code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : int = 384 if "tiny" in model_name: UpperCamelCase__ : List[str] = [3, 3, 9, 3] UpperCamelCase__ : int = [96, 192, 384, 768] if "small" in model_name: UpperCamelCase__ : Tuple = [3, 3, 27, 3] UpperCamelCase__ : List[Any] = [96, 192, 384, 768] if "base" in model_name: UpperCamelCase__ : List[str] = [3, 3, 27, 3] UpperCamelCase__ : Any = [128, 256, 512, 1_024] UpperCamelCase__ : Optional[int] = 512 if "large" in model_name: UpperCamelCase__ : str = [3, 3, 27, 3] UpperCamelCase__ : str = [192, 384, 768, 1_536] UpperCamelCase__ : str = 768 if "xlarge" in model_name: UpperCamelCase__ : Optional[int] = [3, 3, 27, 3] UpperCamelCase__ : Optional[int] = [256, 512, 1_024, 2_048] UpperCamelCase__ : List[str] = 1_024 # set label information UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : Union[str, Any] = 'huggingface/label-files' UpperCamelCase__ : Tuple = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r')) UpperCamelCase__ : Union[str, Any] = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : int = {v: k for k, v in idalabel.items()} UpperCamelCase__ : int = ConvNextConfig( depths=lowerCamelCase_ , hidden_sizes=lowerCamelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4']) UpperCamelCase__ : List[Any] = UperNetConfig( backbone_config=lowerCamelCase_ , auxiliary_in_channels=lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , ) return config def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : str = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight')) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias')) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight')) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter')) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight')) rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias')) rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight')) rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias')) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight')) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias')) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight')) rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias')) if i > 0: rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight')) rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias')) rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight')) rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias')) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight')) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias')) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ]) # fmt: on return rename_keys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Tuple = dct.pop(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Optional[int] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } UpperCamelCase__ : Optional[int] = model_name_to_url[model_name] UpperCamelCase__ : List[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu')['state_dict'] UpperCamelCase__ : Tuple = get_upernet_config(lowerCamelCase_) UpperCamelCase__ : List[Any] = UperNetForSemanticSegmentation(lowerCamelCase_) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): UpperCamelCase__ : Optional[Any] = state_dict.pop(lowerCamelCase_) if "bn" in key: UpperCamelCase__ : Tuple = key.replace('bn' , 'batch_norm') UpperCamelCase__ : List[Any] = val # rename keys UpperCamelCase__ : Union[str, Any] = create_rename_keys(lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) model.load_state_dict(lowerCamelCase_) # verify on image UpperCamelCase__ : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' UpperCamelCase__ : Dict = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw).convert('RGB') UpperCamelCase__ : List[Any] = SegformerImageProcessor() UpperCamelCase__ : Tuple = processor(lowerCamelCase_ , return_tensors='pt').pixel_values with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = model(lowerCamelCase_) if model_name == "upernet-convnext-tiny": UpperCamelCase__ : List[Any] = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]]) elif model_name == "upernet-convnext-small": UpperCamelCase__ : str = torch.tensor( [[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]]) elif model_name == "upernet-convnext-base": UpperCamelCase__ : Optional[int] = torch.tensor( [[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]]) elif model_name == "upernet-convnext-large": UpperCamelCase__ : Union[str, Any] = torch.tensor( [[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]]) elif model_name == "upernet-convnext-xlarge": UpperCamelCase__ : Optional[int] = torch.tensor( [[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]]) print('Logits:' , outputs.logits[0, 0, :3, :3]) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving processor to {pytorch_dump_folder_path}') processor.save_pretrained(lowerCamelCase_) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub') model.push_to_hub(f'openmmlab/{model_name}') processor.push_to_hub(f'openmmlab/{model_name}') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'''upernet-convnext-{size}''' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : int , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Dict , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Dict): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : str , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[Any]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Any , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Any): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : int): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : List[str]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Any): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : int , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any]): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : str): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Tuple , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[str]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : str): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : str , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['flax']) class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''flax'''] def __init__( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple): requires_backends(self , ['flax']) @classmethod def __UpperCamelCase ( cls : Dict , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any): requires_backends(cls , ['flax']) @classmethod def __UpperCamelCase ( cls : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : str): requires_backends(cls , ['flax'])
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[int] = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') UpperCamelCase__ : Optional[int] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_euler') UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : List[Any] = torch.manual_seed(0) UpperCamelCase__ : Dict = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : Dict = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[str] = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_euler') UpperCamelCase__ : Tuple = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : Any = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : Optional[int] = output.images UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : str = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-1 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Tuple = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) sd_pipe.set_scheduler('sample_dpmpp_2m') UpperCamelCase__ : int = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Union[str, Any] = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = False if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } lowerCAmelCase__ = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } lowerCAmelCase__ = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: lowerCAmelCase__ = reader.read() lowerCAmelCase__ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): lowerCAmelCase__ = UNetaDModel(**config) else: lowerCAmelCase__ = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel lowerCAmelCase__ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase__ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase__ = config[key] del config[key] lowerCAmelCase__ = [k.replace('UNetRes', '') for k in config['down_block_types']] lowerCAmelCase__ = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: lowerCAmelCase__ = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) lowerCAmelCase__ = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue lowerCAmelCase__ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: lowerCAmelCase__ = param_value lowerCAmelCase__ = True if not has_changed: lowerCAmelCase__ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' lowerCAmelCase__ = 8.3_1_4_4_6_2 # Unit - J mol-1 K-1 def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> float: if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('Invalid inputs. Enter positive value.') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> float: if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('Invalid inputs. Enter positive value.') return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : List[Any] = AutoConfig.from_pretrained(lowerCamelCase_) UpperCamelCase__ : Tuple = FlaxAutoModelForSeqaSeqLM.from_config(config=lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = checkpoints.load_tax_checkpoint(lowerCamelCase_) UpperCamelCase__ : str = 'wi_0' in tax_model['target']['encoder']['layers_0']['mlp'] if config.model_type == "t5": UpperCamelCase__ : Union[str, Any] = 'SelfAttention' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase__ : Dict = 'LocalSelfAttention' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ : Dict = 'TransientGlobalSelfAttention' else: raise ValueError( 'Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`' ' attribute with a value from [\'local\', \'transient-global].') # Encoder for layer_index in range(config.num_layers): UpperCamelCase__ : int = f'layers_{str(lowerCamelCase_)}' # Self-Attention UpperCamelCase__ : Any = tax_model['target']['encoder'][layer_name]['attention']['key']['kernel'] UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['out']['kernel'] UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['query']['kernel'] UpperCamelCase__ : Optional[Any] = tax_model['target']['encoder'][layer_name]['attention']['value']['kernel'] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ : Optional[int] = tax_model['target']['encoder'][layer_name]['attention']['T5LayerNorm_0']['scale'] # Layer Normalization UpperCamelCase__ : int = tax_model['target']['encoder'][layer_name]['pre_attention_layer_norm']['scale'] if split_mlp_wi: UpperCamelCase__ : int = tax_model['target']['encoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCamelCase__ : Dict = tax_model['target']['encoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCamelCase__ : Union[str, Any] = tax_model['target']['encoder'][layer_name]['mlp']['wi']['kernel'] UpperCamelCase__ : List[str] = tax_model['target']['encoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCamelCase__ : List[Any] = tax_model['target']['encoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCamelCase__ : List[Any] = flax_model.params['encoder']['block'][str(lowerCamelCase_)]['layer'] UpperCamelCase__ : Tuple = tax_attention_key UpperCamelCase__ : Optional[Any] = tax_attention_out UpperCamelCase__ : Tuple = tax_attention_query UpperCamelCase__ : Union[str, Any] = tax_attention_value UpperCamelCase__ : str = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: UpperCamelCase__ : int = tax_mlp_wi_a UpperCamelCase__ : int = tax_mlp_wi_a else: UpperCamelCase__ : str = tax_mlp_wi UpperCamelCase__ : Tuple = tax_mlp_wo UpperCamelCase__ : Union[str, Any] = tax_mlp_layer_norm UpperCamelCase__ : Any = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase__ : str = tax_model['target']['encoder']['relpos_bias']['rel_embedding'].T UpperCamelCase__ : Tuple = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase__ : Union[str, Any] = tax_model['target']['encoder']['side_relpos_bias']['rel_embedding'].T UpperCamelCase__ : Optional[int] = tax_encoder_global_rel_embedding # Assigning UpperCamelCase__ : Dict = tax_model['target']['encoder']['encoder_norm']['scale'] UpperCamelCase__ : str = tax_encoder_norm # Decoder for layer_index in range(config.num_layers): UpperCamelCase__ : List[Any] = f'layers_{str(lowerCamelCase_)}' # Self-Attention UpperCamelCase__ : int = tax_model['target']['decoder'][layer_name]['self_attention']['key']['kernel'] UpperCamelCase__ : Optional[int] = tax_model['target']['decoder'][layer_name]['self_attention']['out']['kernel'] UpperCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['self_attention']['query']['kernel'] UpperCamelCase__ : Tuple = tax_model['target']['decoder'][layer_name]['self_attention']['value']['kernel'] # Layer Normalization UpperCamelCase__ : Optional[Any] = tax_model['target']['decoder'][layer_name]['pre_self_attention_layer_norm'][ 'scale' ] # Encoder-Decoder-Attention UpperCamelCase__ : Optional[Any] = tax_model['target']['decoder'][layer_name]['encoder_decoder_attention'] UpperCamelCase__ : List[Any] = tax_enc_dec_attention_module['key']['kernel'] UpperCamelCase__ : str = tax_enc_dec_attention_module['out']['kernel'] UpperCamelCase__ : List[Any] = tax_enc_dec_attention_module['query']['kernel'] UpperCamelCase__ : Union[str, Any] = tax_enc_dec_attention_module['value']['kernel'] # Layer Normalization UpperCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['pre_cross_attention_layer_norm']['scale'] # MLP if split_mlp_wi: UpperCamelCase__ : Union[str, Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi_0']['kernel'] UpperCamelCase__ : int = tax_model['target']['decoder'][layer_name]['mlp']['wi_1']['kernel'] else: UpperCamelCase__ : List[Any] = tax_model['target']['decoder'][layer_name]['mlp']['wi']['kernel'] UpperCamelCase__ : str = tax_model['target']['decoder'][layer_name]['mlp']['wo']['kernel'] # Layer Normalization UpperCamelCase__ : Any = tax_model['target']['decoder'][layer_name]['pre_mlp_layer_norm']['scale'] # Assigning UpperCamelCase__ : List[str] = flax_model.params['decoder']['block'][str(lowerCamelCase_)]['layer'] UpperCamelCase__ : List[Any] = tax_attention_key UpperCamelCase__ : int = tax_attention_out UpperCamelCase__ : Tuple = tax_attention_query UpperCamelCase__ : Dict = tax_attention_value UpperCamelCase__ : int = tax_pre_attention_layer_norm UpperCamelCase__ : Optional[int] = tax_enc_dec_attention_key UpperCamelCase__ : List[Any] = tax_enc_dec_attention_out UpperCamelCase__ : int = tax_enc_dec_attention_query UpperCamelCase__ : Dict = tax_enc_dec_attention_value UpperCamelCase__ : Tuple = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase__ : int = tax_mlp_wi_a UpperCamelCase__ : Dict = tax_mlp_wi_a else: UpperCamelCase__ : int = tax_mlp_wi UpperCamelCase__ : Any = tax_mlp_wo UpperCamelCase__ : Any = txa_mlp_layer_norm UpperCamelCase__ : Tuple = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase__ : Optional[int] = tax_model['target']['decoder']['decoder_norm']['scale'] UpperCamelCase__ : Optional[int] = txa_decoder_norm # Only for layer 0: UpperCamelCase__ : Any = tax_model['target']['decoder']['relpos_bias']['rel_embedding'].T UpperCamelCase__ : List[Any] = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase__ : Dict = tax_model['target']['token_embedder']['embedding'] UpperCamelCase__ : int = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase__ : Union[str, Any] = tax_model['target']['decoder']['logits_dense']['kernel'] flax_model.save_pretrained(lowerCamelCase_) print('T5X Model was sucessfully converted!') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) lowerCAmelCase__ = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def __UpperCAmelCase ( lowerCamelCase_=None) -> Any: if subparsers is not None: UpperCamelCase__ : Optional[Any] = subparsers.add_parser('test') else: UpperCamelCase__ : Any = argparse.ArgumentParser('Accelerate test command') parser.add_argument( '--config_file' , default=lowerCamelCase_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_) return parser def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Dict = os.path.sep.join(__file__.split(os.path.sep)[:-2] + ['test_utils', 'scripts', 'test_script.py']) if args.config_file is None: UpperCamelCase__ : str = script_name else: UpperCamelCase__ : Tuple = f'--config_file={args.config_file} {script_name}' UpperCamelCase__ : Tuple = ['accelerate-launch'] + test_args.split() UpperCamelCase__ : Dict = execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy()) if result.returncode == 0: print('Test is a success! You are ready for your distributed training!') def __UpperCAmelCase ( ) -> Dict: UpperCamelCase__ : Tuple = test_command_parser() UpperCamelCase__ : Any = parser.parse_args() test_command(lowerCamelCase_) if __name__ == "__main__": main()
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase__ = 'src/diffusers' lowerCAmelCase__ = '.' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase__ = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase__ = spec.loader.load_module() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: return line.startswith(lowerCamelCase_) or len(lowerCamelCase_) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , lowerCamelCase_) is not None def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Dict = object_name.split('.') UpperCamelCase__ : Any = 0 # First let's find the module where our object lives. UpperCamelCase__ : str = parts[i] while i < len(lowerCamelCase_) and not os.path.isfile(os.path.join(lowerCamelCase_ , f'{module}.py')): i += 1 if i < len(lowerCamelCase_): UpperCamelCase__ : Optional[int] = os.path.join(lowerCamelCase_ , parts[i]) if i >= len(lowerCamelCase_): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.') with open(os.path.join(lowerCamelCase_ , f'{module}.py') , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase__ : List[str] = f.readlines() # Now let's find the class / func in the code! UpperCamelCase__ : int = '' UpperCamelCase__ : Optional[int] = 0 for name in parts[i + 1 :]: while ( line_index < len(lowerCamelCase_) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(lowerCamelCase_): raise ValueError(f' {object_name} does not match any function or class in {module}.') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). UpperCamelCase__ : Tuple = line_index while line_index < len(lowerCamelCase_) and _should_continue(lines[line_index] , lowerCamelCase_): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase__ : List[str] = lines[start_index:line_index] return "".join(lowerCamelCase_) lowerCAmelCase__ = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') lowerCAmelCase__ = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') lowerCAmelCase__ = re.compile(R'<FILL\s+[^>]*>') def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Dict = code.split('\n') UpperCamelCase__ : List[Any] = 0 while idx < len(lowerCamelCase_) and len(lines[idx]) == 0: idx += 1 if idx < len(lowerCamelCase_): return re.search(R'^(\s*)\S' , lines[idx]).groups()[0] return "" def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Dict = len(get_indent(lowerCamelCase_)) > 0 if has_indent: UpperCamelCase__ : Dict = f'class Bla:\n{code}' UpperCamelCase__ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=lowerCamelCase_) UpperCamelCase__ : Tuple = black.format_str(lowerCamelCase_ , mode=lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Any = style_docstrings_in_code(lowerCamelCase_) return result[len('class Bla:\n') :] if has_indent else result def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> Dict: with open(lowerCamelCase_ , 'r' , encoding='utf-8' , newline='\n') as f: UpperCamelCase__ : Optional[int] = f.readlines() UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Tuple = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(lowerCamelCase_): UpperCamelCase__ : Any = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = search.groups() UpperCamelCase__ : Optional[Any] = find_code_in_diffusers(lowerCamelCase_) UpperCamelCase__ : Dict = get_indent(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 UpperCamelCase__ : Optional[int] = theoretical_indent UpperCamelCase__ : Tuple = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. UpperCamelCase__ : List[Any] = True while line_index < len(lowerCamelCase_) and should_continue: line_index += 1 if line_index >= len(lowerCamelCase_): break UpperCamelCase__ : Dict = lines[line_index] UpperCamelCase__ : List[str] = _should_continue(lowerCamelCase_ , lowerCamelCase_) and re.search(f'^{indent}# End copy' , lowerCamelCase_) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 UpperCamelCase__ : str = lines[start_index:line_index] UpperCamelCase__ : Dict = ''.join(lowerCamelCase_) # Remove any nested `Copied from` comments to avoid circular copies UpperCamelCase__ : List[Any] = [line for line in theoretical_code.split('\n') if _re_copy_warning.search(lowerCamelCase_) is None] UpperCamelCase__ : Dict = '\n'.join(lowerCamelCase_) # Before comparing, use the `replace_pattern` on the original code. if len(lowerCamelCase_) > 0: UpperCamelCase__ : List[str] = replace_pattern.replace('with' , '').split(',') UpperCamelCase__ : Optional[int] = [_re_replace_pattern.search(lowerCamelCase_) for p in patterns] for pattern in patterns: if pattern is None: continue UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = pattern.groups() UpperCamelCase__ : Optional[Any] = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) if option.strip() == "all-casing": UpperCamelCase__ : Union[str, Any] = re.sub(obja.lower() , obja.lower() , lowerCamelCase_) UpperCamelCase__ : Tuple = re.sub(obja.upper() , obja.upper() , lowerCamelCase_) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line UpperCamelCase__ : Optional[Any] = blackify(lines[start_index - 1] + theoretical_code) UpperCamelCase__ : List[str] = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: UpperCamelCase__ : int = lines[:start_index] + [theoretical_code] + lines[line_index:] UpperCamelCase__ : str = start_index + 1 if overwrite and len(lowerCamelCase_) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.') with open(lowerCamelCase_ , 'w' , encoding='utf-8' , newline='\n') as f: f.writelines(lowerCamelCase_) return diffs def __UpperCAmelCase ( lowerCamelCase_ = False) -> Dict: UpperCamelCase__ : List[Any] = glob.glob(os.path.join(lowerCamelCase_ , '**/*.py') , recursive=lowerCamelCase_) UpperCamelCase__ : Tuple = [] for filename in all_files: UpperCamelCase__ : int = is_copy_consistent(lowerCamelCase_ , lowerCamelCase_) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(lowerCamelCase_) > 0: UpperCamelCase__ : int = '\n'.join(lowerCamelCase_) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') lowerCAmelCase__ = parser.parse_args() check_copies(args.fix_and_overwrite)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase__ = 256 class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''melgan'''] def __init__( self : int , UpperCAmelCase_ : SpectrogramNotesEncoder , UpperCAmelCase_ : SpectrogramContEncoder , UpperCAmelCase_ : TaFilmDecoder , UpperCAmelCase_ : DDPMScheduler , UpperCAmelCase_ : OnnxRuntimeModel if is_onnx_available() else Any , ): super().