = SamImageProcessor() UpperCamelCase__ : List[Any] = SamProcessor(UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) def __UpperCamelCase ( self : List[str] , **UpperCAmelCase_ : List[str]): return AutoProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_).image_processor def __UpperCamelCase ( self : Dict): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : int = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : int = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : str = np.random.randint(0 , 2 , size=(1, 3, 5, 5)).astype(np.floataa) UpperCamelCase__ : List[Any] = [tf.convert_to_tensor(UpperCAmelCase_)] UpperCamelCase__ : str = [torch.tensor(UpperCAmelCase_)] UpperCamelCase__ : List[Any] = [[1_764, 2_646]] UpperCamelCase__ : List[Any] = [[683, 1_024]] UpperCamelCase__ : Any = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='tf') UpperCamelCase__ : Tuple = processor.post_process_masks( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , return_tensors='pt') self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy())) @is_pt_tf_cross_test def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Any = SamProcessor(image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='pt')['pixel_values'].numpy() UpperCamelCase__ : Tuple = processor(images=UpperCAmelCase_ , return_tensors='pt')['pixel_values'].numpy() UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='tf')['pixel_values'].numpy() UpperCamelCase__ : Dict = processor(images=UpperCAmelCase_ , return_tensors='tf')['pixel_values'].numpy() self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_)) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_))
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : list): UpperCamelCase__ : Any = set_counts UpperCamelCase__ : Optional[int] = max(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = len(UpperCAmelCase_) UpperCamelCase__ : str = [1] * num_sets UpperCamelCase__ : Optional[int] = list(range(UpperCAmelCase_)) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : int = self.get_parent(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.get_parent(UpperCAmelCase_) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase__ : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = src_parent UpperCamelCase__ : str = self.set_counts[src_parent] UpperCamelCase__ : str = max(self.max_set , UpperCAmelCase_) return True def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase__ : Any = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = 256 class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''melgan'''] def __init__( self : int , UpperCAmelCase_ : SpectrogramNotesEncoder , UpperCAmelCase_ : SpectrogramContEncoder , UpperCAmelCase_ : TaFilmDecoder , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN UpperCamelCase__ : Optional[int] = math.log(1e-5) # Matches MelGAN training. UpperCamelCase__ : Tuple = 4.0 # Largest value for most examples UpperCamelCase__ : str = 128 self.register_modules( notes_encoder=UpperCAmelCase_ , continuous_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , melgan=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=(-1.0, 1.0) , UpperCAmelCase_ : Union[str, Any]=False): UpperCamelCase__ : Dict = output_range if clip: UpperCamelCase__ : Any = torch.clip(UpperCAmelCase_ , self.min_value , self.max_value) # Scale to [0, 1]. UpperCamelCase__ : Dict = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=(-1.0, 1.0) , UpperCAmelCase_ : Dict=False): UpperCamelCase__ : Any = input_range UpperCamelCase__ : Optional[Any] = torch.clip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Tuple = input_tokens > 0 UpperCamelCase__ : Dict = self.notes_encoder( encoder_input_tokens=UpperCAmelCase_ , encoder_inputs_mask=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.continuous_encoder( encoder_inputs=UpperCAmelCase_ , encoder_inputs_mask=UpperCAmelCase_) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = noise_time if not torch.is_tensor(UpperCAmelCase_): UpperCamelCase__ : str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(UpperCAmelCase_) and len(timesteps.shape) == 0: UpperCamelCase__ : Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : Optional[Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) UpperCamelCase__ : Any = self.decoder( encodings_and_masks=UpperCAmelCase_ , decoder_input_tokens=UpperCAmelCase_ , decoder_noise_time=UpperCAmelCase_) return logits @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase_ : List[List[int]] , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "numpy" , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCAmelCase_)}.') UpperCamelCase__ : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) UpperCamelCase__ : List[str] = np.zeros([1, 0, self.n_dims] , np.floataa) UpperCamelCase__ : List[str] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase_ , device=self.device) for i, encoder_input_tokens in enumerate(UpperCAmelCase_): if i == 0: UpperCamelCase__ : List[str] = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. UpperCamelCase__ : Any = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase_ , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ : Union[str, Any] = ones UpperCamelCase__ : Tuple = self.scale_features( UpperCAmelCase_ , output_range=[-1.0, 1.0] , clip=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=UpperCAmelCase_ , continuous_mask=UpperCAmelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ : List[Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCAmelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCAmelCase_) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): UpperCamelCase__ : Any = self.decode( encodings_and_masks=UpperCAmelCase_ , input_tokens=UpperCAmelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ : Optional[int] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample UpperCamelCase__ : List[str] = self.scale_to_features(UpperCAmelCase_ , input_range=[-1.0, 1.0]) UpperCamelCase__ : List[str] = mel[:1] UpperCamelCase__ : int = mel.cpu().float().numpy() UpperCamelCase__ : str = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_) logger.info('Generated segment' , UpperCAmelCase_) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.') elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.') if output_type == "numpy": UpperCamelCase__ : Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: UpperCamelCase__ : Optional[int] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCAmelCase_)
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = LongformerTokenizer _lowerCamelCase = True _lowerCamelCase = LongformerTokenizerFast _lowerCamelCase = True def __UpperCamelCase ( self : Optional[Any]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase__ : Optional[int] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ : List[str] = {'unk_token': '<unk>'} UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def __UpperCamelCase ( self : int , **UpperCAmelCase_ : int): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Dict): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : str = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ : int = tokenizer.tokenize(UpperCAmelCase_) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokens + [tokenizer.unk_token] UpperCamelCase__ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096') UpperCamelCase__ : str = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Union[str, Any] = 'Encode this sequence.' UpperCamelCase__ : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8')[0]] # Testing encoder arguments UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) tokenizer.add_special_tokens({'bos_token': '<s>'}) UpperCamelCase__ : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) # Testing spaces after special tokens UpperCamelCase__ : Tuple = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_)}) # mask token has a left space UpperCamelCase__ : Any = tokenizer.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'Encode <mask> sequence' UpperCamelCase__ : Optional[Any] = 'Encode <mask>sequence' UpperCamelCase__ : List[str] = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = encoded.index(UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Any = encoded.index(UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): pass def __UpperCamelCase ( self : Optional[int]): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'A, <mask> AllenNLP sentence.' UpperCamelCase__ : Any = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) UpperCamelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) UpperCamelCase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) def __UpperCamelCase ( self : Tuple): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) UpperCamelCase__ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['trim_offsets'] , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ : str = F'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : str = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ : int = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_) + 1, 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , )
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Tuple: UpperCamelCase__ : Optional[Any] = None if token is not None: UpperCamelCase__ : str = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : int = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100' UpperCamelCase__ : List[str] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_).json() UpperCamelCase__ : Tuple = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']}) UpperCamelCase__ : Optional[Any] = math.ceil((result['total_count'] - 100) / 100) for i in range(lowerCamelCase_): UpperCamelCase__ : Optional[Any] = requests.get(url + f'&page={i + 2}' , headers=lowerCamelCase_).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']}) return job_links except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}') return {} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : Optional[int] = None if token is not None: UpperCamelCase__ : Any = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : Tuple = f'https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100' UpperCamelCase__ : Dict = requests.get(lowerCamelCase_ , headers=lowerCamelCase_).json() UpperCamelCase__ : Tuple = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']}) UpperCamelCase__ : Dict = math.ceil((result['total_count'] - 100) / 100) for i in range(lowerCamelCase_): UpperCamelCase__ : Any = requests.get(url + f'&page={i + 2}' , headers=lowerCamelCase_).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']}) return artifacts except Exception: print(f'Unknown error, could not fetch links:\n{traceback.format_exc()}') return {} def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[Any] = None if token is not None: UpperCamelCase__ : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} UpperCamelCase__ : Optional[Any] = requests.get(lowerCamelCase_ , headers=lowerCamelCase_ , allow_redirects=lowerCamelCase_) UpperCamelCase__ : Tuple = result.headers['Location'] UpperCamelCase__ : Tuple = requests.get(lowerCamelCase_ , allow_redirects=lowerCamelCase_) UpperCamelCase__ : List[Any] = os.path.join(lowerCamelCase_ , f'{artifact_name}.zip') with open(lowerCamelCase_ , 'wb') as fp: fp.write(response.content) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> List[str]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : List[str] = [] UpperCamelCase__ : Optional[int] = None with zipfile.ZipFile(lowerCamelCase_) as z: for filename in z.namelist(): if not os.path.isdir(lowerCamelCase_): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(lowerCamelCase_) as f: for line in f: UpperCamelCase__ : Optional[Any] = line.decode('UTF-8').strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs UpperCamelCase__ : List[Any] = line[: line.index(': ')] UpperCamelCase__ : Tuple = line[line.index(': ') + len(': ') :] errors.append([error_line, error]) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED '): # `test` is the test method that failed UpperCamelCase__ : List[str] = line[len('FAILED ') :] failed_tests.append(lowerCamelCase_) elif filename == "job_name.txt": UpperCamelCase__ : Tuple = line if len(lowerCamelCase_) != len(lowerCamelCase_): raise ValueError( f'`errors` and `failed_tests` should have the same number of elements. Got {len(lowerCamelCase_)} for `errors` ' f'and {len(lowerCamelCase_)} for `failed_tests` instead. The test reports in {artifact_zip_path} have some' ' problem.') UpperCamelCase__ : Dict = None if job_name and job_links: UpperCamelCase__ : List[str] = job_links.get(lowerCamelCase_ , lowerCamelCase_) # A list with elements of the form (line of error, error, failed test) UpperCamelCase__ : Union[str, Any] = [x + [y] + [job_link] for x, y in zip(lowerCamelCase_ , lowerCamelCase_)] return result def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : int = [] UpperCamelCase__ : Dict = [os.path.join(lowerCamelCase_ , lowerCamelCase_) for p in os.listdir(lowerCamelCase_) if p.endswith('.zip')] for p in paths: errors.extend(get_errors_from_single_artifact(lowerCamelCase_ , job_links=lowerCamelCase_)) return errors def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> Any: UpperCamelCase__ : Optional[int] = Counter() counter.update([x[1] for x in logs]) UpperCamelCase__ : Dict = counter.most_common() UpperCamelCase__ : str = {} for error, count in counts: if error_filter is None or error not in error_filter: UpperCamelCase__ : List[Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} UpperCamelCase__ : str = dict(sorted(r.items() , key=lambda lowerCamelCase_: item[1]["count"] , reverse=lowerCamelCase_)) return r def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = test.split('::')[0] if test.startswith('tests/models/'): UpperCamelCase__ : Optional[int] = test.split('/')[2] else: UpperCamelCase__ : int = None return test def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None) -> int: UpperCamelCase__ : Tuple = [(x[0], x[1], get_model(x[2])) for x in logs] UpperCamelCase__ : Tuple = [x for x in logs if x[2] is not None] UpperCamelCase__ : List[Any] = {x[2] for x in logs} UpperCamelCase__ : Union[str, Any] = {} for test in tests: UpperCamelCase__ : List[Any] = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test]) UpperCamelCase__ : int = counter.most_common() UpperCamelCase__ : List[Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} UpperCamelCase__ : Tuple = sum(error_counts.values()) if n_errors > 0: UpperCamelCase__ : int = {'count': n_errors, 'errors': error_counts} UpperCamelCase__ : str = dict(sorted(r.items() , key=lambda lowerCamelCase_: item[1]["count"] , reverse=lowerCamelCase_)) return r def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Optional[int] = '| no. | error | status |' UpperCamelCase__ : Dict = '|-:|:-|:-|' UpperCamelCase__ : str = [header, sep] for error in reduced_by_error: UpperCamelCase__ : Optional[int] = reduced_by_error[error]['count'] UpperCamelCase__ : str = f'| {count} | {error[:100]} | |' lines.append(lowerCamelCase_) return "\n".join(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = '| model | no. of errors | major error | count |' UpperCamelCase__ : Dict = '|-:|-:|-:|-:|' UpperCamelCase__ : Optional[Any] = [header, sep] for model in reduced_by_model: UpperCamelCase__ : Any = reduced_by_model[model]['count'] UpperCamelCase__ : int = list(reduced_by_model[model]['errors'].items())[0] UpperCamelCase__ : str = f'| {model} | {count} | {error[:60]} | {_count} |' lines.append(lowerCamelCase_) return "\n".join(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') parser.add_argument( '--output_dir', type=str, required=True, help='Where to store the downloaded artifacts and other result files.', ) parser.add_argument('--token', default=None, type=str, help='A token that has actions:read permission.') lowerCAmelCase__ = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) lowerCAmelCase__ = get_job_links(args.workflow_run_id, token=args.token) lowerCAmelCase__ = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: lowerCAmelCase__ = k.find(' / ') lowerCAmelCase__ = k[index + len(' / ') :] lowerCAmelCase__ = v with open(os.path.join(args.output_dir, 'job_links.json'), 'w', encoding='UTF-8') as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, 'artifacts.json'), 'w', encoding='UTF-8') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) lowerCAmelCase__ = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error lowerCAmelCase__ = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors lowerCAmelCase__ = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, 'errors.json'), 'w', encoding='UTF-8') as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) lowerCAmelCase__ = reduce_by_error(errors) lowerCAmelCase__ = reduce_by_model(errors) lowerCAmelCase__ = make_github_table(reduced_by_error) lowerCAmelCase__ = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, 'reduced_by_error.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa) with open(os.path.join(args.output_dir, 'reduced_by_model.txt'), 'w', encoding='UTF-8') as fp: fp.write(sa)