__init__() # From MELGAN UpperCamelCase__ : Optional[int] = math.log(1e-5) # Matches MelGAN training. UpperCamelCase__ : Tuple = 4.0 # Largest value for most examples UpperCamelCase__ : str = 128 self.register_modules( notes_encoder=UpperCAmelCase_ , continuous_encoder=UpperCAmelCase_ , decoder=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , melgan=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=(-1.0, 1.0) , UpperCAmelCase_ : Union[str, Any]=False): UpperCamelCase__, UpperCamelCase__ : Dict = output_range if clip: UpperCamelCase__ : Any = torch.clip(UpperCAmelCase_ , self.min_value , self.max_value) # Scale to [0, 1]. UpperCamelCase__ : Dict = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=(-1.0, 1.0) , UpperCAmelCase_ : Dict=False): UpperCamelCase__, UpperCamelCase__ : Any = input_range UpperCamelCase__ : Optional[Any] = torch.clip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if clip else outputs # Scale to [0, 1]. UpperCamelCase__ : Any = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Tuple = input_tokens > 0 UpperCamelCase__, UpperCamelCase__ : Dict = self.notes_encoder( encoder_input_tokens=UpperCAmelCase_ , encoder_inputs_mask=UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.continuous_encoder( encoder_inputs=UpperCAmelCase_ , encoder_inputs_mask=UpperCAmelCase_) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = noise_time if not torch.is_tensor(UpperCAmelCase_): UpperCamelCase__ : str = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device) elif torch.is_tensor(UpperCAmelCase_) and len(timesteps.shape) == 0: UpperCamelCase__ : Dict = timesteps[None].to(input_tokens.device) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ : Optional[Any] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device) UpperCamelCase__ : Any = self.decoder( encodings_and_masks=UpperCAmelCase_ , decoder_input_tokens=UpperCAmelCase_ , decoder_noise_time=UpperCAmelCase_) return logits @torch.no_grad() def __call__( self : List[Any] , UpperCAmelCase_ : List[List[int]] , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "numpy" , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(UpperCAmelCase_)}.') UpperCamelCase__ : Dict = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa) UpperCamelCase__ : List[str] = np.zeros([1, 0, self.n_dims] , np.floataa) UpperCamelCase__ : List[str] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase_ , device=self.device) for i, encoder_input_tokens in enumerate(UpperCAmelCase_): if i == 0: UpperCamelCase__ : List[str] = torch.from_numpy(pred_mel[:1].copy()).to( device=self.device , dtype=self.decoder.dtype) # The first chunk has no previous context. UpperCamelCase__ : Any = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=UpperCAmelCase_ , device=self.device) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. UpperCamelCase__ : Union[str, Any] = ones UpperCamelCase__ : Tuple = self.scale_features( UpperCAmelCase_ , output_range=[-1.0, 1.0] , clip=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens]).to(device=self.device) , continuous_inputs=UpperCAmelCase_ , continuous_mask=UpperCAmelCase_ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop UpperCamelCase__ : List[Any] = randn_tensor( shape=encoder_continuous_inputs.shape , generator=UpperCAmelCase_ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(UpperCAmelCase_) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps)): UpperCamelCase__ : Any = self.decode( encodings_and_masks=UpperCAmelCase_ , input_tokens=UpperCAmelCase_ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 UpperCamelCase__ : Optional[int] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , generator=UpperCAmelCase_).prev_sample UpperCamelCase__ : List[str] = self.scale_to_features(UpperCAmelCase_ , input_range=[-1.0, 1.0]) UpperCamelCase__ : List[str] = mel[:1] UpperCamelCase__ : int = mel.cpu().float().numpy() UpperCamelCase__ : str = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase_ , UpperCAmelCase_) logger.info('Generated segment' , UpperCAmelCase_) if output_type == "numpy" and not is_onnx_available(): raise ValueError( 'Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.') elif output_type == "numpy" and self.melgan is None: raise ValueError( 'Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.') if output_type == "numpy": UpperCamelCase__ : Optional[Any] = self.melgan(input_features=full_pred_mel.astype(np.floataa)) else: UpperCamelCase__ : Optional[int] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=UpperCAmelCase_)
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> bool: if not isinstance(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[int] = f'Input value of [number={number}] must be an integer' raise TypeError(lowerCamelCase_) if number < 0: return False UpperCamelCase__ : List[Any] = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' lowerCAmelCase__ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} lowerCAmelCase__ = ['a', 'b', 'c', 'd', 'e'] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Optional[int] = start # add current to visited visited.append(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : Optional[int] = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # if all neighbors visited add current to sort sort.append(lowerCamelCase_) # if all vertices haven't been visited select a new one to visit if len(lowerCamelCase_) != len(lowerCamelCase_): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # return sort return sort if __name__ == "__main__": lowerCAmelCase__ = topological_sort('a', [], []) print(sort)
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_bert': ['BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BertConfig', 'BertOnnxConfig'], 'tokenization_bert': ['BasicTokenizer', 'BertTokenizer', 'WordpieceTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['BertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BertForMaskedLM', 'BertForMultipleChoice', 'BertForNextSentencePrediction', 'BertForPreTraining', 'BertForQuestionAnswering', 'BertForSequenceClassification', 'BertForTokenClassification', 'BertLayer', 'BertLMHeadModel', 'BertModel', 'BertPreTrainedModel', 'load_tf_weights_in_bert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFBertEmbeddings', 'TFBertForMaskedLM', 'TFBertForMultipleChoice', 'TFBertForNextSentencePrediction', 'TFBertForPreTraining', 'TFBertForQuestionAnswering', 'TFBertForSequenceClassification', 'TFBertForTokenClassification', 'TFBertLMHeadModel', 'TFBertMainLayer', 'TFBertModel', 'TFBertPreTrainedModel', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['TFBertTokenizer'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FlaxBertForCausalLM', 'FlaxBertForMaskedLM', 'FlaxBertForMultipleChoice', 'FlaxBertForNextSentencePrediction', 'FlaxBertForPreTraining', 'FlaxBertForQuestionAnswering', 'FlaxBertForSequenceClassification', 'FlaxBertForTokenClassification', 'FlaxBertModel', 'FlaxBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(__lowerCamelCase ) class __lowercase (__lowerCamelCase ): def __init__( self : List[str] , **UpperCAmelCase_ : Any): super().__init__(**UpperCAmelCase_) requires_backends(self , 'vision') self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING) def __call__( self : Optional[int] , UpperCAmelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCAmelCase_ : Dict): return super().__call__(UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : Dict): UpperCamelCase__ : List[str] = {} if "candidate_labels" in kwargs: UpperCamelCase__ : Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: UpperCamelCase__ : Tuple = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[int]="This is a photo of {}."): UpperCamelCase__ : Union[str, Any] = load_image(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework) UpperCamelCase__ : Dict = candidate_labels UpperCamelCase__ : Any = [hypothesis_template.format(UpperCAmelCase_) for x in candidate_labels] UpperCamelCase__ : Union[str, Any] = self.tokenizer(UpperCAmelCase_ , return_tensors=self.framework , padding=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = [text_inputs] return inputs def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Union[str, Any] = model_inputs.pop('candidate_labels') UpperCamelCase__ : Optional[Any] = model_inputs.pop('text_inputs') if isinstance(text_inputs[0] , UpperCAmelCase_): UpperCamelCase__ : List[str] = text_inputs[0] else: # Batching case. UpperCamelCase__ : List[Any] = text_inputs[0][0] UpperCamelCase__ : Dict = self.model(**UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : str = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = model_outputs.pop('candidate_labels') UpperCamelCase__ : Any = model_outputs['logits'][0] if self.framework == "pt": UpperCamelCase__ : Union[str, Any] = logits.softmax(dim=-1).squeeze(-1) UpperCamelCase__ : str = probs.tolist() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Dict = [scores] elif self.framework == "tf": UpperCamelCase__ : str = stable_softmax(UpperCAmelCase_ , axis=-1) UpperCamelCase__ : Optional[int] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}') UpperCamelCase__ : Dict = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCAmelCase_ , UpperCAmelCase_) , key=lambda UpperCAmelCase_: -x[0]) ] return result
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''efficientnet''' def __init__( self : Any , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 600 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 3.1 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCAmelCase_ : List[int] = [32, 16, 24, 40, 80, 112, 192] , UpperCAmelCase_ : List[int] = [16, 24, 40, 80, 112, 192, 320] , UpperCAmelCase_ : List[int] = [] , UpperCAmelCase_ : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCAmelCase_ : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCAmelCase_ : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCAmelCase_ : float = 0.25 , UpperCAmelCase_ : str = "swish" , UpperCAmelCase_ : int = 2_560 , UpperCAmelCase_ : str = "mean" , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 0.0_01 , UpperCAmelCase_ : float = 0.99 , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : float = 0.2 , **UpperCAmelCase_ : int , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : List[str] = image_size UpperCamelCase__ : List[str] = width_coefficient UpperCamelCase__ : Union[str, Any] = depth_coefficient UpperCamelCase__ : Tuple = depth_divisor UpperCamelCase__ : Optional[Any] = kernel_sizes UpperCamelCase__ : Optional[int] = in_channels UpperCamelCase__ : Any = out_channels UpperCamelCase__ : Union[str, Any] = depthwise_padding UpperCamelCase__ : str = strides UpperCamelCase__ : Any = num_block_repeats UpperCamelCase__ : Any = expand_ratios UpperCamelCase__ : Optional[Any] = squeeze_expansion_ratio UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Union[str, Any] = hidden_dim UpperCamelCase__ : List[str] = pooling_type UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : int = batch_norm_eps UpperCamelCase__ : List[Any] = batch_norm_momentum UpperCamelCase__ : Optional[int] = dropout_rate UpperCamelCase__ : Optional[Any] = drop_connect_rate UpperCamelCase__ : Union[str, Any] = sum(UpperCAmelCase_) * 4 class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Tuple): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : List[Any]): return 1e-5
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = StableDiffusionSAGPipeline _lowerCamelCase = TEXT_TO_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase = False def __UpperCamelCase ( self : List[Any]): torch.manual_seed(0) UpperCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) UpperCamelCase__ : Dict = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) UpperCamelCase__ : List[Any] = CLIPTextModel(UpperCAmelCase_) UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') UpperCamelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=0): if str(UpperCAmelCase_).startswith('mps'): UpperCamelCase__ : Union[str, Any] = torch.manual_seed(UpperCAmelCase_) else: UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = { 'prompt': '.', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 1.0, 'sag_scale': 1.0, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self : Optional[Any]): super().test_inference_batch_single_identical(expected_max_diff=3e-3) @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Union[str, Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : str = StableDiffusionSAGPipeline.from_pretrained('CompVis/stable-diffusion-v1-4') UpperCamelCase__ : Optional[Any] = sag_pipe.to(UpperCAmelCase_) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Dict = '.' UpperCamelCase__ : Any = torch.manual_seed(0) UpperCamelCase__ : Dict = sag_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : Optional[Any] = np.array([0.15_68, 0.17_38, 0.16_95, 0.16_93, 0.15_07, 0.17_05, 0.15_47, 0.17_51, 0.19_49]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : List[Any] = sag_pipe.to(UpperCAmelCase_) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = '.' UpperCamelCase__ : List[Any] = torch.manual_seed(0) UpperCamelCase__ : List[str] = sag_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np') UpperCamelCase__ : Dict = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase__ : List[Any] = np.array([0.34_59, 0.28_76, 0.25_37, 0.30_02, 0.26_71, 0.21_60, 0.30_26, 0.22_62, 0.23_71]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 def __UpperCamelCase ( self : str): UpperCamelCase__ : Dict = StableDiffusionSAGPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base') UpperCamelCase__ : List[str] = sag_pipe.to(UpperCAmelCase_) sag_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = '.' UpperCamelCase__ : List[str] = torch.manual_seed(0) UpperCamelCase__ : List[Any] = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCAmelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='np' , ) UpperCamelCase__ : List[Any] = output.images assert image.shape == (1, 512, 768, 3)
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __lowercase : def __init__( self : int , UpperCAmelCase_ : int): UpperCamelCase__ : int = value UpperCamelCase__ : Node | None = None UpperCamelCase__ : Node | None = None class __lowercase : def __init__( self : int , UpperCAmelCase_ : Node): UpperCamelCase__ : Optional[int] = tree def __UpperCamelCase ( self : str , UpperCAmelCase_ : Node | None): if node is None: return 0 return node.value + ( self.depth_first_search(node.left) + self.depth_first_search(node.right) ) def __iter__( self : str): yield self.depth_first_search(self.tree) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'facebook/vit-mae-base': 'https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''vit_mae''' def __init__( self : List[Any] , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Any=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : str=1e-12 , UpperCAmelCase_ : List[Any]=224 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : int=8 , UpperCAmelCase_ : Any=2_048 , UpperCAmelCase_ : List[Any]=0.75 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : str , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Tuple = hidden_size UpperCamelCase__ : Optional[int] = num_hidden_layers UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : List[str] = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : List[Any] = patch_size UpperCamelCase__ : str = num_channels UpperCamelCase__ : Dict = qkv_bias UpperCamelCase__ : Tuple = decoder_num_attention_heads UpperCamelCase__ : int = decoder_hidden_size UpperCamelCase__ : Any = decoder_num_hidden_layers UpperCamelCase__ : Optional[int] = decoder_intermediate_size UpperCamelCase__ : List[str] = mask_ratio UpperCamelCase__ : Dict = norm_pix_loss
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[tuple[int, int]]: UpperCamelCase__, UpperCamelCase__ : Optional[int] = position UpperCamelCase__ : Tuple = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase__ : Any = [] for position in positions: UpperCamelCase__, UpperCamelCase__ : Any = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCamelCase_) return permissible_positions def __UpperCAmelCase ( lowerCamelCase_) -> bool: return not any(elem == 0 for row in board for elem in row) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> bool: if is_complete(lowerCamelCase_): return True for position in get_valid_pos(lowerCamelCase_ , len(lowerCamelCase_)): UpperCamelCase__, UpperCamelCase__ : str = position if board[y][x] == 0: UpperCamelCase__ : Optional[Any] = curr + 1 if open_knight_tour_helper(lowerCamelCase_ , lowerCamelCase_ , curr + 1): return True UpperCamelCase__ : List[str] = 0 return False def __UpperCAmelCase ( lowerCamelCase_) -> list[list[int]]: UpperCamelCase__ : List[str] = [[0 for i in range(lowerCamelCase_)] for j in range(lowerCamelCase_)] for i in range(lowerCamelCase_): for j in range(lowerCamelCase_): UpperCamelCase__ : Optional[int] = 1 if open_knight_tour_helper(lowerCamelCase_ , (i, j) , 1): return board UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Dict = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' from torch import nn class __lowercase (nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]): super().__init__() UpperCamelCase__ : Dict = class_size UpperCamelCase__ : Tuple = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCamelCase__ : Dict = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Union[str, Any]): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) UpperCamelCase__ : int = self.mlp(UpperCAmelCase_) return logits
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: assert isinstance(lowerCamelCase_ , lowerCamelCase_) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = tmp_path / 'cache' UpperCamelCase__ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ : Union[str, Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_).read() _check_json_dataset(lowerCamelCase_ , lowerCamelCase_) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Optional[int] = tmp_path / 'cache' UpperCamelCase__ : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase__ : Optional[int] = features.copy() if features else default_expected_features UpperCamelCase__ : Tuple = ( Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None ) UpperCamelCase__ : Dict = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read() _check_json_dataset(lowerCamelCase_ , lowerCamelCase_) @pytest.mark.parametrize( 'features' , [ None, {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'}, ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : int = tmp_path / 'cache' UpperCamelCase__ : str = {'col_3': 'float64', 'col_1': 'string', 'col_2': 'int64'} UpperCamelCase__ : Any = features.copy() if features else default_expected_features UpperCamelCase__ : Optional[int] = ( Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None ) UpperCamelCase__ : Dict = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read() assert isinstance(lowerCamelCase_ , lowerCamelCase_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: # jsonl_312_path features are {"col_3": "float64", "col_1": "string", "col_2": "int64"} UpperCamelCase__ : Optional[Any] = {'col_2': 'int64', 'col_3': 'float64', 'col_1': 'string'} UpperCamelCase__ : Union[str, Any] = features.copy() UpperCamelCase__ : Union[str, Any] = ( Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None ) UpperCamelCase__ : str = tmp_path / 'cache' UpperCamelCase__ : Optional[int] = JsonDatasetReader(lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read() assert isinstance(lowerCamelCase_ , lowerCamelCase_) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : int = tmp_path / 'cache' UpperCamelCase__ : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase__ : Optional[Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_ , split=lowerCamelCase_).read() _check_json_dataset(lowerCamelCase_ , lowerCamelCase_) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: if issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Optional[Any] = jsonl_path elif issubclass(lowerCamelCase_ , lowerCamelCase_): UpperCamelCase__ : Tuple = [jsonl_path] UpperCamelCase__ : Tuple = tmp_path / 'cache' UpperCamelCase__ : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase__ : Optional[Any] = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_).read() _check_json_dataset(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=("train",)) -> Optional[int]: assert isinstance(lowerCamelCase_ , lowerCamelCase_) for split in splits: UpperCamelCase__ : Tuple = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[Any] = tmp_path / 'cache' UpperCamelCase__ : Union[str, Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase__ : Optional[Any] = JsonDatasetReader({'train': jsonl_path} , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_).read() _check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : List[str] = tmp_path / 'cache' UpperCamelCase__ : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase__ : Optional[Any] = features.copy() if features else default_expected_features UpperCamelCase__ : List[str] = ( Features({feature: Value(lowerCamelCase_) for feature, dtype in features.items()}) if features is not None else None ) UpperCamelCase__ : str = JsonDatasetReader({'train': jsonl_path} , features=lowerCamelCase_ , cache_dir=lowerCamelCase_).read() _check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_) @pytest.mark.parametrize('split' , [None, NamedSplit('train'), 'train', 'test']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: if split: UpperCamelCase__ : Tuple = {split: jsonl_path} else: UpperCamelCase__ : int = 'train' UpperCamelCase__ : List[str] = {'train': jsonl_path, 'test': jsonl_path} UpperCamelCase__ : Tuple = tmp_path / 'cache' UpperCamelCase__ : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase__ : int = JsonDatasetReader(lowerCamelCase_ , cache_dir=lowerCamelCase_).read() _check_json_datasetdict(lowerCamelCase_ , lowerCamelCase_ , splits=list(path.keys())) assert all(dataset[split].split == split for split in path.keys()) def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: return json.load(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return [json.loads(lowerCamelCase_) for line in buffer] class __lowercase : @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_).write() buffer.seek(0) UpperCamelCase__ : Optional[Any] = load_json_function(UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(exported_content[0] , UpperCAmelCase_) assert len(UpperCAmelCase_) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , orient=UpperCAmelCase_).write() buffer.seek(0) UpperCamelCase__ : Optional[int] = load_json(UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCAmelCase_ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(UpperCAmelCase_) == 10 @pytest.mark.parametrize('lines, load_json_function' , [(True, load_json_lines), (False, load_json)]) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , num_proc=2).write() buffer.seek(0) UpperCamelCase__ : str = load_json_function(UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(exported_content[0] , UpperCAmelCase_) assert len(UpperCAmelCase_) == 10 @pytest.mark.parametrize( 'orient, container, keys, len_at' , [ ('records', list, {'tokens', 'labels', 'answers', 'id'}, None), ('split', dict, {'columns', 'data'}, 'data'), ('index', dict, set('0123456789'), None), ('columns', dict, {'tokens', 'labels', 'answers', 'id'}, 'tokens'), ('values', list, None, None), ('table', dict, {'schema', 'data'}, 'data'), ] , ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , lines=UpperCAmelCase_ , orient=UpperCAmelCase_ , num_proc=2).write() buffer.seek(0) UpperCamelCase__ : Union[str, Any] = load_json(UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCAmelCase_ , 'keys') and not hasattr(exported_content[0] , 'keys') if len_at: assert len(exported_content[len_at]) == 10 else: assert len(UpperCAmelCase_) == 10 def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int]): with pytest.raises(UpperCAmelCase_): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , num_proc=0) @pytest.mark.parametrize('compression, extension' , [('gzip', 'gz'), ('bz2', 'bz2'), ('xz', 'xz')]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any): UpperCamelCase__ : int = tmp_path_factory.mktemp('data') / F'test.json.{extension}' UpperCamelCase__ : Dict = str(shared_datadir / F'test_file.json.{extension}') JsonDatasetWriter(UpperCAmelCase_ , UpperCAmelCase_ , compression=UpperCAmelCase_).write() with fsspec.open(UpperCAmelCase_ , 'rb' , compression='infer') as f: UpperCamelCase__ : Optional[int] = f.read() with fsspec.open(UpperCAmelCase_ , 'rb' , compression='infer') as f: UpperCamelCase__ : int = f.read() assert exported_content == original_content