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor lowerCAmelCase__ = random.Random() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=1.0 , lowerCamelCase_=None , lowerCamelCase_=None) -> str: if rng is None: UpperCamelCase__ : List[Any] = global_rng UpperCamelCase__ : str = [] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values @require_torch @require_torchaudio class __lowercase (unittest.TestCase ): def __init__( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : List[str]=2_000 , UpperCAmelCase_ : int=24 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=16_000 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : List[str]=True , ): UpperCamelCase__ : Any = parent UpperCamelCase__ : Optional[Any] = batch_size UpperCamelCase__ : Any = min_seq_length UpperCamelCase__ : Optional[Any] = max_seq_length UpperCamelCase__ : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase__ : List[str] = feature_size UpperCamelCase__ : Optional[int] = num_mel_bins UpperCamelCase__ : Tuple = padding_value UpperCamelCase__ : List[str] = sampling_rate UpperCamelCase__ : Optional[Any] = return_attention_mask UpperCamelCase__ : int = do_normalize def __UpperCamelCase ( self : Tuple): return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Any=False): def _flatten(UpperCAmelCase_ : List[Any]): return list(itertools.chain(*UpperCAmelCase_)) if equal_length: UpperCamelCase__ : str = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)] else: # make sure that inputs increase in size UpperCamelCase__ : Union[str, Any] = [ floats_list((x, self.feature_size)) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: UpperCamelCase__ : Optional[Any] = [np.asarray(UpperCAmelCase_) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = SpeechaTextFeatureExtractor if is_speech_available() else None def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[Any] = SpeechaTextFeatureExtractionTester(self) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): self.assertTrue(np.all(np.mean(UpperCAmelCase_ , axis=0) < 1e-3)) self.assertTrue(np.all(np.abs(np.var(UpperCAmelCase_ , axis=0) - 1) < 1e-3)) def __UpperCamelCase ( self : Optional[int]): # Tests that all call wrap to encode_plus and batch_encode_plus UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 UpperCamelCase__ : Optional[int] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = [np.asarray(UpperCAmelCase_) for speech_input in speech_inputs] # Test feature size UpperCamelCase__ : Union[str, Any] = feature_extractor(UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np').input_features self.assertTrue(input_features.ndim == 3) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size) # Test not batched input UpperCamelCase__ : str = feature_extractor(speech_inputs[0] , return_tensors='np').input_features UpperCamelCase__ : Optional[int] = feature_extractor(np_speech_inputs[0] , return_tensors='np').input_features self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) # Test batched UpperCamelCase__ : Tuple = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features UpperCamelCase__ : Optional[Any] = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) # Test 2-D numpy arrays are batched. UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in (800, 800, 800)] UpperCamelCase__ : Dict = np.asarray(UpperCAmelCase_) UpperCamelCase__ : str = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features UpperCamelCase__ : Tuple = feature_extractor(UpperCAmelCase_ , return_tensors='np').input_features for enc_seq_a, enc_seq_a in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-3)) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Union[str, Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : Union[str, Any] = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase__ : Tuple = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = feature_extractor( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_) UpperCamelCase__ : List[str] = inputs.input_features UpperCamelCase__ : int = inputs.attention_mask UpperCamelCase__ : Optional[Any] = [np.sum(UpperCAmelCase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : str = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = ['longest', 'max_length', 'do_not_pad'] UpperCamelCase__ : Union[str, Any] = [None, 16, None] for max_length, padding in zip(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Dict = feature_extractor( UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = inputs.input_features UpperCamelCase__ : List[str] = inputs.attention_mask UpperCamelCase__ : Dict = [np.sum(UpperCAmelCase_) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]]) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]]) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]]) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = feature_extractor( UpperCAmelCase_ , padding='max_length' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = inputs.input_features UpperCamelCase__ : str = inputs.attention_mask UpperCamelCase__ : Tuple = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1]) self._check_zero_mean_unit_variance(input_features[2]) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : str = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : int = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=4 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : int = inputs.input_features UpperCamelCase__ : Any = inputs.attention_mask UpperCamelCase__ : Optional[int] = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24)) UpperCamelCase__ : Optional[Any] = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] UpperCamelCase__ : Optional[Any] = feature_extractor( UpperCAmelCase_ , padding='longest' , max_length=16 , truncation=UpperCAmelCase_ , return_tensors='np' , return_attention_mask=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = inputs.input_features UpperCamelCase__ : int = inputs.attention_mask UpperCamelCase__ : Tuple = np.sum(attention_mask == 1 , axis=1) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]]) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]]) self._check_zero_mean_unit_variance(input_features[2]) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24)) def __UpperCamelCase ( self : Any): import torch UpperCamelCase__ : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : Dict = np.random.rand(100 , 32).astype(np.floataa) UpperCamelCase__ : Optional[int] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase__ : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np') self.assertTrue(np_processed.input_features.dtype == np.floataa) UpperCamelCase__ : int = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt') self.assertTrue(pt_processed.input_features.dtype == torch.floataa) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Tuple): from datasets import load_dataset UpperCamelCase__ : Tuple = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation') # automatic decoding with librispeech UpperCamelCase__ : List[str] = ds.sort('id').select(range(UpperCAmelCase_))[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCamelCase ( self : List[Any]): # fmt: off UpperCamelCase__ : Any = np.array([ -1.57_45, -1.77_13, -1.70_20, -1.60_69, -1.22_50, -1.11_05, -0.90_72, -0.82_41, -1.23_10, -0.80_98, -0.33_20, -0.41_01, -0.79_85, -0.49_96, -0.82_13, -0.91_28, -1.04_20, -1.12_86, -1.04_40, -0.79_99, -0.84_05, -1.22_75, -1.54_43, -1.46_25, ]) # fmt: on UpperCamelCase__ : List[str] = self._load_datasamples(1) UpperCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCamelCase__ : int = feature_extractor(UpperCAmelCase_ , return_tensors='pt').input_features self.assertEquals(input_features.shape , (1, 584, 24)) self.assertTrue(np.allclose(input_features[0, 0, :30] , UpperCAmelCase_ , atol=1e-4))
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase__ = ['text', 'image', 'audio'] def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : int = [] for input_type in input_types: if input_type == "text": inputs.append('Text input') elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png').resize((512, 512))) elif input_type == "audio": inputs.append(torch.ones(3_000)) elif isinstance(lowerCamelCase_ , lowerCamelCase_): inputs.append(create_inputs(lowerCamelCase_)) else: raise ValueError(f'Invalid type requested: {input_type}') return inputs def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Tuple = [] for output in outputs: if isinstance(lowerCamelCase_ , (str, AgentText)): output_types.append('text') elif isinstance(lowerCamelCase_ , (Image.Image, AgentImage)): output_types.append('image') elif isinstance(lowerCamelCase_ , (torch.Tensor, AgentAudio)): output_types.append('audio') else: raise ValueError(f'Invalid output: {output}') return output_types @is_tool_test class __lowercase : def __UpperCamelCase ( self : List[str]): self.assertTrue(hasattr(self.tool , 'inputs')) self.assertTrue(hasattr(self.tool , 'outputs')) UpperCamelCase__ : int = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) UpperCamelCase__ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = create_inputs(self.tool.inputs) UpperCamelCase__ : Any = self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: UpperCamelCase__ : Optional[Any] = [outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def __UpperCamelCase ( self : Optional[int]): self.assertTrue(hasattr(self.tool , 'description')) self.assertTrue(hasattr(self.tool , 'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = create_inputs(self.tool.inputs) UpperCamelCase__ : Optional[Any] = self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : int = [outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): UpperCamelCase__ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[str] = create_inputs(self.tool.inputs) UpperCamelCase__ : Optional[int] = [] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error UpperCamelCase__ : List[Any] = self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : int = [outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : str = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase_ , architectures=['RobertaPreLayerNormForMaskedLM']) # convert state_dict UpperCamelCase__ : Tuple = torch.load(hf_hub_download(repo_id=lowerCamelCase_ , filename='pytorch_model.bin')) UpperCamelCase__ : Union[str, Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.'): UpperCamelCase__ : Tuple = 'roberta_prelayernorm.' + tensor_key[len('roberta.') :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight') or tensor_key.endswith('.self.LayerNorm.bias'): continue UpperCamelCase__ : Tuple = tensor_value UpperCamelCase__ : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) # convert tokenizer UpperCamelCase__ : Any = AutoTokenizer.from_pretrained(lowerCamelCase_) tokenizer.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : Any = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[Any] = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(UpperCAmelCase_)) def __UpperCamelCase ( self : str): UpperCamelCase__ : str = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Union[str, Any] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : int): # pass variant but use the non-variant filenames UpperCamelCase__ : Any = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] UpperCamelCase__ : Tuple = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Tuple = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] UpperCamelCase__ : Optional[int] = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : List[Any]): # pass variant but use the non-variant filenames UpperCamelCase__ : Union[str, Any] = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertTrue(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCamelCase__ : Any = 'fp16' self.assertFalse(is_safetensors_compatible(UpperCAmelCase_ , variant=UpperCAmelCase_))