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/unispeech-large-1500h-cv': ( 'https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''unispeech''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=32 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Dict=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : int=0.02 , UpperCAmelCase_ : Optional[Any]=1e-5 , UpperCAmelCase_ : Any="group" , UpperCAmelCase_ : List[str]="gelu" , UpperCAmelCase_ : Union[str, Any]=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : int=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : List[str]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Optional[Any]=128 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Dict=0.05 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Tuple=320 , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Tuple=100 , UpperCAmelCase_ : Optional[Any]=256 , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : int="mean" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Tuple=256 , UpperCAmelCase_ : List[Any]=80 , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[Any]=0.5 , **UpperCAmelCase_ : Dict , ): super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_) UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Tuple = feat_extract_norm UpperCamelCase__ : Any = feat_extract_activation UpperCamelCase__ : Any = list(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = list(UpperCAmelCase_) UpperCamelCase__ : int = list(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = conv_bias UpperCamelCase__ : Union[str, Any] = num_conv_pos_embeddings UpperCamelCase__ : str = num_conv_pos_embedding_groups UpperCamelCase__ : Union[str, Any] = len(self.conv_dim) UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : Union[str, Any] = intermediate_size UpperCamelCase__ : int = hidden_act UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : str = hidden_dropout UpperCamelCase__ : Optional[int] = attention_dropout UpperCamelCase__ : List[str] = activation_dropout UpperCamelCase__ : Any = feat_proj_dropout UpperCamelCase__ : Any = final_dropout UpperCamelCase__ : Union[str, Any] = layerdrop UpperCamelCase__ : Tuple = layer_norm_eps UpperCamelCase__ : Union[str, Any] = initializer_range UpperCamelCase__ : Tuple = num_ctc_classes UpperCamelCase__ : List[str] = vocab_size UpperCamelCase__ : Optional[int] = do_stable_layer_norm UpperCamelCase__ : List[Any] = use_weighted_layer_sum UpperCamelCase__ : int = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.') # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : int = apply_spec_augment UpperCamelCase__ : Tuple = mask_time_prob UpperCamelCase__ : List[Any] = mask_time_length UpperCamelCase__ : List[Any] = mask_time_min_masks UpperCamelCase__ : List[Any] = mask_feature_prob UpperCamelCase__ : Tuple = mask_feature_length UpperCamelCase__ : int = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase__ : Dict = num_codevectors_per_group UpperCamelCase__ : Tuple = num_codevector_groups UpperCamelCase__ : List[Any] = contrastive_logits_temperature UpperCamelCase__ : int = feat_quantizer_dropout UpperCamelCase__ : Union[str, Any] = num_negatives UpperCamelCase__ : List[str] = codevector_dim UpperCamelCase__ : List[Any] = proj_codevector_dim UpperCamelCase__ : Optional[Any] = diversity_loss_weight # ctc loss UpperCamelCase__ : Any = ctc_loss_reduction UpperCamelCase__ : Optional[int] = ctc_zero_infinity # pretraining loss UpperCamelCase__ : List[Any] = replace_prob @property def __UpperCamelCase ( self : Any): return functools.reduce(operator.mul , self.conv_stride , 1)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative') if not cash_flows: raise ValueError('Cash flows list cannot be empty') UpperCamelCase__ : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(lowerCamelCase_)) return round(lowerCamelCase_ , ndigits=2) if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Optional[Any] = len(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = sum(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = [[False for x in range(s + 1)] for y in range(n + 1)] for i in range(1 , n + 1): UpperCamelCase__ : List[str] = True for i in range(1 , s + 1): UpperCamelCase__ : Any = False for i in range(1 , n + 1): for j in range(1 , s + 1): UpperCamelCase__ : str = dp[i][j - 1] if arr[i - 1] <= j: UpperCamelCase__ : Any = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2) , -1 , -1): if dp[n][j] is True: UpperCamelCase__ : Any = s - 2 * j break return diff
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml lowerCAmelCase__ = NewType('DataClass', Any) lowerCAmelCase__ = NewType('DataClassType', Any) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: if isinstance(lowerCamelCase_ , lowerCamelCase_): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f'Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).') def __UpperCAmelCase ( lowerCamelCase_) -> Callable[[str], Any]: UpperCamelCase__ : Any = {str(lowerCamelCase_): choice for choice in choices} return lambda lowerCamelCase_: str_to_choice.get(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( *, lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = dataclasses.MISSING , lowerCamelCase_ = dataclasses.MISSING , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> dataclasses.Field: if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls UpperCamelCase__ : int = {} if aliases is not None: UpperCamelCase__ : Optional[Any] = aliases if help is not None: UpperCamelCase__ : Optional[int] = help return dataclasses.field(metadata=lowerCamelCase_ , default=lowerCamelCase_ , default_factory=lowerCamelCase_ , **lowerCamelCase_) class __lowercase (__lowerCamelCase ): _lowerCamelCase = 42 def __init__( self : int , UpperCAmelCase_ : Union[DataClassType, Iterable[DataClassType]] , **UpperCAmelCase_ : Union[str, Any]): # To make the default appear when using --help if "formatter_class" not in kwargs: UpperCamelCase__ : List[str] = ArgumentDefaultsHelpFormatter super().__init__(**UpperCAmelCase_) if dataclasses.is_dataclass(UpperCAmelCase_): UpperCamelCase__ : int = [dataclass_types] UpperCamelCase__ : List[str] = list(UpperCAmelCase_) for dtype in self.dataclass_types: self._add_dataclass_arguments(UpperCAmelCase_) @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : ArgumentParser , UpperCAmelCase_ : dataclasses.Field): UpperCamelCase__ : int = F'--{field.name}' UpperCamelCase__ : List[str] = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , UpperCAmelCase_): raise RuntimeError( 'Unresolved type detected, which should have been done with the help of ' '`typing.get_type_hints` method by default') UpperCamelCase__ : str = kwargs.pop('aliases' , []) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [aliases] UpperCamelCase__ : Optional[int] = getattr(field.type , '__origin__' , field.type) if origin_type is Union or (hasattr(UpperCAmelCase_ , 'UnionType') and isinstance(UpperCAmelCase_ , types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(UpperCAmelCase_) not in field.type.__args__ ): raise ValueError( 'Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because' ' the argument parser only supports one type per argument.' F' Problem encountered in field \'{field.name}\'.') if type(UpperCAmelCase_) not in field.type.__args__: # filter `str` in Union UpperCamelCase__ : Any = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] UpperCamelCase__ : Dict = getattr(field.type , '__origin__' , field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) UpperCamelCase__ : List[Any] = ( field.type.__args__[0] if isinstance(UpperCAmelCase_ , field.type.__args__[1]) else field.type.__args__[1] ) UpperCamelCase__ : List[Any] = getattr(field.type , '__origin__' , field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) UpperCamelCase__ : Any = {} if origin_type is Literal or (isinstance(field.type , UpperCAmelCase_) and issubclass(field.type , UpperCAmelCase_)): if origin_type is Literal: UpperCamelCase__ : int = field.type.__args__ else: UpperCamelCase__ : List[Any] = [x.value for x in field.type] UpperCamelCase__ : str = make_choice_type_function(kwargs['choices']) if field.default is not dataclasses.MISSING: UpperCamelCase__ : Any = field.default else: UpperCamelCase__ : Optional[Any] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument UpperCamelCase__ : Union[str, Any] = copy(UpperCAmelCase_) # Hack because type=bool in argparse does not behave as we want. UpperCamelCase__ : Tuple = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. UpperCamelCase__ : List[Any] = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way UpperCamelCase__ : List[str] = default # This tells argparse we accept 0 or 1 value after --field_name UpperCamelCase__ : str = '?' # This is the value that will get picked if we do --field_name (without value) UpperCamelCase__ : Union[str, Any] = True elif isclass(UpperCAmelCase_) and issubclass(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Dict = field.type.__args__[0] UpperCamelCase__ : Optional[int] = '+' if field.default_factory is not dataclasses.MISSING: UpperCamelCase__ : Any = field.default_factory() elif field.default is dataclasses.MISSING: UpperCamelCase__ : List[Any] = True else: UpperCamelCase__ : List[str] = field.type if field.default is not dataclasses.MISSING: UpperCamelCase__ : Optional[Any] = field.default elif field.default_factory is not dataclasses.MISSING: UpperCamelCase__ : Optional[Any] = field.default_factory() else: UpperCamelCase__ : Union[str, Any] = True parser.add_argument(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): UpperCamelCase__ : Union[str, Any] = False parser.add_argument(F'--no_{field.name}' , action='store_false' , dest=field.name , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : DataClassType): if hasattr(UpperCAmelCase_ , '_argument_group_name'): UpperCamelCase__ : Any = self.add_argument_group(dtype._argument_group_name) else: UpperCamelCase__ : Union[str, Any] = self try: UpperCamelCase__ : Dict[str, type] = get_type_hints(UpperCAmelCase_) except NameError: raise RuntimeError( F'Type resolution failed for {dtype}. Try declaring the class in global scope or ' 'removing line of `from __future__ import annotations` which opts in Postponed ' 'Evaluation of Annotations (PEP 563)') except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(UpperCAmelCase_): UpperCamelCase__ : str = '.'.join(map(UpperCAmelCase_ , sys.version_info[:3])) raise RuntimeError( F'Type resolution failed for {dtype} on Python {python_version}. Try removing ' 'line of `from __future__ import annotations` which opts in union types as ' '`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ' 'support Python versions that lower than 3.10, you need to use ' '`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ' '`X | None`.') from ex raise for field in dataclasses.fields(UpperCAmelCase_): if not field.init: continue UpperCamelCase__ : int = type_hints[field.name] self._parse_dataclass_field(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): UpperCamelCase__ : Optional[int] = [] if args_filename: args_files.append(Path(UpperCAmelCase_)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix('.args')) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values UpperCamelCase__ : List[str] = ArgumentParser() args_file_parser.add_argument(UpperCAmelCase_ , type=UpperCAmelCase_ , action='append') # Use only remaining args for further parsing (remove the args_file_flag) UpperCamelCase__, UpperCamelCase__ : Optional[int] = args_file_parser.parse_known_args(args=UpperCAmelCase_) UpperCamelCase__ : str = vars(UpperCAmelCase_).get(args_file_flag.lstrip('-') , UpperCAmelCase_) if cmd_args_file_paths: args_files.extend([Path(UpperCAmelCase_) for p in cmd_args_file_paths]) UpperCamelCase__ : str = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last UpperCamelCase__ : List[Any] = file_args + args if args is not None else file_args + sys.argv[1:] UpperCamelCase__, UpperCamelCase__ : List[Any] = self.parse_known_args(args=UpperCAmelCase_) UpperCamelCase__ : int = [] for dtype in self.dataclass_types: UpperCamelCase__ : Dict = {f.name for f in dataclasses.fields(UpperCAmelCase_) if f.init} UpperCamelCase__ : List[Any] = {k: v for k, v in vars(UpperCAmelCase_).items() if k in keys} for k in keys: delattr(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = dtype(**UpperCAmelCase_) outputs.append(UpperCAmelCase_) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(UpperCAmelCase_) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F'Some specified arguments are not used by the HfArgumentParser: {remaining_args}') return (*outputs,) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Dict[str, Any] , UpperCAmelCase_ : bool = False): UpperCamelCase__ : List[str] = set(args.keys()) UpperCamelCase__ : List[Any] = [] for dtype in self.dataclass_types: UpperCamelCase__ : Union[str, Any] = {f.name for f in dataclasses.fields(UpperCAmelCase_) if f.init} UpperCamelCase__ : List[str] = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) UpperCamelCase__ : List[str] = dtype(**UpperCAmelCase_) outputs.append(UpperCAmelCase_) if not allow_extra_keys and unused_keys: raise ValueError(F'Some keys are not used by the HfArgumentParser: {sorted(UpperCAmelCase_)}') return tuple(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False): with open(Path(UpperCAmelCase_) , encoding='utf-8') as open_json_file: UpperCamelCase__ : Union[str, Any] = json.loads(open_json_file.read()) UpperCamelCase__ : List[str] = self.parse_dict(UpperCAmelCase_ , allow_extra_keys=UpperCAmelCase_) return tuple(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : bool = False): UpperCamelCase__ : Dict = self.parse_dict(yaml.safe_load(Path(UpperCAmelCase_).read_text()) , allow_extra_keys=UpperCAmelCase_) return tuple(UpperCAmelCase_)
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __lowercase : _lowerCamelCase = True _lowerCamelCase = None # Automatically constructed _lowerCamelCase = "PIL.Image.Image" _lowerCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowerCamelCase = field(default='''Image''' , init=__lowerCamelCase , repr=__lowerCamelCase ) def __call__( self : Union[str, Any]): return self.pa_type def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : int = np.array(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): return {"path": value, "bytes": None} elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): return {"path": None, "bytes": value} elif isinstance(UpperCAmelCase_ , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(UpperCAmelCase_) elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : dict , UpperCAmelCase_ : int=None): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.') if token_per_repo_id is None: UpperCamelCase__ : int = {} UpperCamelCase__, UpperCamelCase__ : int = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.') else: if is_local_path(UpperCAmelCase_): UpperCamelCase__ : int = PIL.Image.open(UpperCAmelCase_) else: UpperCamelCase__ : str = path.split('::')[-1] try: UpperCamelCase__ : Union[str, Any] = string_to_dict(UpperCAmelCase_ , config.HUB_DATASETS_URL)['repo_id'] UpperCamelCase__ : Optional[Any] = token_per_repo_id.get(UpperCAmelCase_) except ValueError: UpperCamelCase__ : Any = None with xopen(UpperCAmelCase_ , 'rb' , use_auth_token=UpperCAmelCase_) as f: UpperCamelCase__ : Optional[int] = BytesIO(f.read()) UpperCamelCase__ : Tuple = PIL.Image.open(bytes_) else: UpperCamelCase__ : List[Any] = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __UpperCamelCase ( self : List[str]): from .features import Value return ( self if self.decode else { "bytes": Value('binary'), "path": Value('string'), } ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray]): if pa.types.is_string(storage.type): UpperCamelCase__ : Dict = pa.array([None] * len(UpperCAmelCase_) , type=pa.binary()) UpperCamelCase__ : Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCamelCase__ : Tuple = pa.array([None] * len(UpperCAmelCase_) , type=pa.string()) UpperCamelCase__ : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: UpperCamelCase__ : Tuple = storage.field('bytes') else: UpperCamelCase__ : Tuple = pa.array([None] * len(UpperCAmelCase_) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: UpperCamelCase__ : int = storage.field('path') else: UpperCamelCase__ : List[str] = pa.array([None] * len(UpperCAmelCase_) , type=pa.string()) UpperCamelCase__ : Dict = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_list(storage.type): UpperCamelCase__ : Optional[Any] = pa.array( [encode_np_array(np.array(UpperCAmelCase_))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase__ : Optional[Any] = pa.array([None] * len(UpperCAmelCase_) , type=pa.string()) UpperCamelCase__ : Optional[int] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(UpperCAmelCase_ , self.pa_type) def __UpperCamelCase ( self : str , UpperCAmelCase_ : pa.StructArray): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : int): with xopen(UpperCAmelCase_ , 'rb') as f: UpperCamelCase__ : List[str] = f.read() return bytes_ UpperCamelCase__ : Optional[Any] = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ : List[Any] = pa.array( [os.path.basename(UpperCAmelCase_) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) UpperCamelCase__ : str = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(UpperCAmelCase_ , self.pa_type) def __UpperCAmelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ : Tuple = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def __UpperCAmelCase ( lowerCamelCase_) -> bytes: UpperCamelCase__ : List[Any] = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ : Dict = image.format else: UpperCamelCase__ : List[str] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(lowerCamelCase_ , format=lowerCamelCase_) return buffer.getvalue() def __UpperCAmelCase ( lowerCamelCase_) -> dict: if hasattr(lowerCamelCase_ , 'filename') and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(lowerCamelCase_)} def __UpperCAmelCase ( lowerCamelCase_) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') UpperCamelCase__ : List[Any] = array.dtype UpperCamelCase__ : Union[str, Any] = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase__ : Optional[int] = dtype.kind UpperCamelCase__ : int = dtype.itemsize UpperCamelCase__ : List[str] = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ : Union[str, Any] = np.dtype('|u1') if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.') if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'') # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ : Union[str, Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ : List[str] = dtype_byteorder + dtype_kind + str(lowerCamelCase_) UpperCamelCase__ : Any = np.dtype(lowerCamelCase_) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'') break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}') UpperCamelCase__ : Optional[int] = PIL.Image.fromarray(array.astype(lowerCamelCase_)) return {"path": None, "bytes": image_to_bytes(lowerCamelCase_)} def __UpperCAmelCase ( lowerCamelCase_) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if objs: UpperCamelCase__, UpperCamelCase__ : str = first_non_null_value(lowerCamelCase_) if isinstance(lowerCamelCase_ , lowerCamelCase_): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(lowerCamelCase_ , np.ndarray): UpperCamelCase__ : List[str] = no_op_if_value_is_null(lowerCamelCase_) return [obj_to_image_dict_func(lowerCamelCase_) for obj in objs] elif isinstance(lowerCamelCase_ , PIL.Image.Image): UpperCamelCase__ : Union[str, Any] = no_op_if_value_is_null(lowerCamelCase_) return [obj_to_image_dict_func(lowerCamelCase_) for obj in objs] else: return objs else: return objs
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: # Initialise PyTorch model UpperCamelCase__ : List[str] = MobileBertConfig.from_json_file(lowerCamelCase_) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : Dict = MobileBertForPreTraining(lowerCamelCase_) # Load weights from tf checkpoint UpperCamelCase__ : Union[str, Any] = load_tf_weights_in_mobilebert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' import os import warnings from typing import List, Optional from ...tokenization_utils_base import BatchEncoding from ...utils import logging from .configuration_rag import RagConfig lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase : def __init__( self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : str = question_encoder UpperCamelCase__ : Optional[int] = generator UpperCamelCase__ : Optional[int] = self.question_encoder def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any): if os.path.isfile(UpperCAmelCase_): raise ValueError(F'Provided path ({save_directory}) should be a directory, not a file') os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_) UpperCamelCase__ : int = os.path.join(UpperCAmelCase_ , 'question_encoder_tokenizer') UpperCamelCase__ : Any = os.path.join(UpperCAmelCase_ , 'generator_tokenizer') self.question_encoder.save_pretrained(UpperCAmelCase_) self.generator.save_pretrained(UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : str , UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): # dynamically import AutoTokenizer from ..auto.tokenization_auto import AutoTokenizer UpperCamelCase__ : Tuple = kwargs.pop('config' , UpperCAmelCase_) if config is None: UpperCamelCase__ : int = RagConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : int = AutoTokenizer.from_pretrained( UpperCAmelCase_ , config=config.question_encoder , subfolder='question_encoder_tokenizer') UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained( UpperCAmelCase_ , config=config.generator , subfolder='generator_tokenizer') return cls(question_encoder=UpperCAmelCase_ , generator=UpperCAmelCase_) def __call__( self : str , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): return self.current_tokenizer(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str): return self.generator.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict): return self.generator.decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[Any] = self.question_encoder def __UpperCamelCase ( self : str): UpperCamelCase__ : str = self.generator def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "longest" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Tuple , ): warnings.warn( '`prepare_seq2seq_batch` is deprecated and will be removed in version 5 of 🤗 Transformers. Use the ' 'regular `__call__` method to prepare your inputs and the tokenizer under the `with_target_tokenizer` ' 'context manager to prepare your targets. See the documentation of your specific tokenizer for more ' 'details' , UpperCAmelCase_ , ) if max_length is None: UpperCamelCase__ : int = self.current_tokenizer.model_max_length UpperCamelCase__ : List[Any] = self( UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , **UpperCAmelCase_ , ) if tgt_texts is None: return model_inputs # Process tgt_texts if max_target_length is None: UpperCamelCase__ : List[Any] = self.current_tokenizer.model_max_length UpperCamelCase__ : Tuple = self( text_target=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = labels['input_ids'] return model_inputs
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' import string def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Optional[int] = '' for i in sequence: UpperCamelCase__ : str = ord(lowerCamelCase_) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : int = string.ascii_letters UpperCamelCase__ : Dict = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(lowerCamelCase_)] if c in letters else c for c in sequence) def __UpperCAmelCase ( ) -> None: from timeit import timeit print('Running performance benchmarks...') UpperCamelCase__ : List[str] = 'from string import printable ; from __main__ import atbash, atbash_slow' print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=lowerCamelCase_)} seconds') print(f'> atbash(): {timeit("atbash(printable)" , setup=lowerCamelCase_)} seconds') if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __lowercase (unittest.TestCase , __lowerCamelCase ): def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = load_tool('text-to-speech') self.tool.setup() def __UpperCamelCase ( self : str): # SpeechT5 isn't deterministic torch.manual_seed(0) UpperCamelCase__ : Tuple = self.tool('hey') UpperCamelCase__ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85]) , )) def __UpperCamelCase ( self : Union[str, Any]): # SpeechT5 isn't deterministic torch.manual_seed(0) UpperCamelCase__ : List[Any] = self.tool('hey') UpperCamelCase__ : List[str] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_00_59_66_66_88_32_11_58_29, -0.0_00_36_57_64_01_90_79_50_64, -0.00_01_34_39_50_27_99_88_34_85]) , ))
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig lowerCAmelCase__ = logging.get_logger(__name__) # General docstring lowerCAmelCase__ = 'PoolFormerConfig' # Base docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = [1, 512, 7, 7] # Image classification docstring lowerCAmelCase__ = 'sail/poolformer_s12' lowerCAmelCase__ = 'tabby, tabby cat' lowerCAmelCase__ = [ 'sail/poolformer_s12', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = 0.0 , lowerCamelCase_ = False) -> Union[str, Any]: if drop_prob == 0.0 or not training: return input UpperCamelCase__ : Optional[Any] = 1 - drop_prob UpperCamelCase__ : Dict = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets UpperCamelCase__ : Dict = keep_prob + torch.rand(lowerCamelCase_ , dtype=input.dtype , device=input.device) random_tensor.floor_() # binarize UpperCamelCase__ : int = input.div(lowerCamelCase_) * random_tensor return output class __lowercase (nn.Module ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[float] = None): super().__init__() UpperCamelCase__ : Any = drop_prob def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : torch.Tensor): return drop_path(UpperCAmelCase_ , self.drop_prob , self.training) def __UpperCamelCase ( self : Any): return "p={}".format(self.drop_prob) class __lowercase (nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=None): super().__init__() UpperCamelCase__ : Dict = patch_size if isinstance(UpperCAmelCase_ , collections.abc.Iterable) else (patch_size, patch_size) UpperCamelCase__ : Dict = stride if isinstance(UpperCAmelCase_ , collections.abc.Iterable) else (stride, stride) UpperCamelCase__ : Optional[Any] = padding if isinstance(UpperCAmelCase_ , collections.abc.Iterable) else (padding, padding) UpperCamelCase__ : Dict = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=UpperCAmelCase_) UpperCamelCase__ : int = norm_layer(UpperCAmelCase_) if norm_layer else nn.Identity() def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str]): UpperCamelCase__ : Optional[int] = self.projection(UpperCAmelCase_) UpperCamelCase__ : Dict = self.norm(UpperCAmelCase_) return embeddings class __lowercase (nn.GroupNorm ): def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Tuple): super().__init__(1 , UpperCAmelCase_ , **UpperCAmelCase_) class __lowercase (nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): super().__init__() UpperCamelCase__ : Optional[int] = nn.AvgPoolad(UpperCAmelCase_ , stride=1 , padding=pool_size // 2 , count_include_pad=UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.pool(UpperCAmelCase_) - hidden_states class __lowercase (nn.Module ): def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any]): super().__init__() UpperCamelCase__ : Union[str, Any] = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1) UpperCamelCase__ : str = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , 1) UpperCamelCase__ : Dict = PoolFormerDropPath(UpperCAmelCase_) if isinstance(config.hidden_act , UpperCAmelCase_): UpperCamelCase__ : Tuple = ACTaFN[config.hidden_act] else: UpperCamelCase__ : int = config.hidden_act def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Dict = self.conva(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.act_fn(UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.drop(UpperCAmelCase_) UpperCamelCase__ : Dict = self.conva(UpperCAmelCase_) UpperCamelCase__ : List[Any] = self.drop(UpperCAmelCase_) return hidden_states class __lowercase (nn.Module ): def __init__( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Any): super().__init__() UpperCamelCase__ : Any = PoolFormerPooling(UpperCAmelCase_) UpperCamelCase__ : Dict = PoolFormerOutput(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[str] = PoolFormerGroupNorm(UpperCAmelCase_) UpperCamelCase__ : str = PoolFormerGroupNorm(UpperCAmelCase_) # Useful for training neural nets UpperCamelCase__ : str = PoolFormerDropPath(UpperCAmelCase_) if drop_path > 0.0 else nn.Identity() UpperCamelCase__ : Optional[Any] = config.use_layer_scale if config.use_layer_scale: UpperCamelCase__ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase_)) , requires_grad=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((UpperCAmelCase_)) , requires_grad=UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str): if self.use_layer_scale: UpperCamelCase__ : Dict = self.pooling(self.before_norm(UpperCAmelCase_)) UpperCamelCase__ : int = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * pooling_output # First residual connection UpperCamelCase__ : Tuple = hidden_states + self.drop_path(UpperCAmelCase_) UpperCamelCase__ : int = () UpperCamelCase__ : List[str] = self.output(self.after_norm(UpperCAmelCase_)) UpperCamelCase__ : Optional[Any] = self.layer_scale_a.unsqueeze(-1).unsqueeze(-1) * layer_output # Second residual connection UpperCamelCase__ : Tuple = hidden_states + self.drop_path(UpperCAmelCase_) UpperCamelCase__ : Dict = (output,) + outputs return outputs else: UpperCamelCase__ : Union[str, Any] = self.drop_path(self.pooling(self.before_norm(UpperCAmelCase_))) # First residual connection UpperCamelCase__ : Optional[Any] = pooling_output + hidden_states UpperCamelCase__ : Dict = () # Second residual connection inside the PoolFormerOutput block UpperCamelCase__ : int = self.drop_path(self.output(self.after_norm(UpperCAmelCase_))) UpperCamelCase__ : int = hidden_states + layer_output UpperCamelCase__ : Optional[int] = (output,) + outputs return outputs class __lowercase (nn.Module ): def __init__( self : Dict , UpperCAmelCase_ : Optional[Any]): super().__init__() UpperCamelCase__ : Optional[int] = config # stochastic depth decay rule UpperCamelCase__ : Optional[Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths))] # patch embeddings UpperCamelCase__ : List[str] = [] for i in range(config.num_encoder_blocks): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , )) UpperCamelCase__ : Union[str, Any] = nn.ModuleList(UpperCAmelCase_) # Transformer blocks UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Union[str, Any] = 0 for i in range(config.num_encoder_blocks): # each block consists of layers UpperCamelCase__ : Dict = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i]): layers.append( PoolFormerLayer( UpperCAmelCase_ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio) , drop_path=dpr[cur + j] , )) blocks.append(nn.ModuleList(UpperCAmelCase_)) UpperCamelCase__ : Union[str, Any] = nn.ModuleList(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : int=True): UpperCamelCase__ : Optional[int] = () if output_hidden_states else None UpperCamelCase__ : List[Any] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block)): UpperCamelCase__, UpperCamelCase__ : Optional[int] = layers # Get patch embeddings from hidden_states UpperCamelCase__ : str = embedding_layer(UpperCAmelCase_) # Send the embeddings through the blocks for _, blk in enumerate(UpperCAmelCase_): UpperCamelCase__ : str = blk(UpperCAmelCase_) UpperCamelCase__ : Any = layer_outputs[0] if output_hidden_states: UpperCamelCase__ : Optional[int] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_) class __lowercase (__lowerCamelCase ): _lowerCamelCase = PoolFormerConfig _lowerCamelCase = '''poolformer''' _lowerCamelCase = '''pixel_values''' _lowerCamelCase = True def __UpperCamelCase ( self : int , UpperCAmelCase_ : Dict): if isinstance(UpperCAmelCase_ , (nn.Linear, nn.Convad)): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(UpperCAmelCase_ , nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any]=False): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = value lowerCAmelCase__ = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n' lowerCAmelCase__ = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`PoolFormerImageProcessor.__call__`] for details.\n' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __lowerCamelCase , ) class __lowercase (__lowerCamelCase ): def __init__( self : Tuple , UpperCAmelCase_ : int): super().__init__(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = config UpperCamelCase__ : Optional[Any] = PoolFormerEncoder(UpperCAmelCase_) # Initialize weights and apply final processing self.post_init() def __UpperCamelCase ( self : int): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ): UpperCamelCase__ : str = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCamelCase__ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values') UpperCamelCase__ : Tuple = self.encoder( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , ) UpperCamelCase__ : Dict = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , ) class __lowercase (nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Tuple): super().__init__() UpperCamelCase__ : List[str] = nn.Linear(config.hidden_size , config.hidden_size) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Optional[Any] = self.dense(UpperCAmelCase_) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __lowerCamelCase , ) class __lowercase (__lowerCamelCase ): def __init__( self : Optional[int] , UpperCAmelCase_ : Dict): super().__init__(UpperCAmelCase_) UpperCamelCase__ : Dict = config.num_labels UpperCamelCase__ : int = PoolFormerModel(UpperCAmelCase_) # Final norm UpperCamelCase__ : int = PoolFormerGroupNorm(config.hidden_sizes[-1]) # Classifier head UpperCamelCase__ : str = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UpperCAmelCase_) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ): UpperCamelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict UpperCamelCase__ : int = self.poolformer( UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = outputs[0] UpperCamelCase__ : Optional[Any] = self.classifier(self.norm(UpperCAmelCase_).mean([-2, -1])) UpperCamelCase__ : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: UpperCamelCase__ : List[Any] = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): UpperCamelCase__ : List[Any] = 'single_label_classification' else: UpperCamelCase__ : List[Any] = 'multi_label_classification' if self.config.problem_type == "regression": UpperCamelCase__ : Any = MSELoss() if self.num_labels == 1: UpperCamelCase__ : Tuple = loss_fct(logits.squeeze() , labels.squeeze()) else: UpperCamelCase__ : str = loss_fct(UpperCAmelCase_ , UpperCAmelCase_) elif self.config.problem_type == "single_label_classification": UpperCamelCase__ : List[Any] = CrossEntropyLoss() UpperCamelCase__ : List[Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": UpperCamelCase__ : Optional[int] = BCEWithLogitsLoss() UpperCamelCase__ : Union[str, Any] = loss_fct(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: UpperCamelCase__ : str = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states)
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black lowerCAmelCase__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowerCAmelCase__ = ' \"""\n Output class for the scheduler\'s step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"""\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n' class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , 'schedulers/')) UpperCamelCase__ : int = self.diffusers_dir shutil.copy( os.path.join(UpperCAmelCase_ , 'src/diffusers/schedulers/scheduling_ddpm.py') , os.path.join(self.diffusers_dir , 'schedulers/scheduling_ddpm.py') , ) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = 'src/diffusers' shutil.rmtree(self.diffusers_dir) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None): UpperCamelCase__ : Optional[int] = comment + F'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCamelCase__ : List[str] = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCamelCase__ : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) UpperCamelCase__ : Tuple = black.format_str(UpperCAmelCase_ , mode=UpperCAmelCase_) UpperCamelCase__ : List[str] = os.path.join(self.diffusers_dir , 'new_code.py') with open(UpperCAmelCase_ , 'w' , newline='\n') as f: f.write(UpperCAmelCase_) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCAmelCase_)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCAmelCase_) with open(UpperCAmelCase_ , 'r') as f: self.assertTrue(f.read() , UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : List[Any] = check_copies.find_code_in_diffusers('schedulers.scheduling_ddpm.DDPMSchedulerOutput') self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): # Base copy consistency self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput' , 'DDPMSchedulerOutput' , UpperCAmelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , re.sub('DDPM' , 'Test' , UpperCAmelCase_) , ) # Copy consistency with a really long name UpperCamelCase__ : List[str] = 'TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub('Bert' , UpperCAmelCase_ , UpperCAmelCase_) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test' , 'TestSchedulerOutput' , UpperCAmelCase_ , overwrite_result=re.sub('DDPM' , 'Test' , UpperCAmelCase_) , )
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''pegasus''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : int , UpperCAmelCase_ : Optional[int]=50_265 , UpperCAmelCase_ : Optional[Any]=1_024 , UpperCAmelCase_ : int=12 , UpperCAmelCase_ : Optional[int]=4_096 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Dict=4_096 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : Optional[int]=1 , UpperCAmelCase_ : Union[str, Any]=1 , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Union[str, Any] = max_position_embeddings UpperCamelCase__ : List[Any] = d_model UpperCamelCase__ : Tuple = encoder_ffn_dim UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : str = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : Dict = decoder_layers UpperCamelCase__ : Any = decoder_attention_heads UpperCamelCase__ : Dict = dropout UpperCamelCase__ : List[Any] = attention_dropout UpperCamelCase__ : List[Any] = activation_dropout UpperCamelCase__ : Union[str, Any] = activation_function UpperCamelCase__ : str = init_std UpperCamelCase__ : Union[str, Any] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : Any = encoder_layers UpperCamelCase__ : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) @property def __UpperCamelCase ( self : Dict): return self.encoder_attention_heads @property def __UpperCamelCase ( self : List[Any]): return self.d_model
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowerCAmelCase__ = None lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'facebook/mbart-large-en-ro': 1024, 'facebook/mbart-large-cc25': 1024, } # fmt: off lowerCAmelCase__ = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = ['''input_ids''', '''attention_mask'''] _lowerCamelCase = MBartTokenizer _lowerCamelCase = [] _lowerCamelCase = [] def __init__( self : int , UpperCAmelCase_ : List[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : List[str]="<s>" , UpperCAmelCase_ : Union[str, Any]="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Tuple="<unk>" , UpperCAmelCase_ : Dict="<pad>" , UpperCAmelCase_ : Any="<mask>" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : Union[str, Any] = vocab_file UpperCamelCase__ : Dict = False if not self.vocab_file else True UpperCamelCase__ : Optional[Any] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) UpperCamelCase__ : Optional[Any] = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_) for lang_code in FAIRSEQ_LANGUAGE_CODES } UpperCamelCase__ : Tuple = src_lang if src_lang is not None else 'en_XX' UpperCamelCase__ : Dict = self.convert_tokens_to_ids(self._src_lang) UpperCamelCase__ : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def __UpperCamelCase ( self : Any): return self._src_lang @src_lang.setter def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): UpperCamelCase__ : List[str] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] , UpperCAmelCase_ : Optional[str] , **UpperCAmelCase_ : Optional[int]): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') UpperCamelCase__ : int = src_lang UpperCamelCase__ : Tuple = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Dict = self.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tgt_lang_id return inputs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str = "en_XX" , UpperCAmelCase_ : Optional[List[str]] = None , UpperCAmelCase_ : str = "ro_RO" , **UpperCAmelCase_ : Dict , ): UpperCamelCase__ : List[Any] = src_lang UpperCamelCase__ : Tuple = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): return self.set_src_lang_special_tokens(self.src_lang) def __UpperCamelCase ( self : Optional[Any]): return self.set_tgt_lang_special_tokens(self.tgt_lang) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Any): UpperCamelCase__ : Any = self.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : str = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens) UpperCamelCase__ : List[Any] = self.convert_ids_to_tokens(self.suffix_tokens) UpperCamelCase__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Tuple = self.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] UpperCamelCase__ : List[str] = self.convert_ids_to_tokens(self.prefix_tokens) UpperCamelCase__ : Tuple = self.convert_ids_to_tokens(self.suffix_tokens) UpperCamelCase__ : List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory.') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_): copyfile(self.vocab_file , UpperCAmelCase_) return (out_vocab_file,)