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
from __future__ import annotations import math class __lowercase : def __init__( self : Dict , UpperCAmelCase_ : int): UpperCamelCase__ : Dict = size # approximate the overall size of segment tree with given value UpperCamelCase__ : Any = [0 for i in range(0 , 4 * size)] # create array to store lazy update UpperCamelCase__ : Tuple = [0 for i in range(0 , 4 * size)] UpperCamelCase__ : List[str] = [0 for i in range(0 , 4 * size)] # flag for lazy update def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): return idx * 2 def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): return idx * 2 + 1 def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : list[int]): if left_element == right_element: UpperCamelCase__ : Optional[int] = a[left_element - 1] else: UpperCamelCase__ : str = (left_element + right_element) // 2 self.build(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.build(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = max( self.segment_tree[self.left(UpperCAmelCase_)] , self.segment_tree[self.right(UpperCAmelCase_)]) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if self.flag[idx] is True: UpperCamelCase__ : Union[str, Any] = self.lazy[idx] UpperCamelCase__ : List[Any] = False if left_element != right_element: UpperCamelCase__ : List[Any] = self.lazy[idx] UpperCamelCase__ : str = self.lazy[idx] UpperCamelCase__ : int = True UpperCamelCase__ : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase__ : str = val if left_element != right_element: UpperCamelCase__ : List[Any] = val UpperCamelCase__ : Tuple = val UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : int = True return True UpperCamelCase__ : Union[str, Any] = (left_element + right_element) // 2 self.update(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) self.update(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = max( self.segment_tree[self.left(UpperCAmelCase_)] , self.segment_tree[self.right(UpperCAmelCase_)]) return True def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if self.flag[idx] is True: UpperCamelCase__ : Union[str, Any] = self.lazy[idx] UpperCamelCase__ : Optional[int] = False if left_element != right_element: UpperCamelCase__ : Dict = self.lazy[idx] UpperCamelCase__ : Optional[Any] = self.lazy[idx] UpperCamelCase__ : Dict = True UpperCamelCase__ : Any = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase__ : Union[str, Any] = (left_element + right_element) // 2 UpperCamelCase__ : int = self.query(self.left(UpperCAmelCase_) , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.query(self.right(UpperCAmelCase_) , mid + 1 , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) return max(UpperCAmelCase_ , UpperCAmelCase_) def __str__( self : List[str]): return str([self.query(1 , 1 , self.size , UpperCAmelCase_ , UpperCAmelCase_) for i in range(1 , self.size + 1)]) if __name__ == "__main__": lowerCAmelCase__ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] lowerCAmelCase__ = 15 lowerCAmelCase__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase : def __init__( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : str = question_encoder UpperCamelCase__ : Optional[int] = generator UpperCamelCase__ : Optional[int] = self.question_encoder def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any): if os.path.isfile(UpperCAmelCase_): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) UpperCamelCase__ : int = os.path.join(UpperCAmelCase_ , 'question_encoder_tokenizer') UpperCamelCase__ : Any = os.path.join(UpperCAmelCase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(UpperCAmelCase_) self.generator.save_pretrained(UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : str , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase__ : Tuple = kwargs.pop('config' , UpperCAmelCase_) if config is None: UpperCamelCase__ : int = RagConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : int = AutoTokenizer.from_pretrained( UpperCAmelCase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained( UpperCAmelCase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=UpperCAmelCase_ , generator=UpperCAmelCase_) def __call__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): return self.current_tokenizer(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str): return self.generator.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict): return self.generator.decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[Any] = self.question_encoder def __UpperCamelCase ( self : str): UpperCamelCase__ : str = self.generator def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "longest" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , UpperCAmelCase_ , ) if max_length is None: UpperCamelCase__ : int = self.current_tokenizer.model_max_length UpperCamelCase__ : List[Any] = self( UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , **UpperCAmelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase__ : List[Any] = self.current_tokenizer.model_max_length UpperCamelCase__ : Tuple = self( text_target=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = labels['input_ids'] return model_inputs
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' import os import numpy import onnx def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[Any] = a.name UpperCamelCase__ : Dict = b.name UpperCamelCase__ : int = '' UpperCamelCase__ : Dict = '' UpperCamelCase__ : Any = a == b UpperCamelCase__ : List[str] = name_a UpperCamelCase__ : List[Any] = name_b return res def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): for i, input_name in enumerate(node_proto.input): if input_name == name: node_proto.input.insert(lowerCamelCase_ , lowerCamelCase_) node_proto.input.pop(i + 1) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_) _graph_replace_input_with(node_proto.attribute[1].g , lowerCamelCase_ , lowerCamelCase_) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): for n in graph_proto.node: _node_replace_input_with(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : int = list(model.graph.initializer) UpperCamelCase__ : int = list(model_without_ext.graph.initializer) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i UpperCamelCase__ : Tuple = inits[i].name UpperCamelCase__ : Optional[Any] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i]) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = os.path.dirname(lowerCamelCase_) UpperCamelCase__ : List[Any] = os.path.basename(lowerCamelCase_) UpperCamelCase__ : Any = onnx.load(os.path.join(lowerCamelCase_ , lowerCamelCase_)) UpperCamelCase__ : List[str] = list(model.graph.initializer) UpperCamelCase__ : List[str] = set() UpperCamelCase__ : int = {} UpperCamelCase__ : int = [] UpperCamelCase__ : Tuple = 0 for i in range(len(lowerCamelCase_)): if i in dup_set: continue for j in range(i + 1 , len(lowerCamelCase_)): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j]): dup_set.add(lowerCamelCase_) dup_set.add(lowerCamelCase_) UpperCamelCase__ : Any = inits[j].data_type UpperCamelCase__ : List[str] = numpy.prod(inits[j].dims) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , lowerCamelCase_) total_reduced_size += mem_size UpperCamelCase__ : Tuple = inits[i].name UpperCamelCase__ : int = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCamelCase_) else: UpperCamelCase__ : List[str] = [name_j] ind_to_replace.append((j, i)) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB') UpperCamelCase__ : List[str] = sorted(lowerCamelCase_) _remove_dup_initializers_from_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Any = 'optimized_' + model_file_name UpperCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_ , lowerCamelCase_) onnx.save(lowerCamelCase_ , lowerCamelCase_) return new_model