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''marian''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : str , UpperCAmelCase_ : Optional[int]=58_101 , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=1_024 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : Any=4_096 , UpperCAmelCase_ : List[Any]=16 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : Any=4_096 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : Tuple=1_024 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[Any]=0.0 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : List[Any]=58_100 , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[int]=58_100 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : Union[str, Any]=True , **UpperCAmelCase_ : Optional[int] , ): UpperCamelCase__ : Tuple = vocab_size UpperCamelCase__ : str = decoder_vocab_size or vocab_size UpperCamelCase__ : Tuple = max_position_embeddings UpperCamelCase__ : Union[str, Any] = d_model UpperCamelCase__ : Optional[int] = encoder_ffn_dim UpperCamelCase__ : Optional[Any] = encoder_layers UpperCamelCase__ : Union[str, Any] = encoder_attention_heads UpperCamelCase__ : Optional[int] = decoder_ffn_dim UpperCamelCase__ : List[str] = decoder_layers UpperCamelCase__ : Optional[int] = decoder_attention_heads UpperCamelCase__ : Dict = dropout UpperCamelCase__ : str = attention_dropout UpperCamelCase__ : Tuple = activation_dropout UpperCamelCase__ : Optional[int] = activation_function UpperCamelCase__ : Any = init_std UpperCamelCase__ : Optional[Any] = encoder_layerdrop UpperCamelCase__ : int = decoder_layerdrop UpperCamelCase__ : Optional[Any] = use_cache UpperCamelCase__ : Tuple = encoder_layers UpperCamelCase__ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ : Union[str, Any] = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , is_encoder_decoder=UpperCAmelCase_ , decoder_start_token_id=UpperCAmelCase_ , forced_eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ , ) class __lowercase (__lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCamelCase ( self : List[str]): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : Dict = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: UpperCamelCase__ : Optional[int] = {0: 'batch'} UpperCamelCase__ : List[Any] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: UpperCamelCase__ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} UpperCamelCase__ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase_ , direction='inputs') elif self.task == "causal-lm": # TODO: figure this case out. UpperCamelCase__ : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ]) if self.use_past: UpperCamelCase__, UpperCamelCase__ : Any = self.num_layers for i in range(UpperCAmelCase_): UpperCamelCase__ : str = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase__ : Tuple = {0: 'batch', 2: 'past_sequence + sequence'} else: UpperCamelCase__ : Dict = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ]) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCamelCase ( self : List[str]): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : int = super().outputs else: UpperCamelCase__ : Optional[Any] = super(UpperCAmelCase_ , self).outputs if self.use_past: UpperCamelCase__, UpperCamelCase__ : List[str] = self.num_layers for i in range(UpperCAmelCase_): UpperCamelCase__ : str = {0: 'batch', 2: 'past_sequence + sequence'} UpperCamelCase__ : Optional[Any] = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): UpperCamelCase__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) # Generate decoder inputs UpperCamelCase__ : Tuple = seq_length if not self.use_past else 1 UpperCamelCase__ : int = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} UpperCamelCase__ : int = dict(**UpperCAmelCase_ , **UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch UpperCamelCase__, UpperCamelCase__ : List[str] = common_inputs['input_ids'].shape UpperCamelCase__ : Optional[Any] = common_inputs['decoder_input_ids'].shape[1] UpperCamelCase__, UpperCamelCase__ : List[str] = self.num_attention_heads UpperCamelCase__ : List[Any] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : Any = decoder_seq_length + 3 UpperCamelCase__ : str = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) UpperCamelCase__ : int = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_)] , dim=1) UpperCamelCase__ : Tuple = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.num_layers UpperCamelCase__ : Optional[Any] = min(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = max(UpperCAmelCase_ , UpperCAmelCase_) - min_num_layers UpperCamelCase__ : Any = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCAmelCase_): common_inputs["past_key_values"].append( ( torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_), )) # TODO: test this. UpperCamelCase__ : Union[str, Any] = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCAmelCase_ , UpperCAmelCase_): common_inputs["past_key_values"].append((torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_))) return common_inputs def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): UpperCamelCase__ : Optional[Any] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.') else: import torch UpperCamelCase__, UpperCamelCase__ : Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase__ : str = seqlen + 2 UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.num_layers UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self.num_attention_heads UpperCamelCase__ : Union[str, Any] = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) UpperCamelCase__ : str = common_inputs['attention_mask'].dtype UpperCamelCase__ : int = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCAmelCase_ , UpperCAmelCase_ , dtype=UpperCAmelCase_)] , dim=1) UpperCamelCase__ : Optional[int] = [ (torch.zeros(UpperCAmelCase_), torch.zeros(UpperCAmelCase_)) for _ in range(UpperCAmelCase_) ] return common_inputs def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX UpperCamelCase__ : Any = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX UpperCamelCase__ : Optional[int] = tokenizer.num_special_tokens_to_add(UpperCAmelCase_) UpperCamelCase__ : List[str] = compute_effective_axis_dimension( UpperCAmelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCAmelCase_) # Generate dummy inputs according to compute batch and sequence UpperCamelCase__ : Tuple = [' '.join([tokenizer.unk_token]) * seq_length] * batch_size UpperCamelCase__ : int = dict(tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_)) return common_inputs def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : PreTrainedTokenizer , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : int = -1 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : Tuple = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) else: UpperCamelCase__ : int = self._generate_dummy_inputs_for_causal_lm( UpperCAmelCase_ , batch_size=UpperCAmelCase_ , seq_length=UpperCAmelCase_ , is_pair=UpperCAmelCase_ , framework=UpperCAmelCase_) return common_inputs def __UpperCamelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict): if self.task in ["default", "seq2seq-lm"]: UpperCamelCase__ : Any = super()._flatten_past_key_values_(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) else: UpperCamelCase__ : List[str] = super(UpperCAmelCase_ , self)._flatten_past_key_values_( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) @property def __UpperCamelCase ( self : Union[str, Any]): return 1e-4
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : str = b.T UpperCamelCase__ : Union[str, Any] = np.sum(np.square(lowerCamelCase_) , axis=1) UpperCamelCase__ : int = np.sum(np.square(lowerCamelCase_) , axis=0) UpperCamelCase__ : int = np.matmul(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Tuple = x.reshape(-1 , 3) UpperCamelCase__ : Dict = squared_euclidean_distance(lowerCamelCase_ , lowerCamelCase_) return np.argmin(lowerCamelCase_ , axis=1) class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''pixel_values'''] def __init__( self : str , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : List[Any] , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Dict = size if size is not None else {'height': 256, 'width': 256} UpperCamelCase__ : int = get_size_dict(UpperCAmelCase_) UpperCamelCase__ : Tuple = np.array(UpperCAmelCase_) if clusters is not None else None UpperCamelCase__ : Dict = do_resize UpperCamelCase__ : Union[str, Any] = size UpperCamelCase__ : Optional[Any] = resample UpperCamelCase__ : Union[str, Any] = do_normalize UpperCamelCase__ : Tuple = do_color_quantize def __UpperCamelCase ( self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Tuple , ): UpperCamelCase__ : Optional[Any] = get_size_dict(UpperCAmelCase_) if "height" not in size or "width" not in size: raise ValueError(F'Size dictionary must contain both height and width keys. Got {size.keys()}') return resize( UpperCAmelCase_ , size=(size['height'], size['width']) , resample=UpperCAmelCase_ , data_format=UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , ): UpperCamelCase__ : Optional[int] = rescale(image=UpperCAmelCase_ , scale=1 / 1_27.5 , data_format=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = image - 1 return image def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[Union[List[List[int]], np.ndarray]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : Optional[int] = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ : str = size if size is not None else self.size UpperCamelCase__ : Dict = get_size_dict(UpperCAmelCase_) UpperCamelCase__ : int = resample if resample is not None else self.resample UpperCamelCase__ : str = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ : str = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCamelCase__ : Union[str, Any] = clusters if clusters is not None else self.clusters UpperCamelCase__ : str = np.array(UpperCAmelCase_) UpperCamelCase__ : List[str] = make_list_of_images(UpperCAmelCase_) if not valid_images(UpperCAmelCase_): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.') # All transformations expect numpy arrays. UpperCamelCase__ : Dict = [to_numpy_array(UpperCAmelCase_) for image in images] if do_resize: UpperCamelCase__ : Tuple = [self.resize(image=UpperCAmelCase_ , size=UpperCAmelCase_ , resample=UpperCAmelCase_) for image in images] if do_normalize: UpperCamelCase__ : Union[str, Any] = [self.normalize(image=UpperCAmelCase_) for image in images] if do_color_quantize: UpperCamelCase__ : Tuple = [to_channel_dimension_format(UpperCAmelCase_ , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCamelCase__ : Optional[Any] = np.array(UpperCAmelCase_) UpperCamelCase__ : List[Any] = color_quantize(UpperCAmelCase_ , UpperCAmelCase_).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) UpperCamelCase__ : Optional[int] = images.shape[0] UpperCamelCase__ : int = images.reshape(UpperCAmelCase_ , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCamelCase__ : Union[str, Any] = list(UpperCAmelCase_) else: UpperCamelCase__ : int = [to_channel_dimension_format(UpperCAmelCase_ , UpperCAmelCase_) for image in images] UpperCamelCase__ : Tuple = {'input_ids': images} return BatchFeature(data=UpperCAmelCase_ , tensor_type=UpperCAmelCase_)
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import json import sys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: with open(lowerCamelCase_ , encoding='utf-8') as f: UpperCamelCase__ : Union[str, Any] = json.load(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = results[benchmark_name] UpperCamelCase__ : Union[str, Any] = benchmark_name.split('/')[-1] output_md.append(f'### Benchmark: {benchmark_file_name}') UpperCamelCase__ : Union[str, Any] = '| metric |' UpperCamelCase__ : List[str] = '|--------|' UpperCamelCase__ : str = '| new / old (diff) |' for metric_name in sorted(lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = benchmark_res[metric_name] UpperCamelCase__ : Optional[int] = metric_vals['new'] UpperCamelCase__ : int = metric_vals.get('old' , lowerCamelCase_) UpperCamelCase__ : Dict = metric_vals.get('diff' , lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = f' {new_val:f}' if isinstance(lowerCamelCase_ , (int, float)) else 'None' if old_val is not None: val_str += f' / {old_val:f}' if isinstance(lowerCamelCase_ , (int, float)) else "None" if dif_val is not None: val_str += f' ({dif_val:f})' if isinstance(lowerCamelCase_ , (int, float)) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as f: f.writelines('\n'.join(lowerCamelCase_)) if __name__ == "__main__": lowerCAmelCase__ = sys.argv[1] lowerCAmelCase__ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''AutoImageProcessor''' _lowerCamelCase = '''AutoTokenizer''' def __init__( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple): super().__init__(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = self.image_processor def __call__( self : List[Any] , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , **UpperCAmelCase_ : Any): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: UpperCamelCase__ : Tuple = self.tokenizer(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if images is not None: UpperCamelCase__ : Optional[Any] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_) if text is not None and images is not None: UpperCamelCase__ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : str , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[Any]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Any): return ["input_ids", "attention_mask", "pixel_values"]
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase (__lowerCamelCase ): _lowerCamelCase = (IPNDMScheduler,) _lowerCamelCase = (('''num_inference_steps''', 50),) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : str = {'num_train_timesteps': 1_000} config.update(**UpperCAmelCase_) return config def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any]=0 , **UpperCAmelCase_ : str): UpperCamelCase__ : Dict = dict(self.forward_default_kwargs) UpperCamelCase__ : Optional[int] = kwargs.pop('num_inference_steps' , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_sample UpperCamelCase__ : Union[str, Any] = 0.1 * sample UpperCamelCase__ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Tuple = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(UpperCAmelCase_) # copy over dummy past residuals UpperCamelCase__ : List[Any] = dummy_past_residuals[:] if time_step is None: UpperCamelCase__ : Tuple = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = scheduler_class.from_pretrained(UpperCAmelCase_) new_scheduler.set_timesteps(UpperCAmelCase_) # copy over dummy past residuals UpperCamelCase__ : Optional[int] = dummy_past_residuals[:] UpperCamelCase__ : Union[str, Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : str = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ : Optional[int] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : Tuple = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : List[str]): pass def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[str]=0 , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[Any] = dict(self.forward_default_kwargs) UpperCamelCase__ : List[str] = kwargs.pop('num_inference_steps' , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.dummy_sample UpperCamelCase__ : str = 0.1 * sample UpperCamelCase__ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: UpperCamelCase__ : List[str] = self.get_scheduler_config() UpperCamelCase__ : Tuple = scheduler_class(**UpperCAmelCase_) scheduler.set_timesteps(UpperCAmelCase_) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase__ : int = dummy_past_residuals[:] if time_step is None: UpperCamelCase__ : List[Any] = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCAmelCase_) UpperCamelCase__ : int = scheduler_class.from_pretrained(UpperCAmelCase_) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCAmelCase_) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase__ : Tuple = dummy_past_residuals[:] UpperCamelCase__ : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : Dict = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" UpperCamelCase__ : int = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : List[str] = new_scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : int = self.scheduler_classes[0] UpperCamelCase__ : Tuple = self.get_scheduler_config(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__ : List[str] = 10 UpperCamelCase__ : List[Any] = self.dummy_model() UpperCamelCase__ : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(UpperCAmelCase_) for i, t in enumerate(scheduler.timesteps): UpperCamelCase__ : str = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample for i, t in enumerate(scheduler.timesteps): UpperCamelCase__ : Any = model(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_).prev_sample return sample def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = dict(self.forward_default_kwargs) UpperCamelCase__ : List[Any] = kwargs.pop('num_inference_steps' , UpperCAmelCase_) for scheduler_class in self.scheduler_classes: UpperCamelCase__ : Any = self.get_scheduler_config() UpperCamelCase__ : Optional[Any] = scheduler_class(**UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.dummy_sample UpperCamelCase__ : List[Any] = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCAmelCase_ , 'set_timesteps'): scheduler.set_timesteps(UpperCAmelCase_) elif num_inference_steps is not None and not hasattr(UpperCAmelCase_ , 'set_timesteps'): UpperCamelCase__ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase__ : List[str] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] UpperCamelCase__ : Union[str, Any] = dummy_past_residuals[:] UpperCamelCase__ : Dict = scheduler.timesteps[5] UpperCamelCase__ : List[str] = scheduler.timesteps[6] UpperCamelCase__ : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : Optional[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) UpperCamelCase__ : int = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample UpperCamelCase__ : List[Any] = scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __UpperCamelCase ( self : str): for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=UpperCAmelCase_ , time_step=UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=UpperCAmelCase_ , time_step=UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : int = self.full_loop() UpperCamelCase__ : Optional[Any] = torch.mean(torch.abs(UpperCAmelCase_)) assert abs(result_mean.item() - 2_540_529) < 10
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''table-transformer''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : int , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : List[str]=100 , UpperCAmelCase_ : Tuple=6 , UpperCAmelCase_ : List[str]=2_048 , UpperCAmelCase_ : str=8 , UpperCAmelCase_ : Optional[int]=6 , UpperCAmelCase_ : Tuple=2_048 , UpperCAmelCase_ : Optional[int]=8 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str="relu" , UpperCAmelCase_ : Dict=256 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : Tuple=0.0 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Dict=1.0 , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int="sine" , UpperCAmelCase_ : Dict="resnet50" , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=False , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Optional[int]=5 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : str=5 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Tuple=0.1 , **UpperCAmelCase_ : Tuple , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') UpperCamelCase__ : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = backbone_config.get('model_type') UpperCamelCase__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Union[str, Any] = config_class.from_dict(UpperCAmelCase_) # set timm attributes to None UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = None, None, None UpperCamelCase__ : Any = use_timm_backbone UpperCamelCase__ : str = backbone_config UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Optional[Any] = num_queries UpperCamelCase__ : List[str] = d_model UpperCamelCase__ : List[Any] = encoder_ffn_dim UpperCamelCase__ : str = encoder_layers UpperCamelCase__ : Dict = encoder_attention_heads UpperCamelCase__ : str = decoder_ffn_dim UpperCamelCase__ : Any = decoder_layers UpperCamelCase__ : Optional[Any] = decoder_attention_heads UpperCamelCase__ : Optional[int] = dropout UpperCamelCase__ : Tuple = attention_dropout UpperCamelCase__ : Tuple = activation_dropout UpperCamelCase__ : Dict = activation_function UpperCamelCase__ : int = init_std UpperCamelCase__ : int = init_xavier_std UpperCamelCase__ : Optional[int] = encoder_layerdrop UpperCamelCase__ : List[Any] = decoder_layerdrop UpperCamelCase__ : Any = encoder_layers UpperCamelCase__ : Union[str, Any] = auxiliary_loss UpperCamelCase__ : Optional[int] = position_embedding_type UpperCamelCase__ : Any = backbone UpperCamelCase__ : Optional[int] = use_pretrained_backbone UpperCamelCase__ : Tuple = dilation # Hungarian matcher UpperCamelCase__ : List[Any] = class_cost UpperCamelCase__ : Any = bbox_cost UpperCamelCase__ : str = giou_cost # Loss coefficients UpperCamelCase__ : List[Any] = mask_loss_coefficient UpperCamelCase__ : Optional[int] = dice_loss_coefficient UpperCamelCase__ : str = bbox_loss_coefficient UpperCamelCase__ : Union[str, Any] = giou_loss_coefficient UpperCamelCase__ : Any = eos_coefficient super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Any): return self.encoder_attention_heads @property def __UpperCamelCase ( self : List[Any]): return self.d_model class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : List[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ]) @property def __UpperCamelCase ( self : Dict): return 1e-5 @property def __UpperCamelCase ( self : List[Any]): return 12
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import math import sys def __UpperCAmelCase ( lowerCamelCase_) -> int: if number != int(lowerCamelCase_): raise ValueError('the value of input must be a natural number') if number < 0: raise ValueError('the value of input must not be a negative number') if number == 0: return 1 UpperCamelCase__ : Optional[int] = [-1] * (number + 1) UpperCamelCase__ : Any = 0 for i in range(1 , number + 1): UpperCamelCase__ : Union[str, Any] = sys.maxsize UpperCamelCase__ : List[str] = int(math.sqrt(lowerCamelCase_)) for j in range(1 , root + 1): UpperCamelCase__ : str = 1 + answers[i - (j**2)] UpperCamelCase__ : int = min(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : List[Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import List from unittest.mock import Mock import torch from torch.utils.data import DataLoader, IterableDataset, TensorDataset from accelerate.accelerator import Accelerator from accelerate.utils.dataclasses import DistributedType class __lowercase (__lowerCamelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : int = data def __iter__( self : Optional[Any]): for element in self.data: yield element def __UpperCAmelCase ( lowerCamelCase_=True) -> List[str]: UpperCamelCase__ : List[str] = Accelerator(even_batches=lowerCamelCase_) assert accelerator.num_processes == 2, "this script expects that two GPUs are available" return accelerator def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False) -> Any: if iterable: UpperCamelCase__ : Tuple = DummyIterableDataset(torch.as_tensor(range(lowerCamelCase_))) else: UpperCamelCase__ : List[str] = TensorDataset(torch.as_tensor(range(lowerCamelCase_))) UpperCamelCase__ : Any = DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_) UpperCamelCase__ : List[str] = accelerator.prepare(lowerCamelCase_) return dl def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> int: UpperCamelCase__ : Optional[int] = create_dataloader(accelerator=lowerCamelCase_ , dataset_size=lowerCamelCase_ , batch_size=lowerCamelCase_) UpperCamelCase__ : Any = [len(batch[0]) for batch in dl] if accelerator.process_index == 0: assert batch_sizes == process_0_expected_batch_sizes elif accelerator.process_index == 1: assert batch_sizes == process_1_expected_batch_sizes def __UpperCAmelCase ( ) -> str: UpperCamelCase__ : Any = create_accelerator() # without padding, we would expect a different number of batches verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1, 1] , ) # without padding, we would expect the same number of batches, but different sizes verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 2] , ) def __UpperCAmelCase ( ) -> Tuple: UpperCamelCase__ : int = create_accelerator(even_batches=lowerCamelCase_) verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=3 , batch_size=1 , process_0_expected_batch_sizes=[1, 1] , process_1_expected_batch_sizes=[1] , ) verify_dataloader_batch_sizes( lowerCamelCase_ , dataset_size=7 , batch_size=2 , process_0_expected_batch_sizes=[2, 2] , process_1_expected_batch_sizes=[2, 1] , ) def __UpperCAmelCase ( ) -> str: UpperCamelCase__ : List[str] = create_accelerator(even_batches=lowerCamelCase_) UpperCamelCase__ : Dict = torch.nn.Linear(1 , 1) UpperCamelCase__ : Union[str, Any] = accelerator.prepare(lowerCamelCase_) UpperCamelCase__ : List[str] = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1) UpperCamelCase__ : Optional[Any] = [] with accelerator.join_uneven_inputs([ddp_model]): for batch_idx, batch in enumerate(lowerCamelCase_): UpperCamelCase__ : List[Any] = ddp_model(batch[0].float()) UpperCamelCase__ : Any = output.sum() loss.backward() batch_idxs.append(lowerCamelCase_) accelerator.wait_for_everyone() if accelerator.process_index == 0: assert batch_idxs == [0, 1] elif accelerator.process_index == 1: assert batch_idxs == [0] def __UpperCAmelCase ( lowerCamelCase_) -> Any: with warnings.catch_warnings(record=lowerCamelCase_) as w: with accelerator.join_uneven_inputs([Mock()]): pass assert issubclass(w[-1].category , lowerCamelCase_) assert "only supported for multi-GPU" in str(w[-1].message) def __UpperCAmelCase ( ) -> List[Any]: UpperCamelCase__ : List[str] = True UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : str = create_accelerator(even_batches=lowerCamelCase_) UpperCamelCase__ : Optional[Any] = torch.nn.Linear(1 , 1) UpperCamelCase__ : List[Any] = accelerator.prepare(lowerCamelCase_) UpperCamelCase__ : int = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1) UpperCamelCase__ : Optional[Any] = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1) with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_): UpperCamelCase__ : Dict = train_dl.batch_sampler.even_batches UpperCamelCase__ : Union[str, Any] = valid_dl.batch_sampler.even_batches assert train_dl_overridden_value == overridden_even_batches assert valid_dl_overridden_value == overridden_even_batches assert train_dl.batch_sampler.even_batches == default_even_batches assert valid_dl.batch_sampler.even_batches == default_even_batches def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : List[str] = True UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : Dict = create_accelerator(even_batches=lowerCamelCase_) UpperCamelCase__ : Dict = torch.nn.Linear(1 , 1) UpperCamelCase__ : List[str] = accelerator.prepare(lowerCamelCase_) create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase_) UpperCamelCase__ : Optional[Any] = create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1) with warnings.catch_warnings(): warnings.filterwarnings('ignore') try: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_): UpperCamelCase__ : Union[str, Any] = batch_dl.batch_sampler.even_batches except AttributeError: # ensure attribute error is not raised when processing iterable dl raise AssertionError assert batch_dl_overridden_value == overridden_even_batches assert batch_dl.batch_sampler.even_batches == default_even_batches def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = create_accelerator() UpperCamelCase__ : Tuple = torch.nn.Linear(1 , 1) UpperCamelCase__ : Optional[Any] = accelerator.prepare(lowerCamelCase_) create_dataloader(lowerCamelCase_ , dataset_size=3 , batch_size=1 , iterable=lowerCamelCase_) with warnings.catch_warnings(record=lowerCamelCase_) as w: with accelerator.join_uneven_inputs([ddp_model] , even_batches=lowerCamelCase_): pass assert issubclass(w[-1].category , lowerCamelCase_) assert "only supported for map-style datasets" in str(w[-1].message) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = create_accelerator() accelerator.print('Test that even_batches variable ensures uniform batches across processes') test_default_ensures_even_batch_sizes() accelerator.print('Run tests with even_batches disabled') test_can_disable_even_batches() accelerator.print('Test joining uneven inputs') test_can_join_uneven_inputs() accelerator.print('Test overriding even_batches when joining uneven inputs') test_join_can_override_even_batches() accelerator.print('Test overriding even_batches for mixed dataloader types') test_join_can_override_for_mixed_type_dataloaders() accelerator.print('Test overriding even_batches raises a warning for iterable dataloaders') test_join_raises_warning_for_iterable_when_overriding_even_batches() accelerator.print('Test join with non DDP distributed raises warning') UpperCamelCase__ : Optional[Any] = accelerator.state.distributed_type UpperCamelCase__ : List[Any] = DistributedType.FSDP test_join_raises_warning_for_non_ddp_distributed(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = original_state if __name__ == "__main__": main()
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__, UpperCamelCase__ : int = emb.weight.shape UpperCamelCase__ : Optional[Any] = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_) UpperCamelCase__ : int = emb.weight.data return lin_layer def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : str = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : Union[str, Any] = mam_aaa['args'] or mam_aaa['cfg']['model'] UpperCamelCase__ : Dict = mam_aaa['model'] remove_ignore_keys_(lowerCamelCase_) UpperCamelCase__ : str = state_dict['encoder.embed_tokens.weight'].shape[0] UpperCamelCase__ : Tuple = MaMaaaConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=1_024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , ) UpperCamelCase__ : List[Any] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase__ : Tuple = MaMaaaForConditionalGeneration(lowerCamelCase_) model.model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) UpperCamelCase__ : int = make_linear_from_emb(model.model.shared) return model if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase__ = 'bert-base-cased' lowerCAmelCase__ = 'fp16' lowerCAmelCase__ = 'bf16' lowerCAmelCase__ = [FPaa, BFaa] @require_fsdp @require_cuda class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Dict): super().setUp() UpperCamelCase__ : str = dict( ACCELERATE_USE_FSDP='true' , MASTER_ADDR='localhost' , MASTER_PORT='10999' , RANK='0' , LOCAL_RANK='0' , WORLD_SIZE='1' , ) def __UpperCamelCase ( self : Dict): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCAmelCase_): UpperCamelCase__ : Any = self.dist_env.copy() UpperCamelCase__ : Optional[int] = F'{i + 1}' UpperCamelCase__ : List[str] = strategy with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def __UpperCamelCase ( self : Optional[int]): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCAmelCase_): UpperCamelCase__ : Tuple = self.dist_env.copy() UpperCamelCase__ : int = prefetch_policy with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def __UpperCamelCase ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCAmelCase_): UpperCamelCase__ : List[str] = self.dist_env.copy() UpperCamelCase__ : Dict = state_dict_type with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : Any = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Union[str, Any] = AutoModel.from_pretrained(UpperCAmelCase_) for policy in FSDP_AUTO_WRAP_POLICY: UpperCamelCase__ : Optional[int] = self.dist_env.copy() UpperCamelCase__ : List[str] = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCamelCase__ : List[Any] = 'BertLayer' elif policy == "SIZE_BASED_WRAP": UpperCamelCase__ : int = '2000' with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : int = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) UpperCamelCase__ : int = self.dist_env.copy() UpperCamelCase__ : List[str] = 'TRANSFORMER_BASED_WRAP' UpperCamelCase__ : List[str] = 'T5Layer' with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = FullyShardedDataParallelPlugin() with self.assertRaises(UpperCAmelCase_) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_) self.assertTrue('Could not find the transformer layer class to wrap in the model.' in str(cm.exception)) UpperCamelCase__ : Optional[Any] = self.dist_env.copy() UpperCamelCase__ : int = 'SIZE_BASED_WRAP' UpperCamelCase__ : Optional[int] = '0' with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : Tuple = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCAmelCase_) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def __UpperCamelCase ( self : Any): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCamelCase__ : Union[str, Any] = self.dist_env.copy() UpperCamelCase__ : Optional[int] = mp_dtype with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : int = Accelerator() if mp_dtype == "fp16": UpperCamelCase__ : Optional[Any] = torch.floataa elif mp_dtype == "bf16": UpperCamelCase__ : int = torch.bfloataa UpperCamelCase__ : List[str] = MixedPrecision(param_dtype=UpperCAmelCase_ , reduce_dtype=UpperCAmelCase_ , buffer_dtype=UpperCAmelCase_) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCAmelCase_) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCAmelCase_)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCamelCase__ : str = self.dist_env.copy() UpperCamelCase__ : List[str] = str(UpperCAmelCase_).lower() with mockenv_context(**UpperCAmelCase_): UpperCamelCase__ : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCAmelCase_)) @require_fsdp @require_multi_gpu @slow class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Dict): super().setUp() UpperCamelCase__ : List[Any] = 0.82 UpperCamelCase__ : Optional[Any] = [ 'fsdp_shard_grad_op_transformer_based_wrap', 'fsdp_full_shard_transformer_based_wrap', ] UpperCamelCase__ : List[Any] = { 'multi_gpu_fp16': 3_200, 'fsdp_shard_grad_op_transformer_based_wrap_fp16': 2_000, 'fsdp_full_shard_transformer_based_wrap_fp16': 1_900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCamelCase__ : Tuple = 160 UpperCamelCase__ : str = 160 UpperCamelCase__ : List[Any] = inspect.getfile(accelerate.test_utils) UpperCamelCase__ : int = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'external_deps']) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : str = os.path.join(self.test_scripts_folder , 'test_performance.py') UpperCamelCase__ : Tuple = ['accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp'] for config in self.performance_configs: UpperCamelCase__ : int = cmd.copy() for i, strategy in enumerate(UpperCAmelCase_): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "fp32" in config: cmd_config.append('--mixed_precision=no') else: cmd_config.append('--mixed_precision=fp16') if "cpu_offload" in config: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy()) def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = os.path.join(self.test_scripts_folder , 'test_checkpointing.py') UpperCamelCase__ : int = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', '--use_fsdp', '--mixed_precision=fp16', '--fsdp_transformer_layer_cls_to_wrap=BertLayer', ] for i, strategy in enumerate(UpperCAmelCase_): UpperCamelCase__ : Tuple = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}') if strategy != "FULL_SHARD": continue UpperCamelCase__ : int = len(UpperCAmelCase_) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCamelCase__ : Union[str, Any] = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', '--partial_train_epoch=1', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy()) UpperCamelCase__ : Optional[Any] = cmd_config[:-1] UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdir , 'epoch_0') cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy()) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = os.path.join(self.test_scripts_folder , 'test_peak_memory_usage.py') UpperCamelCase__ : List[str] = [ 'accelerate', 'launch', '--num_processes=2', '--num_machines=1', '--machine_rank=0', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCamelCase__ : int = cmd.copy() if "fp16" in spec: cmd_config.extend(['--mixed_precision=fp16']) else: cmd_config.extend(['--mixed_precision=no']) if "multi_gpu" in spec: continue else: cmd_config.extend(['--use_fsdp']) for i, strategy in enumerate(UpperCAmelCase_): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "cpu_offload" in spec: cmd_config.append('--fsdp_offload_params=True') for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('--fsdp_transformer_layer_cls_to_wrap=BertLayer') elif policy == "SIZE_BASED_WRAP": cmd_config.append('--fsdp_min_num_params=2000') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(UpperCAmelCase_ , env=os.environ.copy())
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = LongformerTokenizer _lowerCamelCase = True _lowerCamelCase = LongformerTokenizerFast _lowerCamelCase = True def __UpperCamelCase ( self : Optional[Any]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : List[str] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase__ : Optional[int] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase__ : List[str] = {'unk_token': '<unk>'} UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) def __UpperCamelCase ( self : int , **UpperCAmelCase_ : int): kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Dict): kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : str = 'lower newer' return input_text, output_text def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] UpperCamelCase__ : int = tokenizer.tokenize(UpperCAmelCase_) # , add_prefix_space=True) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokens + [tokenizer.unk_token] UpperCamelCase__ : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 2]) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=UpperCAmelCase_) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096') UpperCamelCase__ : str = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.encode( 'sequence builders' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.get_tokenizer() UpperCamelCase__ : Union[str, Any] = 'Encode this sequence.' UpperCamelCase__ : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8')[0]] # Testing encoder arguments UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[0])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) tokenizer.add_special_tokens({'bos_token': '<s>'}) UpperCamelCase__ : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.convert_ids_to_tokens(encoded[1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) # Testing spaces after special tokens UpperCamelCase__ : Tuple = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_)}) # mask token has a left space UpperCamelCase__ : Any = tokenizer.convert_tokens_to_ids(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'Encode <mask> sequence' UpperCamelCase__ : Optional[Any] = 'Encode <mask>sequence' UpperCamelCase__ : List[str] = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = encoded.index(UpperCAmelCase_) UpperCamelCase__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer.encode(UpperCAmelCase_) UpperCamelCase__ : Any = encoded.index(UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1])[0] self.assertNotEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): pass def __UpperCamelCase ( self : Optional[int]): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : List[str] = self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = 'A, <mask> AllenNLP sentence.' UpperCamelCase__ : Any = tokenizer_r.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) UpperCamelCase__ : List[Any] = tokenizer_p.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids']) , sum(tokens_p['token_type_ids'])) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask']) / len(tokens_r['attention_mask']) , sum(tokens_p['attention_mask']) / len(tokens_p['attention_mask']) , ) UpperCamelCase__ : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids']) UpperCamelCase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids']) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) self.assertSequenceEqual( UpperCAmelCase_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>']) def __UpperCamelCase ( self : Tuple): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2): UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__()) UpperCamelCase__ : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__()) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['add_prefix_space'] , UpperCAmelCase_) self.assertEqual(post_processor_state['trim_offsets'] , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): UpperCamelCase__ : Optional[int] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ : str = F'{text_of_1_token} {text_of_1_token}' UpperCamelCase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : str = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_) + 1, len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Any = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (len(UpperCAmelCase_), len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ : int = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Any = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_) + 1, 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Dict = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , ) UpperCamelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained( UpperCAmelCase_ , use_fast=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer_r(UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(UpperCAmelCase_))) self.assertEqual( encoding.offset_mapping[1] , (1 + len(UpperCAmelCase_), 1 + len(UpperCAmelCase_) + 1 + len(UpperCAmelCase_)) , )
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> List[str]: try: UpperCamelCase__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. UpperCamelCase__ : Any = default else: # KEY is set, convert it to True or False. try: UpperCamelCase__ : Union[str, Any] = strtobool(lowerCamelCase_) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'If set, {key} must be yes or no.') return _value lowerCAmelCase__ = parse_flag_from_env('RUN_SLOW', default=False) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: return unittest.skip('Test was skipped')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: return unittest.skipUnless(_run_slow_tests , 'test is slow')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: return unittest.skipUnless(not torch.cuda.is_available() , 'test requires only a CPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Any: return unittest.skipUnless(torch.cuda.is_available() , 'test requires a GPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return unittest.skipUnless(is_xpu_available() , 'test requires a XPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: return unittest.skipUnless(is_mps_available() , 'test requires a `mps` backend support in `torch`')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return unittest.skipUnless( is_transformers_available() and is_datasets_available() , 'test requires the Hugging Face suite')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> str: return unittest.skipUnless(is_bnb_available() , 'test requires the bitsandbytes library')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Dict: return unittest.skipUnless(is_tpu_available() , 'test requires TPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return unittest.skipUnless(torch.cuda.device_count() == 1 , 'test requires a GPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: return unittest.skipUnless(torch.xpu.device_count() == 1 , 'test requires a XPU')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: return unittest.skipUnless(torch.cuda.device_count() > 1 , 'test requires multiple GPUs')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return unittest.skipUnless(torch.xpu.device_count() > 1 , 'test requires multiple XPUs')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: return unittest.skipUnless(is_safetensors_available() , 'test requires safetensors')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return unittest.skipUnless(is_deepspeed_available() , 'test requires DeepSpeed')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return unittest.skipUnless(is_torch_version('>=' , '1.12.0') , 'test requires torch version >= 1.12.0')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_=None , lowerCamelCase_=None) -> Any: if test_case is None: return partial(lowerCamelCase_ , version=lowerCamelCase_) return unittest.skipUnless(is_torch_version('>=' , lowerCamelCase_) , f'test requires torch version >= {version}')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: return unittest.skipUnless(is_tensorboard_available() , 'test requires Tensorboard')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> int: return unittest.skipUnless(is_wandb_available() , 'test requires wandb')(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: return unittest.skipUnless(is_comet_ml_available() , 'test requires comet_ml')(lowerCamelCase_) lowerCAmelCase__ = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: return unittest.skipUnless( _atleast_one_tracker_available , 'test requires at least one tracker to be available and for `comet_ml` to not be installed' , )(lowerCamelCase_) class __lowercase (unittest.TestCase ): _lowerCamelCase = True @classmethod def __UpperCamelCase ( cls : Tuple): UpperCamelCase__ : Union[str, Any] = tempfile.mkdtemp() @classmethod def __UpperCamelCase ( cls : Any): if os.path.exists(cls.tmpdir): shutil.rmtree(cls.tmpdir) def __UpperCamelCase ( self : Dict): if self.clear_on_setup: for path in Path(self.tmpdir).glob('**/*'): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(UpperCAmelCase_) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Dict): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[mock.Mock, List[mock.Mock]]): UpperCamelCase__ : Dict = mocks if isinstance(UpperCAmelCase_ , (tuple, list)) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop) def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Any = AcceleratorState() UpperCamelCase__ : List[Any] = tensor[None].clone().to(state.device) UpperCamelCase__ : List[str] = gather(lowerCamelCase_).cpu() UpperCamelCase__ : int = tensor[0].cpu() for i in range(tensors.shape[0]): if not torch.equal(tensors[i] , lowerCamelCase_): return False return True class __lowercase : def __init__( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Optional[int] = returncode UpperCamelCase__ : Any = stdout UpperCamelCase__ : Union[str, Any] = stderr async def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: while True: UpperCamelCase__ : Optional[int] = await stream.readline() if line: callback(lowerCamelCase_) else: break async def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_=False) -> _RunOutput: if echo: print('\nRunning: ' , ' '.join(lowerCamelCase_)) UpperCamelCase__ : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=lowerCamelCase_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=lowerCamelCase_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : int = [] def tee(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=""): UpperCamelCase__ : Union[str, Any] = line.decode('utf-8').rstrip() sink.append(lowerCamelCase_) if not quiet: print(lowerCamelCase_ , lowerCamelCase_ , file=lowerCamelCase_) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda lowerCamelCase_: tee(lowerCamelCase_ , lowerCamelCase_ , sys.stdout , label='stdout:'))), asyncio.create_task(_read_stream(p.stderr , lambda lowerCamelCase_: tee(lowerCamelCase_ , lowerCamelCase_ , sys.stderr , label='stderr:'))), ] , timeout=lowerCamelCase_ , ) return _RunOutput(await p.wait() , lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=180 , lowerCamelCase_=False , lowerCamelCase_=True) -> _RunOutput: UpperCamelCase__ : Union[str, Any] = asyncio.get_event_loop() UpperCamelCase__ : Tuple = loop.run_until_complete( _stream_subprocess(lowerCamelCase_ , env=lowerCamelCase_ , stdin=lowerCamelCase_ , timeout=lowerCamelCase_ , quiet=lowerCamelCase_ , echo=lowerCamelCase_)) UpperCamelCase__ : Union[str, Any] = ' '.join(lowerCamelCase_) if result.returncode > 0: UpperCamelCase__ : int = '\n'.join(result.stderr) raise RuntimeError( f'\'{cmd_str}\' failed with returncode {result.returncode}\n\n' f'The combined stderr from workers follows:\n{stderr}') return result class __lowercase (__lowerCamelCase ): pass def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False) -> Dict: try: UpperCamelCase__ : int = subprocess.check_output(lowerCamelCase_ , stderr=subprocess.STDOUT) if return_stdout: if hasattr(lowerCamelCase_ , 'decode'): UpperCamelCase__ : int = output.decode('utf-8') return output except subprocess.CalledProcessError as e: raise SubprocessCallException( f'Command `{" ".join(lowerCamelCase_)}` failed with the following error:\n\n{e.output.decode()}') from e