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) lowerCAmelCase__ = { 'iou_prediction_head.layers.0': 'iou_prediction_head.proj_in', 'iou_prediction_head.layers.1': 'iou_prediction_head.layers.0', 'iou_prediction_head.layers.2': 'iou_prediction_head.proj_out', 'mask_decoder.output_upscaling.0': 'mask_decoder.upscale_conv1', 'mask_decoder.output_upscaling.1': 'mask_decoder.upscale_layer_norm', 'mask_decoder.output_upscaling.3': 'mask_decoder.upscale_conv2', 'mask_downscaling.0': 'mask_embed.conv1', 'mask_downscaling.1': 'mask_embed.layer_norm1', 'mask_downscaling.3': 'mask_embed.conv2', 'mask_downscaling.4': 'mask_embed.layer_norm2', 'mask_downscaling.6': 'mask_embed.conv3', 'point_embeddings': 'point_embed', 'pe_layer.positional_encoding_gaussian_matrix': 'shared_embedding.positional_embedding', 'image_encoder': 'vision_encoder', 'neck.0': 'neck.conv1', 'neck.1': 'neck.layer_norm1', 'neck.2': 'neck.conv2', 'neck.3': 'neck.layer_norm2', 'patch_embed.proj': 'patch_embed.projection', '.norm': '.layer_norm', 'blocks': 'layers', } def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Union[str, Any] = {} state_dict.pop('pixel_mean' , lowerCamelCase_) state_dict.pop('pixel_std' , lowerCamelCase_) UpperCamelCase__ : str = R'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCamelCase__ : int = key.replace(lowerCamelCase_ , lowerCamelCase_) if re.match(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : int = int(re.match(lowerCamelCase_ , lowerCamelCase_).group(2)) if layer_nb == 0: UpperCamelCase__ : Optional[Any] = key.replace('layers.0' , 'proj_in') elif layer_nb == 1: UpperCamelCase__ : List[str] = key.replace('layers.1' , 'layers.0') elif layer_nb == 2: UpperCamelCase__ : List[Any] = key.replace('layers.2' , 'proj_out') UpperCamelCase__ : Any = value UpperCamelCase__ : int = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_="ybelkada/segment-anything") -> Any: UpperCamelCase__ : Dict = hf_hub_download(lowerCamelCase_ , f'checkpoints/{model_name}.pth') if "sam_vit_b" in model_name: UpperCamelCase__ : Tuple = SamConfig() elif "sam_vit_l" in model_name: UpperCamelCase__ : Union[str, Any] = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) UpperCamelCase__ : Tuple = SamConfig( vision_config=lowerCamelCase_ , ) elif "sam_vit_h" in model_name: UpperCamelCase__ : Optional[Any] = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) UpperCamelCase__ : str = SamConfig( vision_config=lowerCamelCase_ , ) UpperCamelCase__ : Optional[int] = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : Union[str, Any] = replace_keys(lowerCamelCase_) UpperCamelCase__ : int = SamImageProcessor() UpperCamelCase__ : Dict = SamProcessor(image_processor=lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = SamModel(lowerCamelCase_) hf_model.load_state_dict(lowerCamelCase_) UpperCamelCase__ : Dict = hf_model.to('cuda') UpperCamelCase__ : Dict = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' UpperCamelCase__ : Any = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw).convert('RGB') UpperCamelCase__ : Dict = [[[400, 650]]] UpperCamelCase__ : List[str] = [[1]] UpperCamelCase__ : Any = processor(images=np.array(lowerCamelCase_) , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : Tuple = hf_model(**lowerCamelCase_) UpperCamelCase__ : str = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_890_251_159_668 UpperCamelCase__ : Union[str, Any] = processor( images=np.array(lowerCamelCase_) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : List[str] = hf_model(**lowerCamelCase_) UpperCamelCase__ : List[Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_712_603_092_193_604 UpperCamelCase__ : Tuple = ((75, 275, 1_725, 850),) UpperCamelCase__ : str = processor(images=np.array(lowerCamelCase_) , input_boxes=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : Tuple = hf_model(**lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_686_015_605_926_514 # Test with 2 points and 1 image. UpperCamelCase__ : str = [[[400, 650], [800, 650]]] UpperCamelCase__ : Optional[int] = [[1, 1]] UpperCamelCase__ : Any = processor( images=np.array(lowerCamelCase_) , input_points=lowerCamelCase_ , input_labels=lowerCamelCase_ , return_tensors='pt').to('cuda') with torch.no_grad(): UpperCamelCase__ : List[str] = hf_model(**lowerCamelCase_) UpperCamelCase__ : Optional[int] = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_936_047_792_434_692 if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() lowerCAmelCase__ = ['sam_vit_b_01ec64', 'sam_vit_h_4b8939', 'sam_vit_l_0b3195'] parser.add_argument( '--model_name', default='sam_vit_h_4b8939', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) parser.add_argument( '--model_hub_id', default='ybelkada/segment-anything', choices=choices, type=str, help='Path to hf config.json of model to convert', ) lowerCAmelCase__ = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Optional[Any] = len(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = sum(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = [[False for x in range(s + 1)] for y in range(n + 1)] for i in range(1 , n + 1): UpperCamelCase__ : List[str] = True for i in range(1 , s + 1): UpperCamelCase__ : Any = False for i in range(1 , n + 1): for j in range(1 , s + 1): UpperCamelCase__ : str = dp[i][j - 1] if arr[i - 1] <= j: UpperCamelCase__ : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2) , -1 , -1): if dp[n][j] is True: UpperCamelCase__ : Any = s - 2 * j break return diff
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''pegasus''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , UpperCAmelCase_ : Optional[int]=50_265 , UpperCAmelCase_ : Optional[Any]=1_024 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Optional[int]=4_096 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Dict=4_096 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=1 , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : List[Any] = d_model UpperCamelCase__ : Tuple = encoder_ffn_dim UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : str = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : Dict = decoder_layers UpperCamelCase__ : Any = decoder_attention_heads UpperCamelCase__ : Dict = dropout UpperCamelCase__ : List[Any] = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Union[str, Any] = activation_function UpperCamelCase__ : str = init_std UpperCamelCase__ : Union[str, Any] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : Any = encoder_layers UpperCamelCase__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) @property def __UpperCamelCase ( self : Dict): return self.encoder_attention_heads @property def __UpperCamelCase ( self : List[Any]): return self.d_model
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): UpperCamelCase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Dict = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = 'sgugger/tiny-distilbert-classification' UpperCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , only_pretrain_model=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[Any] = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : int = 'sshleifer/tiny-gpt2' UpperCamelCase__ : int = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : str = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : int = 'sshleifer/tiny-gpt2' UpperCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = 'patrickvonplaten/t5-tiny-random' UpperCamelCase__ : List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : str = TensorFlowBenchmark(UpperCAmelCase_ , configs=[config]) UpperCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __UpperCamelCase ( self : int): UpperCamelCase__ : str = 'sshleifer/tiny-gpt2' UpperCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , save_to_csv=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase_ , 'inf_time.csv') , inference_memory_csv_file=os.path.join(UpperCAmelCase_ , 'inf_mem.csv') , env_info_csv_file=os.path.join(UpperCAmelCase_ , 'env.csv') , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'env.csv')).exists()) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(UpperCAmelCase_ : Union[str, Any]): self.assertTrue(hasattr(UpperCAmelCase_ , 'sequential')) self.assertTrue(hasattr(UpperCAmelCase_ , 'cumulative')) self.assertTrue(hasattr(UpperCAmelCase_ , 'current')) self.assertTrue(hasattr(UpperCAmelCase_ , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase_ , 'log.txt') , log_print=UpperCAmelCase_ , trace_memory_line_by_line=UpperCAmelCase_ , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Any = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'log.txt')).exists())