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = SMALL_MODEL_IDENTIFIER UpperCamelCase__ : Dict = 'pt' UpperCamelCase__ : List[str] = 'tf' def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int): UpperCamelCase__ : str = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : List[str] = TFAutoModel.from_pretrained(self.test_model , from_pt=UpperCAmelCase_) model_tf.save_pretrained(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = 'mock_framework' # Framework provided - return whatever the user provides UpperCamelCase__ : Union[str, Any] = FeaturesManager.determine_framework(self.test_model , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCAmelCase_) UpperCamelCase__ : int = FeaturesManager.determine_framework(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = FeaturesManager.determine_framework(UpperCAmelCase_ , UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(UpperCAmelCase_) UpperCamelCase__ : Any = FeaturesManager.determine_framework(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(UpperCAmelCase_) UpperCamelCase__ : Any = FeaturesManager.determine_framework(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : Tuple = FeaturesManager.determine_framework(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = MagicMock(return_value=UpperCAmelCase_) with patch('transformers.onnx.features.is_tf_available' , UpperCAmelCase_): UpperCamelCase__ : Dict = FeaturesManager.determine_framework(self.test_model) self.assertEqual(UpperCAmelCase_ , self.framework_pt) # PyTorch not in environment -> use TensorFlow UpperCamelCase__ : List[Any] = MagicMock(return_value=UpperCAmelCase_) with patch('transformers.onnx.features.is_torch_available' , UpperCAmelCase_): UpperCamelCase__ : Any = FeaturesManager.determine_framework(self.test_model) self.assertEqual(UpperCAmelCase_ , self.framework_tf) # Both in environment -> use PyTorch UpperCamelCase__ : Dict = MagicMock(return_value=UpperCAmelCase_) UpperCamelCase__ : List[Any] = MagicMock(return_value=UpperCAmelCase_) with patch('transformers.onnx.features.is_tf_available' , UpperCAmelCase_), patch( 'transformers.onnx.features.is_torch_available' , UpperCAmelCase_): UpperCamelCase__ : int = FeaturesManager.determine_framework(self.test_model) self.assertEqual(UpperCAmelCase_ , self.framework_pt) # Both not in environment -> raise error UpperCamelCase__ : Optional[Any] = MagicMock(return_value=UpperCAmelCase_) UpperCamelCase__ : Tuple = MagicMock(return_value=UpperCAmelCase_) with patch('transformers.onnx.features.is_tf_available' , UpperCAmelCase_), patch( 'transformers.onnx.features.is_torch_available' , UpperCAmelCase_): with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : List[str] = FeaturesManager.determine_framework(self.test_model)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( ) -> Optional[Any]: # Get the sagemaker specific mp parameters from smp_options variable. UpperCamelCase__ : List[str] = os.getenv('SM_HP_MP_PARAMETERS' , '{}') try: # Parse it and check the field "partitions" is included, it is required for model parallel. UpperCamelCase__ : str = json.loads(lowerCamelCase_) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. UpperCamelCase__ : Optional[Any] = os.getenv('SM_FRAMEWORK_PARAMS' , '{}') try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". UpperCamelCase__ : Optional[int] = json.loads(lowerCamelCase_) if not mpi_options.get('sagemaker_mpi_enabled' , lowerCamelCase_): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec('smdistributed') is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class __lowercase (__lowerCamelCase ): _lowerCamelCase = field( default='''''' , metadata={'''help''': '''Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer'''} , ) def __UpperCamelCase ( self : str): super().__post_init__() warnings.warn( '`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use ' '`TrainingArguments` instead.' , UpperCAmelCase_ , ) @cached_property def __UpperCamelCase ( self : Dict): logger.info('PyTorch: setting up devices') if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( 'torch.distributed process group is initialized, but local_rank == -1. ' 'In order to use Torch DDP, launch your script with `python -m torch.distributed.launch') if self.no_cuda: UpperCamelCase__ : Tuple = torch.device('cpu') UpperCamelCase__ : Tuple = 0 elif is_sagemaker_model_parallel_available(): UpperCamelCase__ : str = smp.local_rank() UpperCamelCase__ : List[Any] = torch.device('cuda' , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend='smddp' , timeout=self.ddp_timeout_delta) UpperCamelCase__ : Dict = int(os.getenv('SMDATAPARALLEL_LOCAL_RANK')) UpperCamelCase__ : List[Any] = torch.device('cuda' , self.local_rank) UpperCamelCase__ : int = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 UpperCamelCase__ : str = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. UpperCamelCase__ : Optional[int] = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend='nccl' , timeout=self.ddp_timeout_delta) UpperCamelCase__ : Dict = torch.device('cuda' , self.local_rank) UpperCamelCase__ : List[Any] = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase_) return device @property def __UpperCamelCase ( self : Dict): if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def __UpperCamelCase ( self : Optional[int]): return not is_sagemaker_model_parallel_available() @property def __UpperCamelCase ( self : Optional[Any]): return False
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'sentencepiece.model'} lowerCAmelCase__ = { 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, } lowerCAmelCase__ = { 'google/rembert': 256, } class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]="[CLS]" , UpperCAmelCase_ : Tuple="[SEP]" , UpperCAmelCase_ : Tuple="[UNK]" , UpperCAmelCase_ : Optional[int]="[SEP]" , UpperCAmelCase_ : Any="[PAD]" , UpperCAmelCase_ : Tuple="[CLS]" , UpperCAmelCase_ : List[str]="[MASK]" , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__( do_lower_case=UpperCAmelCase_ , remove_space=UpperCAmelCase_ , keep_accents=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : Tuple = do_lower_case UpperCamelCase__ : List[Any] = remove_space UpperCamelCase__ : Any = keep_accents UpperCamelCase__ : Tuple = vocab_file UpperCamelCase__ : Tuple = spm.SentencePieceProcessor() self.sp_model.Load(UpperCAmelCase_) @property def __UpperCamelCase ( self : List[str]): return len(self.sp_model) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = {self.convert_ids_to_tokens(UpperCAmelCase_): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__( self : Dict): UpperCamelCase__ : Union[str, Any] = self.__dict__.copy() UpperCamelCase__ : Union[str, Any] = None return state def __setstate__( self : List[str] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = d UpperCamelCase__ : Tuple = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False): UpperCamelCase__ : Dict = self.sp_model.EncodeAsPieces(UpperCAmelCase_) return pieces def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Tuple): return self.sp_model.PieceToId(UpperCAmelCase_) def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[str]): return self.sp_model.IdToPiece(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Tuple = self.sp_model.decode_pieces(UpperCAmelCase_) return out_string def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Dict = [self.sep_token_id] UpperCamelCase__ : str = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.') return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : List[str] = [self.sep_token_id] UpperCamelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error('Vocabulary path ({}) should be a directory'.format(UpperCAmelCase_)) return UpperCamelCase__ : Dict = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(UpperCAmelCase_): copyfile(self.vocab_file , UpperCAmelCase_) return (out_vocab_file,)
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask lowerCAmelCase__ = logging.getLogger(__name__) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''token-classification''' def __init__( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): if type(UpperCAmelCase_) == dict: UpperCamelCase__ : List[str] = Namespace(**UpperCAmelCase_) UpperCamelCase__ : Any = import_module('tasks') try: UpperCamelCase__ : Optional[int] = getattr(UpperCAmelCase_ , hparams.task_type) UpperCamelCase__ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}') UpperCamelCase__ : List[str] = self.token_classification_task.get_labels(hparams.labels) UpperCamelCase__ : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCAmelCase_ , len(self.labels) , self.mode) def __UpperCamelCase ( self : int , **UpperCAmelCase_ : List[str]): return self.model(**UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Dict = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ : Optional[Any] = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ : int = self(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ : List[str] = self._feature_file(UpperCAmelCase_) if os.path.exists(UpperCAmelCase_) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , UpperCAmelCase_) UpperCamelCase__ : Any = torch.load(UpperCAmelCase_) else: logger.info('Creating features from dataset file at %s' , args.data_dir) UpperCamelCase__ : Union[str, Any] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.token_classification_task.convert_examples_to_features( UpperCAmelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['xlnet']) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['xlnet'] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCAmelCase_ , pad_on_left=bool(self.config.model_type in ['xlnet']) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('Saving features into cached file %s' , UpperCAmelCase_) torch.save(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False): UpperCamelCase__ : Optional[int] = self._feature_file(UpperCAmelCase_) logger.info('Loading features from cached file %s' , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = torch.load(UpperCAmelCase_) UpperCamelCase__ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) UpperCamelCase__ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) if features[0].token_type_ids is not None: UpperCamelCase__ : List[str] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) else: UpperCamelCase__ : int = torch.tensor([0 for f in features] , dtype=torch.long) # HACK(we will not use this anymore soon) UpperCamelCase__ : str = torch.tensor([f.label_ids for f in features] , dtype=torch.long) return DataLoader( TensorDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) , batch_size=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple): """Compute validation""" "" UpperCamelCase__ : Union[str, Any] = {'input_ids': batch[0], 'attention_mask': batch[1], 'labels': batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ : List[str] = ( batch[2] if self.config.model_type in ['bert', 'xlnet'] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ : Any = self(**UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Optional[Any] = outputs[:2] UpperCamelCase__ : Optional[Any] = logits.detach().cpu().numpy() UpperCamelCase__ : Dict = inputs['labels'].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Optional[int] = torch.stack([x['val_loss'] for x in outputs]).mean() UpperCamelCase__ : Tuple = np.concatenate([x['pred'] for x in outputs] , axis=0) UpperCamelCase__ : List[Any] = np.argmax(UpperCAmelCase_ , axis=2) UpperCamelCase__ : Dict = np.concatenate([x['target'] for x in outputs] , axis=0) UpperCamelCase__ : Union[str, Any] = dict(enumerate(self.labels)) UpperCamelCase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : Optional[int] = [[] for _ in range(out_label_ids.shape[0])] for i in range(out_label_ids.shape[0]): for j in range(out_label_ids.shape[1]): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]]) preds_list[i].append(label_map[preds[i][j]]) UpperCamelCase__ : Any = { 'val_loss': val_loss_mean, 'accuracy_score': accuracy_score(UpperCAmelCase_ , UpperCAmelCase_), 'precision': precision_score(UpperCAmelCase_ , UpperCAmelCase_), 'recall': recall_score(UpperCAmelCase_ , UpperCAmelCase_), 'f1': fa_score(UpperCAmelCase_ , UpperCAmelCase_), } UpperCamelCase__ : Any = dict(results.items()) UpperCamelCase__ : Tuple = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): # when stable UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self._eval_end(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = ret['log'] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[str]): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = self._eval_end(UpperCAmelCase_) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ : Any = ret['log'] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]): # Add NER specific options BaseTransformer.add_model_specific_args(UpperCAmelCase_ , UpperCAmelCase_) parser.add_argument( '--task_type' , default='NER' , type=UpperCAmelCase_ , help='Task type to fine tune in training (e.g. NER, POS, etc)') parser.add_argument( '--max_seq_length' , default=128 , type=UpperCAmelCase_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--labels' , default='' , type=UpperCAmelCase_ , help='Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.' , ) parser.add_argument( '--gpus' , default=0 , type=UpperCAmelCase_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) lowerCAmelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = NERTransformer(args) lowerCAmelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 lowerCAmelCase__ = sorted(glob.glob(os.path.join(args.output_dir, 'checkpoint-epoch=*.ckpt'), recursive=True)) lowerCAmelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase (__lowerCamelCase ): def __init__( self : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : int=99 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : List[str]=32 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=4 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Tuple=0.02 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Union[str, Any]="last" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : int=None , ): UpperCamelCase__ : int = parent UpperCamelCase__ : Any = batch_size UpperCamelCase__ : Tuple = seq_length UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Union[str, Any] = use_input_lengths UpperCamelCase__ : Any = use_token_type_ids UpperCamelCase__ : List[Any] = use_labels UpperCamelCase__ : Optional[Any] = gelu_activation UpperCamelCase__ : Union[str, Any] = sinusoidal_embeddings UpperCamelCase__ : Union[str, Any] = causal UpperCamelCase__ : Optional[Any] = asm UpperCamelCase__ : Union[str, Any] = n_langs UpperCamelCase__ : str = vocab_size UpperCamelCase__ : int = n_special UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : str = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : Optional[Any] = type_vocab_size UpperCamelCase__ : Optional[Any] = type_sequence_label_size UpperCamelCase__ : Dict = initializer_range UpperCamelCase__ : int = num_labels UpperCamelCase__ : Optional[Any] = num_choices UpperCamelCase__ : Dict = summary_type UpperCamelCase__ : int = use_proj UpperCamelCase__ : Optional[int] = scope def __UpperCamelCase ( self : Dict): UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase__ : Any = None if self.use_input_lengths: UpperCamelCase__ : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length UpperCamelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) UpperCamelCase__ : str = None UpperCamelCase__ : List[str] = None UpperCamelCase__ : int = None if self.use_labels: UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) UpperCamelCase__ : List[str] = ids_tensor([self.batch_size] , 2).float() UpperCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices) UpperCamelCase__ : Tuple = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCamelCase ( self : Union[str, Any]): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , ): UpperCamelCase__ : str = FlaubertModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , lengths=UpperCAmelCase_ , langs=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase_ , langs=UpperCAmelCase_) UpperCamelCase__ : Any = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , ): UpperCamelCase__ : List[Any] = FlaubertWithLMHeadModel(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , ): UpperCamelCase__ : List[Any] = FlaubertForQuestionAnsweringSimple(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[Any] = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str] , ): UpperCamelCase__ : str = FlaubertForQuestionAnswering(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , p_mask=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = model( UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , cls_index=UpperCAmelCase_ , is_impossible=UpperCAmelCase_ , ) ((UpperCamelCase__), ) : Tuple = result_with_labels.to_tuple() UpperCamelCase__ : int = model(UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_) ((UpperCamelCase__), ) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , ): UpperCamelCase__ : str = FlaubertForSequenceClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Tuple = model(UpperCAmelCase_) UpperCamelCase__ : Any = model(UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , ): UpperCamelCase__ : List[Any] = self.num_labels UpperCamelCase__ : Optional[Any] = FlaubertForTokenClassification(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : Optional[Any] = self.num_choices UpperCamelCase__ : List[Any] = FlaubertForMultipleChoice(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : List[str] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : Tuple = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() UpperCamelCase__ : List[str] = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ) : str = config_and_inputs UpperCamelCase__ : Optional[Any] = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) _lowerCamelCase = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Union[str, Any]): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=False): UpperCamelCase__ : str = super()._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ , return_labels=UpperCAmelCase_) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": UpperCamelCase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCAmelCase_) return inputs_dict def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : str = FlaubertModelTester(self) UpperCamelCase__ : int = ConfigTester(self , config_class=UpperCAmelCase_ , emb_dim=37) def __UpperCamelCase ( self : Optional[Any]): self.config_tester.run_common_tests() def __UpperCamelCase ( self : str): UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCAmelCase_) def __UpperCamelCase ( self : Any): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCAmelCase_) @slow def __UpperCamelCase ( self : Union[str, Any]): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : int = FlaubertModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) @slow @require_torch_gpu def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__, UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return UpperCamelCase__ : str = True UpperCamelCase__ : List[Any] = model_class(config=UpperCAmelCase_) UpperCamelCase__ : Tuple = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = torch.jit.trace( UpperCAmelCase_ , (inputs_dict['input_ids'].to('cpu'), inputs_dict['attention_mask'].to('cpu'))) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , 'traced_model.pt')) UpperCamelCase__ : List[str] = torch.jit.load(os.path.join(UpperCAmelCase_ , 'traced_model.pt') , map_location=UpperCAmelCase_) loaded(inputs_dict['input_ids'].to(UpperCAmelCase_) , inputs_dict['attention_mask'].to(UpperCAmelCase_)) @require_torch class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : str = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased') UpperCamelCase__ : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]]) with torch.no_grad(): UpperCamelCase__ : str = model(UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = torch.Size((1, 11, 768)) self.assertEqual(output.shape , UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = torch.tensor( [[[-2.62_51, -1.42_98, -0.02_27], [-2.85_10, -1.63_87, 0.22_58], [-2.81_14, -1.18_32, -0.30_66]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1e-4))
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[str] = UniSpeechSatForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : Tuple = downstream_dict['projector.weight'] UpperCamelCase__ : Any = downstream_dict['projector.bias'] UpperCamelCase__ : Dict = downstream_dict['model.post_net.linear.weight'] UpperCamelCase__ : int = downstream_dict['model.post_net.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : List[str] = downstream_dict['model.linear.weight'] UpperCamelCase__ : Optional[int] = downstream_dict['model.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Tuple = UniSpeechSatForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : Tuple = downstream_dict['connector.weight'] UpperCamelCase__ : str = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel): UpperCamelCase__ : Tuple = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] UpperCamelCase__ : str = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] UpperCamelCase__ : List[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase__ : Optional[Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase__ : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase__ : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase__ : int = downstream_dict['objective.W'] return model @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : int = checkpoint['Downstream'] UpperCamelCase__ : Union[str, Any] = UniSpeechSatConfig.from_pretrained(lowerCamelCase_) UpperCamelCase__ : List[str] = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_) UpperCamelCase__ : Optional[Any] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification'): UpperCamelCase__ : List[str] = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForAudioFrameClassification'): UpperCamelCase__ : List[str] = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForXVector'): UpperCamelCase__ : Optional[int] = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}') if hf_config.use_weighted_layer_sum: UpperCamelCase__ : Optional[int] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowerCamelCase_) hf_model.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=_lowerCamelCase ): _lowerCamelCase = ['''transformers''', '''torch''', '''note_seq'''] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[Any]): requires_backends(self , ['transformers', 'torch', 'note_seq']) @classmethod def __UpperCamelCase ( cls : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Union[str, Any]): requires_backends(cls , ['transformers', 'torch', 'note_seq']) @classmethod def __UpperCamelCase ( cls : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): requires_backends(cls , ['transformers', 'torch', 'note_seq'])