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = OrderedDict( [ # Base model mapping ('albert', 'FlaxAlbertModel'), ('bart', 'FlaxBartModel'), ('beit', 'FlaxBeitModel'), ('bert', 'FlaxBertModel'), ('big_bird', 'FlaxBigBirdModel'), ('blenderbot', 'FlaxBlenderbotModel'), ('blenderbot-small', 'FlaxBlenderbotSmallModel'), ('clip', 'FlaxCLIPModel'), ('distilbert', 'FlaxDistilBertModel'), ('electra', 'FlaxElectraModel'), ('gpt-sw3', 'FlaxGPT2Model'), ('gpt2', 'FlaxGPT2Model'), ('gpt_neo', 'FlaxGPTNeoModel'), ('gptj', 'FlaxGPTJModel'), ('longt5', 'FlaxLongT5Model'), ('marian', 'FlaxMarianModel'), ('mbart', 'FlaxMBartModel'), ('mt5', 'FlaxMT5Model'), ('opt', 'FlaxOPTModel'), ('pegasus', 'FlaxPegasusModel'), ('regnet', 'FlaxRegNetModel'), ('resnet', 'FlaxResNetModel'), ('roberta', 'FlaxRobertaModel'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormModel'), ('roformer', 'FlaxRoFormerModel'), ('t5', 'FlaxT5Model'), ('vision-text-dual-encoder', 'FlaxVisionTextDualEncoderModel'), ('vit', 'FlaxViTModel'), ('wav2vec2', 'FlaxWav2Vec2Model'), ('whisper', 'FlaxWhisperModel'), ('xglm', 'FlaxXGLMModel'), ('xlm-roberta', 'FlaxXLMRobertaModel'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for pre-training mapping ('albert', 'FlaxAlbertForPreTraining'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForPreTraining'), ('big_bird', 'FlaxBigBirdForPreTraining'), ('electra', 'FlaxElectraForPreTraining'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('t5', 'FlaxT5ForConditionalGeneration'), ('wav2vec2', 'FlaxWav2Vec2ForPreTraining'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Masked LM mapping ('albert', 'FlaxAlbertForMaskedLM'), ('bart', 'FlaxBartForConditionalGeneration'), ('bert', 'FlaxBertForMaskedLM'), ('big_bird', 'FlaxBigBirdForMaskedLM'), ('distilbert', 'FlaxDistilBertForMaskedLM'), ('electra', 'FlaxElectraForMaskedLM'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('roberta', 'FlaxRobertaForMaskedLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMaskedLM'), ('roformer', 'FlaxRoFormerForMaskedLM'), ('xlm-roberta', 'FlaxXLMRobertaForMaskedLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ('bart', 'FlaxBartForConditionalGeneration'), ('blenderbot', 'FlaxBlenderbotForConditionalGeneration'), ('blenderbot-small', 'FlaxBlenderbotSmallForConditionalGeneration'), ('encoder-decoder', 'FlaxEncoderDecoderModel'), ('longt5', 'FlaxLongT5ForConditionalGeneration'), ('marian', 'FlaxMarianMTModel'), ('mbart', 'FlaxMBartForConditionalGeneration'), ('mt5', 'FlaxMT5ForConditionalGeneration'), ('pegasus', 'FlaxPegasusForConditionalGeneration'), ('t5', 'FlaxT5ForConditionalGeneration'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Image-classsification ('beit', 'FlaxBeitForImageClassification'), ('regnet', 'FlaxRegNetForImageClassification'), ('resnet', 'FlaxResNetForImageClassification'), ('vit', 'FlaxViTForImageClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ ('vision-encoder-decoder', 'FlaxVisionEncoderDecoderModel'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Causal LM mapping ('bart', 'FlaxBartForCausalLM'), ('bert', 'FlaxBertForCausalLM'), ('big_bird', 'FlaxBigBirdForCausalLM'), ('electra', 'FlaxElectraForCausalLM'), ('gpt-sw3', 'FlaxGPT2LMHeadModel'), ('gpt2', 'FlaxGPT2LMHeadModel'), ('gpt_neo', 'FlaxGPTNeoForCausalLM'), ('gptj', 'FlaxGPTJForCausalLM'), ('opt', 'FlaxOPTForCausalLM'), ('roberta', 'FlaxRobertaForCausalLM'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForCausalLM'), ('xglm', 'FlaxXGLMForCausalLM'), ('xlm-roberta', 'FlaxXLMRobertaForCausalLM'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Sequence Classification mapping ('albert', 'FlaxAlbertForSequenceClassification'), ('bart', 'FlaxBartForSequenceClassification'), ('bert', 'FlaxBertForSequenceClassification'), ('big_bird', 'FlaxBigBirdForSequenceClassification'), ('distilbert', 'FlaxDistilBertForSequenceClassification'), ('electra', 'FlaxElectraForSequenceClassification'), ('mbart', 'FlaxMBartForSequenceClassification'), ('roberta', 'FlaxRobertaForSequenceClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForSequenceClassification'), ('roformer', 'FlaxRoFormerForSequenceClassification'), ('xlm-roberta', 'FlaxXLMRobertaForSequenceClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Question Answering mapping ('albert', 'FlaxAlbertForQuestionAnswering'), ('bart', 'FlaxBartForQuestionAnswering'), ('bert', 'FlaxBertForQuestionAnswering'), ('big_bird', 'FlaxBigBirdForQuestionAnswering'), ('distilbert', 'FlaxDistilBertForQuestionAnswering'), ('electra', 'FlaxElectraForQuestionAnswering'), ('mbart', 'FlaxMBartForQuestionAnswering'), ('roberta', 'FlaxRobertaForQuestionAnswering'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForQuestionAnswering'), ('roformer', 'FlaxRoFormerForQuestionAnswering'), ('xlm-roberta', 'FlaxXLMRobertaForQuestionAnswering'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Token Classification mapping ('albert', 'FlaxAlbertForTokenClassification'), ('bert', 'FlaxBertForTokenClassification'), ('big_bird', 'FlaxBigBirdForTokenClassification'), ('distilbert', 'FlaxDistilBertForTokenClassification'), ('electra', 'FlaxElectraForTokenClassification'), ('roberta', 'FlaxRobertaForTokenClassification'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForTokenClassification'), ('roformer', 'FlaxRoFormerForTokenClassification'), ('xlm-roberta', 'FlaxXLMRobertaForTokenClassification'), ] ) lowerCAmelCase__ = OrderedDict( [ # Model for Multiple Choice mapping ('albert', 'FlaxAlbertForMultipleChoice'), ('bert', 'FlaxBertForMultipleChoice'), ('big_bird', 'FlaxBigBirdForMultipleChoice'), ('distilbert', 'FlaxDistilBertForMultipleChoice'), ('electra', 'FlaxElectraForMultipleChoice'), ('roberta', 'FlaxRobertaForMultipleChoice'), ('roberta-prelayernorm', 'FlaxRobertaPreLayerNormForMultipleChoice'), ('roformer', 'FlaxRoFormerForMultipleChoice'), ('xlm-roberta', 'FlaxXLMRobertaForMultipleChoice'), ] ) lowerCAmelCase__ = OrderedDict( [ ('bert', 'FlaxBertForNextSentencePrediction'), ] ) lowerCAmelCase__ = OrderedDict( [ ('speech-encoder-decoder', 'FlaxSpeechEncoderDecoderModel'), ('whisper', 'FlaxWhisperForConditionalGeneration'), ] ) lowerCAmelCase__ = OrderedDict( [ ('whisper', 'FlaxWhisperForAudioClassification'), ] ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) lowerCAmelCase__ = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModel) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_PRETRAINING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForPreTraining, head_doc='pretraining') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForCausalLM, head_doc='causal language modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_MASKED_LM_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMaskedLM, head_doc='masked language modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc='sequence-to-sequence language modeling', checkpoint_for_example='t5-base' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc='sequence classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc='question answering') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForTokenClassification, head_doc='token classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc='multiple choice') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc='next sentence prediction' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForImageClassification, head_doc='image classification' ) class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc='vision-to-text modeling') class __lowercase (_BaseAutoModelClass ): _lowerCamelCase = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING lowerCAmelCase__ = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc='sequence-to-sequence speech-to-text modeling' )
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __lowercase (__lowerCamelCase ): def __init__( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Tuple = params UpperCamelCase__ : str = np.array(UpperCAmelCase_) UpperCamelCase__ : Tuple = np.array([len(UpperCAmelCase_) for t in data]) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self : int , UpperCAmelCase_ : List[Any]): return (self.token_ids[index], self.lengths[index]) def __len__( self : Any): return len(self.lengths) def __UpperCamelCase ( self : Union[str, Any]): assert len(self.token_ids) == len(self.lengths) assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths))) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : str = self.params.max_model_input_size UpperCamelCase__ : List[Any] = self.lengths > max_len logger.info(F'Splitting {sum(UpperCAmelCase_)} too long sequences.') def divide_chunks(UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]): return [l[i : i + n] for i in range(0 , len(UpperCAmelCase_) , UpperCAmelCase_)] UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Tuple = [] if self.params.mlm: UpperCamelCase__ : int = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: UpperCamelCase__ : Optional[Any] = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_) new_lengths.append(len_) else: UpperCamelCase__ : Union[str, Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2): if sub_s[0] != cls_id: UpperCamelCase__ : str = np.insert(UpperCAmelCase_ , 0 , UpperCAmelCase_) if sub_s[-1] != sep_id: UpperCamelCase__ : Dict = np.insert(UpperCAmelCase_ , len(UpperCAmelCase_) , UpperCAmelCase_) assert len(UpperCAmelCase_) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_) new_tok_ids.extend(UpperCAmelCase_) new_lengths.extend([len(UpperCAmelCase_) for l in sub_seqs]) UpperCamelCase__ : List[Any] = np.array(UpperCAmelCase_) UpperCamelCase__ : Dict = np.array(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = len(self) UpperCamelCase__ : Union[str, Any] = self.lengths > 11 UpperCamelCase__ : List[Any] = self.token_ids[indices] UpperCamelCase__ : str = self.lengths[indices] UpperCamelCase__ : Optional[int] = len(self) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.') def __UpperCamelCase ( self : Optional[Any]): if "unk_token" not in self.params.special_tok_ids: return else: UpperCamelCase__ : Optional[int] = self.params.special_tok_ids['unk_token'] UpperCamelCase__ : Optional[int] = len(self) UpperCamelCase__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids]) UpperCamelCase__ : Optional[int] = (unk_occs / self.lengths) < 0.5 UpperCamelCase__ : Union[str, Any] = self.token_ids[indices] UpperCamelCase__ : str = self.lengths[indices] UpperCamelCase__ : Optional[Any] = len(self) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).') def __UpperCamelCase ( self : Any): if not self.params.is_master: return logger.info(F'{len(self)} sequences') # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def __UpperCamelCase ( self : str , UpperCAmelCase_ : Dict): UpperCamelCase__ : Optional[Any] = [t[0] for t in batch] UpperCamelCase__ : Optional[int] = [t[1] for t in batch] assert len(UpperCAmelCase_) == len(UpperCAmelCase_) # Max for paddings UpperCamelCase__ : List[str] = max(UpperCAmelCase_) # Pad token ids if self.params.mlm: UpperCamelCase__ : Union[str, Any] = self.params.special_tok_ids['pad_token'] else: UpperCamelCase__ : List[Any] = self.params.special_tok_ids['unk_token'] UpperCamelCase__ : Union[str, Any] = [list(t.astype(UpperCAmelCase_)) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_)) for t in token_ids] assert len(tk_) == len(UpperCAmelCase_) assert all(len(UpperCAmelCase_) == max_seq_len_ for t in tk_) UpperCamelCase__ : List[str] = torch.tensor(tk_) # (bs, max_seq_len_) UpperCamelCase__ : Union[str, Any] = torch.tensor(UpperCAmelCase_) # (bs) return tk_t, lg_t
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = XLMRobertaModel.from_pretrained('xlm-roberta-base') UpperCamelCase__ : Optional[Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house UpperCamelCase__ : Union[str, Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ : List[Any] = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3)) @slow def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-large') UpperCamelCase__ : List[str] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house UpperCamelCase__ : Union[str, Any] = torch.Size((1, 12, 1_024)) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ : Optional[int] = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3))
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase__ = 10 def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Any = max(lowerCamelCase_) while placement <= max_digit: # declare and initialize empty buckets UpperCamelCase__ : list[list] = [[] for _ in range(lowerCamelCase_)] # split list_of_ints between the buckets for i in list_of_ints: UpperCamelCase__ : Any = int((i / placement) % RADIX) buckets[tmp].append(lowerCamelCase_) # put each buckets' contents into list_of_ints UpperCamelCase__ : int = 0 for b in range(lowerCamelCase_): for i in buckets[b]: UpperCamelCase__ : int = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'shi-labs/nat-mini-in1k-224': 'https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json', # See all Nat models at https://huggingface.co/models?filter=nat } class __lowercase (__lowerCamelCase , __lowerCamelCase ): _lowerCamelCase = '''nat''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Union[str, Any] , UpperCAmelCase_ : List[str]=4 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=64 , UpperCAmelCase_ : List[Any]=[3, 4, 6, 5] , UpperCAmelCase_ : List[str]=[2, 4, 8, 16] , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : List[str]=3.0 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Union[str, Any]=1e-5 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Optional[Any]=None , **UpperCAmelCase_ : Any , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Tuple = patch_size UpperCamelCase__ : Tuple = num_channels UpperCamelCase__ : List[Any] = embed_dim UpperCamelCase__ : Dict = depths UpperCamelCase__ : Dict = len(UpperCAmelCase_) UpperCamelCase__ : str = num_heads UpperCamelCase__ : List[Any] = kernel_size UpperCamelCase__ : Union[str, Any] = mlp_ratio UpperCamelCase__ : List[str] = qkv_bias UpperCamelCase__ : List[Any] = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : str = drop_path_rate UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Optional[int] = layer_norm_eps UpperCamelCase__ : Union[str, Any] = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : Tuple = int(embed_dim * 2 ** (len(UpperCAmelCase_) - 1)) UpperCamelCase__ : List[str] = layer_scale_init_value UpperCamelCase__ : List[str] = ['stem'] + [F'stage{idx}' for idx in range(1 , len(UpperCAmelCase_) + 1)] UpperCamelCase__ : Tuple = get_aligned_output_features_output_indices( out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names)
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: # Initialise PyTorch model UpperCamelCase__ : int = FunnelConfig.from_json_file(lowerCamelCase_) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : Tuple = FunnelBaseModel(lowerCamelCase_) if base_model else FunnelModel(lowerCamelCase_) # Load weights from tf checkpoint load_tf_weights_in_funnel(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: for param, grad_param in zip(model_a.parameters() , model_b.parameters()): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=True) -> Dict: model.train() UpperCamelCase__ : Any = model(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = F.mse_loss(lowerCamelCase_ , target.to(output.device)) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> int: set_seed(42) UpperCamelCase__ : Any = RegressionModel() UpperCamelCase__ : Optional[int] = deepcopy(lowerCamelCase_) UpperCamelCase__ : Optional[int] = RegressionDataset(length=80) UpperCamelCase__ : Tuple = DataLoader(lowerCamelCase_ , batch_size=16) model.to(accelerator.device) if sched: UpperCamelCase__ : str = AdamW(params=model.parameters() , lr=1e-3) UpperCamelCase__ : str = AdamW(params=ddp_model.parameters() , lr=1e-3) UpperCamelCase__ : Any = LambdaLR(lowerCamelCase_ , lr_lambda=lambda lowerCamelCase_: epoch**0.65) UpperCamelCase__ : str = LambdaLR(lowerCamelCase_ , lr_lambda=lambda lowerCamelCase_: epoch**0.65) # Make a copy of `model` if sched: UpperCamelCase__ : Optional[int] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: UpperCamelCase__ : Dict = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: # Test when on a single CPU or GPU that the context manager does nothing UpperCamelCase__ : Optional[Any] = get_training_setup(lowerCamelCase_) # Use a single batch UpperCamelCase__ : Union[str, Any] = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase__ : int = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__ : Optional[Any] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : Union[str, Any] = ddp_input[torch.randperm(len(lowerCamelCase_))] def __UpperCAmelCase ( lowerCamelCase_) -> str: # Test on distributed setup that context manager behaves properly UpperCamelCase__ : int = get_training_setup(lowerCamelCase_) # Use a single batch UpperCamelCase__ : str = next(iter(lowerCamelCase_)).values() for iteration in range(3): # Gather the distributed inputs and targs for the base model UpperCamelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__ : Any = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: # Sync grads step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : Any = ddp_input[torch.randperm(len(lowerCamelCase_))] def __UpperCAmelCase ( lowerCamelCase_=False , lowerCamelCase_=False) -> Dict: UpperCamelCase__ : Optional[Any] = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase__ : Tuple = get_training_setup(lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ : Optional[Any] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__ : int = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters()): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCamelCase_) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is True ), f'Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad) is False ), f'Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})' # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) UpperCamelCase__ : int = ddp_input[torch.randperm(len(lowerCamelCase_))] GradientState._reset_state() def __UpperCAmelCase ( lowerCamelCase_=False , lowerCamelCase_=False) -> Optional[int]: UpperCamelCase__ : Dict = Accelerator( split_batches=lowerCamelCase_ , dispatch_batches=lowerCamelCase_ , gradient_accumulation_steps=2) # Test that context manager behaves properly UpperCamelCase__ : List[str] = get_training_setup(lowerCamelCase_ , lowerCamelCase_) for iteration, batch in enumerate(lowerCamelCase_): UpperCamelCase__ : int = batch.values() # Gather the distributed inputs and targs for the base model UpperCamelCase__ : List[str] = accelerator.gather((ddp_input, ddp_target)) UpperCamelCase__ : Optional[int] = input.to(accelerator.device), target.to(accelerator.device) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCamelCase_)): if split_batches: sched.step() else: for _ in range(accelerator.num_processes): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCamelCase_): step_model(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' UpperCamelCase__ : Tuple = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCamelCase_)) if accelerator.num_processes > 1: check_model_parameters(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Shuffle ddp_input on each iteration torch.manual_seed(1_337 + iteration) GradientState._reset_state() def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : List[Any] = Accelerator() UpperCamelCase__ : Dict = RegressionDataset(length=80) UpperCamelCase__ : List[Any] = DataLoader(lowerCamelCase_ , batch_size=16) UpperCamelCase__ : int = RegressionDataset(length=96) UpperCamelCase__ : str = DataLoader(lowerCamelCase_ , batch_size=16) UpperCamelCase__ : List[Any] = accelerator.prepare(lowerCamelCase_ , lowerCamelCase_) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if iteration < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCamelCase_): assert id(accelerator.gradient_state.active_dataloader) == id(lowerCamelCase_) if batch_num < len(lowerCamelCase_) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : str = Accelerator() UpperCamelCase__ : int = accelerator.state if state.local_process_index == 0: print('**Test `accumulate` gradient accumulation with dataloader break**') test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print('**Test NOOP `no_sync` context manager**') test_noop_sync(lowerCamelCase_) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print('**Test Distributed `no_sync` context manager**') test_distributed_sync(lowerCamelCase_) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation(lowerCamelCase_ , lowerCamelCase_) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version('<' , '2.0') or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , '`split_batches=False`, `dispatch_batches=False`**' , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( '**Test `accumulate` gradient accumulation with optimizer and scheduler, ' , f'`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = 'src/diffusers' lowerCAmelCase__ = '.' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: return line.startswith(lowerCamelCase_) or len(lowerCamelCase_) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowerCamelCase_) is not None def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Dict = object_name.split('.') UpperCamelCase__ : Any = 0 # First let's find the module where our object lives. UpperCamelCase__ : str = parts[i] while i < len(lowerCamelCase_) and not os.path.isfile(os.path.join(lowerCamelCase_ , f'{module}.py')): i += 1 if i < len(lowerCamelCase_): UpperCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_ , parts[i]) if i >= len(lowerCamelCase_): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.') with open(os.path.join(lowerCamelCase_ , f'{module}.py') , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase__ : List[str] = f.readlines() # Now let's find the class / func in the code! UpperCamelCase__ : int = '' UpperCamelCase__ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCamelCase_) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCamelCase_): raise ValueError(f' {object_name} does not match any function or class in {module}.') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase__ : Tuple = line_index while line_index < len(lowerCamelCase_) and _should_continue(lines[line_index] , lowerCamelCase_): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase__ : List[str] = lines[start_index:line_index] return "".join(lowerCamelCase_) lowerCAmelCase__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowerCAmelCase__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') lowerCAmelCase__ = re.compile(R'<FILL\s+[^>]*>') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Dict = code.split('\n') UpperCamelCase__ : List[Any] = 0 while idx < len(lowerCamelCase_) and len(lines[idx]) == 0: idx += 1 if idx < len(lowerCamelCase_): return re.search(R'^(\s*)\S' , lines[idx]).groups()[0] return "" def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Dict = len(get_indent(lowerCamelCase_)) > 0 if has_indent: UpperCamelCase__ : Dict = f'class Bla:\n{code}' UpperCamelCase__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCamelCase_) UpperCamelCase__ : Tuple = black.format_str(lowerCamelCase_ , mode=lowerCamelCase_) UpperCamelCase__ : Any = style_docstrings_in_code(lowerCamelCase_) return result[len('class Bla:\n') :] if has_indent else result def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> Dict: with open(lowerCamelCase_ , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase__ : Optional[int] = f.readlines() UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCamelCase_): UpperCamelCase__ : Any = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase__ : Tuple = search.groups() UpperCamelCase__ : Optional[Any] = find_code_in_diffusers(lowerCamelCase_) UpperCamelCase__ : Dict = get_indent(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase__ : Optional[int] = theoretical_indent UpperCamelCase__ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase__ : List[Any] = True while line_index < len(lowerCamelCase_) and should_continue: line_index += 1 if line_index >= len(lowerCamelCase_): break UpperCamelCase__ : Dict = lines[line_index] UpperCamelCase__ : List[str] = _should_continue(lowerCamelCase_ , lowerCamelCase_) and re.search(f'^{indent}# End copy' , lowerCamelCase_) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase__ : str = lines[start_index:line_index] UpperCamelCase__ : Dict = ''.join(lowerCamelCase_) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase__ : List[Any] = [line for line in theoretical_code.split('\n') if _re_copy_warning.search(lowerCamelCase_) is None] UpperCamelCase__ : Dict = '\n'.join(lowerCamelCase_) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCamelCase_) > 0: UpperCamelCase__ : List[str] = replace_pattern.replace('with' , '').split(',') UpperCamelCase__ : Optional[int] = [_re_replace_pattern.search(lowerCamelCase_) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase__ : List[str] = pattern.groups() UpperCamelCase__ : Optional[Any] = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) if option.strip() == "all-casing": UpperCamelCase__ : Union[str, Any] = re.sub(obja.lower() , obja.lower() , lowerCamelCase_) UpperCamelCase__ : Tuple = re.sub(obja.upper() , obja.upper() , lowerCamelCase_) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase__ : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code) UpperCamelCase__ : List[str] = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: UpperCamelCase__ : int = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase__ : str = start_index + 1 if overwrite and len(lowerCamelCase_) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.') with open(lowerCamelCase_ , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(lowerCamelCase_) return diffs def __UpperCAmelCase ( lowerCamelCase_ = False) -> Dict: UpperCamelCase__ : List[Any] = glob.glob(os.path.join(lowerCamelCase_ , '**/*.py') , recursive=lowerCamelCase_) UpperCamelCase__ : Tuple = [] for filename in all_files: UpperCamelCase__ : int = is_copy_consistent(lowerCamelCase_ , lowerCamelCase_) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCamelCase_) > 0: UpperCamelCase__ : int = '\n'.join(lowerCamelCase_) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''microsoft/speecht5_tts''' _lowerCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _lowerCamelCase = '''text_reader''' _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ['''text'''] _lowerCamelCase = ['''audio'''] def __UpperCamelCase ( self : Union[str, Any]): if self.post_processor is None: UpperCamelCase__ : Optional[int] = 'microsoft/speecht5_hifigan' super().setup() def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None): UpperCamelCase__ : List[Any] = self.pre_processor(text=UpperCAmelCase_ , return_tensors='pt' , truncation=UpperCAmelCase_) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.') UpperCamelCase__ : int = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation') UpperCamelCase__ : Optional[int] = torch.tensor(embeddings_dataset[7_305]['xvector']).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]): with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any]): with torch.no_grad(): return self.post_processor(UpperCAmelCase_).cpu().detach()
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''CLIPImageProcessor''' _lowerCamelCase = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : str=None , **UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = kwargs.pop('feature_extractor') UpperCamelCase__ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : List[str] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: UpperCamelCase__ : Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: UpperCamelCase__ : Tuple = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: UpperCamelCase__ : Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = self.tokenizer.model_input_names UpperCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self : int): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : str): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0