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowerCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __lowercase (_snake_case , _snake_case ): @register_to_config def __init__( self : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None): super().__init__() UpperCamelCase__ : Any = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase__ : Tuple = torch.zeros(lowerCAmelCase__ , lowerCAmelCase__) else: UpperCamelCase__ : Any = None UpperCamelCase__ : Optional[Any] = torch.nn.Parameter(lowerCAmelCase__) class __lowercase (_snake_case ): _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 def __init__( self : str , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : TransformeraDModel , UpperCAmelCase_ : VQDiffusionScheduler , UpperCAmelCase_ : LearnedClassifierFreeSamplingEmbeddings , ): super().__init__() self.register_modules( vqvae=lowerCAmelCase__ , transformer=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , learned_classifier_free_sampling_embeddings=lowerCAmelCase__ , ) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int): UpperCamelCase__ : List[str] = len(lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) else 1 # get prompt text embeddings UpperCamelCase__ : List[Any] = self.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase__ : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase__ : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F' {self.tokenizer.model_max_length} tokens: {removed_text}') UpperCamelCase__ : List[str] = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase__ : Union[str, Any] = self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase__ : Union[str, Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__) # duplicate text embeddings for each generation per prompt UpperCamelCase__ : List[str] = prompt_embeds.repeat_interleave(lowerCAmelCase__ , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase__ : List[Any] = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase__ : Optional[Any] = negative_prompt_embeds.unsqueeze(0).repeat(lowerCAmelCase__ , 1 , 1) else: UpperCamelCase__ : List[Any] = [''] * batch_size UpperCamelCase__ : List[Any] = text_input_ids.shape[-1] UpperCamelCase__ : Tuple = self.tokenizer( lowerCAmelCase__ , padding='max_length' , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' , ) UpperCamelCase__ : Optional[Any] = self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings UpperCamelCase__ : Dict = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=lowerCAmelCase__) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase__ : List[str] = negative_prompt_embeds.shape[1] UpperCamelCase__ : str = negative_prompt_embeds.repeat(1 , lowerCAmelCase__ , 1) UpperCamelCase__ : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowerCAmelCase__ , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__): UpperCamelCase__ : Optional[Any] = 1 elif isinstance(lowerCAmelCase__ , lowerCAmelCase__): UpperCamelCase__ : int = len(lowerCAmelCase__) else: raise ValueError(F'`prompt` has to be of type `str` or `list` but is {type(lowerCAmelCase__)}') UpperCamelCase__ : List[str] = batch_size * num_images_per_prompt UpperCamelCase__ : List[Any] = guidance_scale > 1.0 UpperCamelCase__ : Optional[Any] = self._encode_prompt(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(lowerCAmelCase__ , lowerCAmelCase__) or callback_steps <= 0) ): raise ValueError( F'`callback_steps` has to be a positive integer but is {callback_steps} of type' F' {type(lowerCAmelCase__)}.') # get the initial completely masked latents unless the user supplied it UpperCamelCase__ : List[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase__ : Optional[int] = self.transformer.num_vector_embeds - 1 UpperCamelCase__ : List[Any] = torch.full(lowerCAmelCase__ , lowerCAmelCase__).to(self.device) else: if latents.shape != latents_shape: raise ValueError(F'Unexpected latents shape, got {latents.shape}, expected {latents_shape}') if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F' {self.transformer.num_vector_embeds - 1} (inclusive).') UpperCamelCase__ : int = latents.to(self.device) # set timesteps self.scheduler.set_timesteps(lowerCAmelCase__ , device=self.device) UpperCamelCase__ : Optional[Any] = self.scheduler.timesteps.to(self.device) UpperCamelCase__ : str = latents for i, t in enumerate(self.progress_bar(lowerCAmelCase__)): # expand the sample if we are doing classifier free guidance UpperCamelCase__ : Union[str, Any] = torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase__ : Optional[Any] = self.transformer(lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , timestep=lowerCAmelCase__).sample if do_classifier_free_guidance: UpperCamelCase__, UpperCamelCase__ : Optional[int] = model_output.chunk(2) UpperCamelCase__ : Any = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(lowerCAmelCase__ , dim=1 , keepdim=lowerCAmelCase__) UpperCamelCase__ : str = self.truncate(lowerCAmelCase__ , lowerCAmelCase__) # remove `log(0)`'s (`-inf`s) UpperCamelCase__ : Tuple = model_output.clamp(-70) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : Any = self.scheduler.step(lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) UpperCamelCase__ : Tuple = self.vqvae.config.vq_embed_dim UpperCamelCase__ : int = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase__ : Optional[Any] = self.vqvae.quantize.get_codebook_entry(lowerCAmelCase__ , shape=lowerCAmelCase__) UpperCamelCase__ : int = self.vqvae.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__).sample UpperCamelCase__ : int = (image / 2 + 0.5).clamp(0 , 1) UpperCamelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCamelCase__ : Dict = self.numpy_to_pil(lowerCAmelCase__) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCAmelCase__) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : float): UpperCamelCase__, UpperCamelCase__ : Tuple = torch.sort(lowerCAmelCase__ , 1 , descending=lowerCAmelCase__) UpperCamelCase__ : str = torch.exp(lowerCAmelCase__) UpperCamelCase__ : Tuple = sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase__ : List[Any] = torch.full_like(keep_mask[:, 0:1, :] , lowerCAmelCase__) UpperCamelCase__ : Optional[int] = torch.cat((all_true, keep_mask) , dim=1) UpperCamelCase__ : Dict = keep_mask[:, :-1, :] UpperCamelCase__ : List[Any] = keep_mask.gather(1 , indices.argsort(1)) UpperCamelCase__ : Optional[Any] = log_p_x_0.clone() UpperCamelCase__ : Union[str, Any] = -torch.inf # -inf = log(0) return rv
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' import numpy as np from sklearn.datasets import fetch_california_housing from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import train_test_split from xgboost import XGBRegressor def __UpperCAmelCase ( lowerCamelCase_) -> tuple: return (data["data"], data["target"]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : str = XGBRegressor(verbosity=0 , random_state=42) xgb.fit(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Predict target for test data UpperCamelCase__ : int = xgb.predict(_SCREAMING_SNAKE_CASE) UpperCamelCase__ : List[Any] = predictions.reshape(len(_SCREAMING_SNAKE_CASE) , 1) return predictions def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : Optional[Any] = fetch_california_housing() UpperCamelCase__, UpperCamelCase__ : Optional[Any] = data_handling(_SCREAMING_SNAKE_CASE) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Any = train_test_split( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , test_size=0.25 , random_state=1) UpperCamelCase__ : Any = xgboost(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) # Error printing print(f'Mean Absolute Error : {mean_absolute_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)}') print(f'Mean Square Error : {mean_squared_error(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)}') if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.6_02_17_66_34e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.3_5_5_8_1_8, } def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ : List[Any] = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(lowerCamelCase_)}' ) raise ValueError(lowerCamelCase_) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
from __future__ import annotations import requests def __UpperCAmelCase ( lowerCamelCase_) -> dict: UpperCamelCase__ : Optional[int] = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(_lowercase).json() def __UpperCAmelCase ( lowerCamelCase_ = 10) -> list[dict]: UpperCamelCase__ : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' UpperCamelCase__ : Optional[Any] = requests.get(_lowercase).json()[:max_stories] return [get_hackernews_story(_lowercase) for story_id in story_ids] def __UpperCAmelCase ( lowerCamelCase_ = 10) -> str: UpperCamelCase__ : Tuple = hackernews_top_stories(_lowercase) return "\n".join('* [{title}]({url})'.format(**_lowercase) for story in stories) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowercase__ ) class __lowercase (lowercase__ ): _lowerCamelCase = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) _lowerCamelCase = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) _lowerCamelCase = '''question''' _lowerCamelCase = '''context''' _lowerCamelCase = '''answers''' @property def __UpperCamelCase ( self : int): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : list[list[str]] = [[] for _ in range(lowerCamelCase_)] UpperCamelCase__ : Dict = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative') if key == 1 or len(lowerCamelCase_) <= key: return input_string for position, character in enumerate(lowerCamelCase_): UpperCamelCase__ : Dict = position % (lowest * 2) # puts it in bounds UpperCamelCase__ : int = min(lowerCamelCase_ , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append(lowerCamelCase_) UpperCamelCase__ : List[str] = [''.join(lowerCamelCase_) for row in temp_grid] UpperCamelCase__ : Optional[int] = ''.join(lowerCamelCase_) return output_string def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : List[str] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative') if key == 1: return input_string UpperCamelCase__ : list[list[str]] = [[] for _ in range(lowerCamelCase_)] # generates template for position in range(len(lowerCamelCase_)): UpperCamelCase__ : Tuple = position % (lowest * 2) # puts it in bounds UpperCamelCase__ : str = min(lowerCamelCase_ , lowest * 2 - num) # creates zigzag pattern temp_grid[num].append('*') UpperCamelCase__ : List[Any] = 0 for row in temp_grid: # fills in the characters UpperCamelCase__ : List[str] = input_string[counter : counter + len(lowerCamelCase_)] grid.append(list(lowerCamelCase_)) counter += len(lowerCamelCase_) UpperCamelCase__ : Tuple = '' # reads as zigzag for position in range(len(lowerCamelCase_)): UpperCamelCase__ : int = position % (lowest * 2) # puts it in bounds UpperCamelCase__ : str = min(lowerCamelCase_ , lowest * 2 - num) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0) return output_string def __UpperCAmelCase ( lowerCamelCase_) -> dict[int, str]: UpperCamelCase__ : Tuple = {} for key_guess in range(1 , len(lowerCamelCase_)): # tries every key UpperCamelCase__ : str = decrypt(lowerCamelCase_ , lowerCamelCase_) return results if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available lowerCAmelCase__ = { 'configuration_ernie': ['ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ErnieConfig', 'ErnieOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST', 'ErnieForCausalLM', 'ErnieForMaskedLM', 'ErnieForMultipleChoice', 'ErnieForNextSentencePrediction', 'ErnieForPreTraining', 'ErnieForQuestionAnswering', 'ErnieForSequenceClassification', 'ErnieForTokenClassification', 'ErnieModel', 'ErniePreTrainedModel', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowercase (__lowerCamelCase ): _lowerCamelCase = field(default='''automatic-speech-recognition''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''audio''': Audio()} ) _lowerCamelCase = Features({'''transcription''': Value('''string''' )} ) _lowerCamelCase = '''audio''' _lowerCamelCase = '''transcription''' def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple): if self.audio_column not in features: raise ValueError(F'Column {self.audio_column} is not present in features.') if not isinstance(features[self.audio_column] , _lowerCAmelCase): raise ValueError(F'Column {self.audio_column} is not an Audio type.') UpperCamelCase__ : List[Any] = copy.deepcopy(self) UpperCamelCase__ : str = self.input_schema.copy() UpperCamelCase__ : List[Any] = features[self.audio_column] UpperCamelCase__ : Dict = input_schema return task_template @property def __UpperCamelCase ( self : Optional[int]): return {self.audio_column: "audio", self.transcription_column: "transcription"}
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''instructblip_vision_model''' def __init__( self : List[Any] , UpperCAmelCase_ : Dict=1_408 , UpperCAmelCase_ : Dict=6_144 , UpperCAmelCase_ : Any=39 , UpperCAmelCase_ : Optional[int]=16 , UpperCAmelCase_ : Any=224 , UpperCAmelCase_ : List[str]=14 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=1e-6 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Dict=1e-10 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : List[Any] , ): super().__init__(**__A) UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : List[str] = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : List[str] = patch_size UpperCamelCase__ : Tuple = image_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Any = attention_dropout UpperCamelCase__ : Tuple = layer_norm_eps UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : Optional[int] = qkv_bias @classmethod def __UpperCamelCase ( cls : Dict , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]): cls._set_token_in_kwargs(__A) UpperCamelCase__ : Tuple = cls.get_config_dict(__A , **__A) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": UpperCamelCase__ : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(__A , **__A) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''instructblip_qformer''' def __init__( self : int , UpperCAmelCase_ : Union[str, Any]=30_522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Optional[Any]=3_072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : List[Any]=1e-12 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Union[str, Any]="absolute" , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[Any]=1_408 , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(pad_token_id=__A , **__A) UpperCamelCase__ : Optional[int] = vocab_size UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : Optional[int] = num_hidden_layers UpperCamelCase__ : Tuple = num_attention_heads UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : List[Any] = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : Dict = max_position_embeddings UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : Tuple = position_embedding_type UpperCamelCase__ : Optional[int] = cross_attention_frequency UpperCamelCase__ : Dict = encoder_hidden_size @classmethod def __UpperCamelCase ( cls : Dict , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : Tuple): cls._set_token_in_kwargs(__A) UpperCamelCase__ : Optional[int] = cls.get_config_dict(__A , **__A) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type') == "instructblip": UpperCamelCase__ : Union[str, Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(__A , **__A) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''instructblip''' _lowerCamelCase = True def __init__( self : Any , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Dict=32 , **UpperCAmelCase_ : Tuple): super().__init__(**__A) if vision_config is None: UpperCamelCase__ : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.') if qformer_config is None: UpperCamelCase__ : Optional[int] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.') if text_config is None: UpperCamelCase__ : int = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).') UpperCamelCase__ : Dict = InstructBlipVisionConfig(**__A) UpperCamelCase__ : List[Any] = InstructBlipQFormerConfig(**__A) UpperCamelCase__ : List[str] = text_config["model_type"] if "model_type" in text_config else "opt" UpperCamelCase__ : str = CONFIG_MAPPING[text_model_type](**__A) UpperCamelCase__ : Any = self.text_config.tie_word_embeddings UpperCamelCase__ : Optional[int] = self.text_config.is_encoder_decoder UpperCamelCase__ : Optional[int] = num_query_tokens UpperCamelCase__ : Optional[int] = self.vision_config.hidden_size UpperCamelCase__ : str = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCamelCase__ : Optional[Any] = 1.0 UpperCamelCase__ : int = 0.02 @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : InstructBlipVisionConfig , UpperCAmelCase_ : InstructBlipQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Tuple , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **__A , ) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Union[str, Any] = copy.deepcopy(self.__dict__) UpperCamelCase__ : str = self.vision_config.to_dict() UpperCamelCase__ : List[str] = self.qformer_config.to_dict() UpperCamelCase__ : Tuple = self.text_config.to_dict() UpperCamelCase__ : List[str] = self.__class__.model_type return output
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "post_extract_proj": "feature_projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.upsample.0": "encoder.upsample.projection", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: for attribute in key.split('.'): UpperCamelCase__ : int = getattr(__lowerCAmelCase , __lowerCAmelCase) if weight_type is not None: UpperCamelCase__ : int = getattr(__lowerCAmelCase , __lowerCAmelCase).shape else: UpperCamelCase__ : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Dict = value elif weight_type == "weight_g": UpperCamelCase__ : Dict = value elif weight_type == "weight_v": UpperCamelCase__ : Optional[Any] = value elif weight_type == "bias": UpperCamelCase__ : int = value else: UpperCamelCase__ : str = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Dict = fairseq_model.state_dict() UpperCamelCase__ : str = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : List[str] = False if "conv_layers" in name: load_conv_layer( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : Dict = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Optional[Any] = True if "*" in mapped_key: UpperCamelCase__ : List[Any] = name.split(__lowerCAmelCase)[0].split('.')[-2] UpperCamelCase__ : List[str] = mapped_key.replace('*' , __lowerCAmelCase) if "weight_g" in name: UpperCamelCase__ : Union[str, Any] = """weight_g""" elif "weight_v" in name: UpperCamelCase__ : Union[str, Any] = """weight_v""" elif "weight" in name: UpperCamelCase__ : int = """weight""" elif "bias" in name: UpperCamelCase__ : List[Any] = """bias""" else: UpperCamelCase__ : Union[str, Any] = None set_recursively(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) continue if not is_used: unused_weights.append(__lowerCAmelCase) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : str = full_name.split('conv_layers.')[-1] UpperCamelCase__ : Union[str, Any] = name.split('.') UpperCamelCase__ : Optional[int] = int(items[0]) UpperCamelCase__ : Any = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Union[str, Any] = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : Any = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(__lowerCAmelCase) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Union[str, Any] = SEWConfig() if is_finetuned: UpperCamelCase__ : Tuple = model.wav_encoder.wav_model.cfg else: UpperCamelCase__ : Dict = model.cfg UpperCamelCase__ : Any = fs_config.conv_bias UpperCamelCase__ : Optional[Any] = eval(fs_config.conv_feature_layers) UpperCamelCase__ : Optional[Any] = [x[0] for x in conv_layers] UpperCamelCase__ : List[Any] = [x[1] for x in conv_layers] UpperCamelCase__ : Dict = [x[2] for x in conv_layers] UpperCamelCase__ : List[str] = """gelu""" UpperCamelCase__ : str = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" UpperCamelCase__ : Any = 0.0 UpperCamelCase__ : Tuple = fs_config.activation_fn.name UpperCamelCase__ : Tuple = fs_config.encoder_embed_dim UpperCamelCase__ : Optional[Any] = 0.02 UpperCamelCase__ : str = fs_config.encoder_ffn_embed_dim UpperCamelCase__ : str = 1e-5 UpperCamelCase__ : str = fs_config.encoder_layerdrop UpperCamelCase__ : Optional[int] = fs_config.encoder_attention_heads UpperCamelCase__ : int = fs_config.conv_pos_groups UpperCamelCase__ : Optional[int] = fs_config.conv_pos UpperCamelCase__ : Union[str, Any] = len(__lowerCAmelCase) UpperCamelCase__ : Optional[int] = fs_config.encoder_layers UpperCamelCase__ : Any = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: UpperCamelCase__ : Optional[Any] = model.cfg UpperCamelCase__ : str = fs_config.final_dropout UpperCamelCase__ : Union[str, Any] = fs_config.layerdrop UpperCamelCase__ : List[str] = fs_config.activation_dropout UpperCamelCase__ : Any = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 UpperCamelCase__ : str = fs_config.attention_dropout UpperCamelCase__ : Optional[Any] = fs_config.dropout_input UpperCamelCase__ : Union[str, Any] = fs_config.dropout UpperCamelCase__ : Dict = fs_config.mask_channel_length UpperCamelCase__ : int = fs_config.mask_channel_prob UpperCamelCase__ : Tuple = fs_config.mask_length UpperCamelCase__ : Tuple = fs_config.mask_prob UpperCamelCase__ : Optional[int] = """Wav2Vec2FeatureExtractor""" UpperCamelCase__ : int = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> str: if is_finetuned: UpperCamelCase__ : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1])}) else: UpperCamelCase__ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) if config_path is not None: UpperCamelCase__ : str = SEWConfig.from_pretrained(__lowerCAmelCase) else: UpperCamelCase__ : str = convert_config(model[0] , __lowerCAmelCase) UpperCamelCase__ : Optional[int] = model[0].eval() UpperCamelCase__ : Dict = True if config.feat_extract_norm == """layer""" else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , ) if is_finetuned: if dict_path: UpperCamelCase__ : str = Dictionary.load(__lowerCAmelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : Tuple = target_dict.pad_index UpperCamelCase__ : List[str] = target_dict.bos_index UpperCamelCase__ : Any = target_dict.pad_index UpperCamelCase__ : Any = target_dict.bos_index UpperCamelCase__ : int = target_dict.eos_index UpperCamelCase__ : List[str] = len(target_dict.symbols) UpperCamelCase__ : Optional[int] = os.path.join(__lowerCAmelCase , 'vocab.json') if not os.path.isdir(__lowerCAmelCase): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(__lowerCAmelCase)) return os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase) with open(__lowerCAmelCase , 'w' , encoding='utf-8') as vocab_handle: json.dump(target_dict.indices , __lowerCAmelCase) UpperCamelCase__ : Dict = WavaVecaCTCTokenizer( __lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=__lowerCAmelCase , ) UpperCamelCase__ : int = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase) processor.save_pretrained(__lowerCAmelCase) UpperCamelCase__ : Optional[Any] = SEWForCTC(__lowerCAmelCase) else: UpperCamelCase__ : Dict = SEWModel(__lowerCAmelCase) feature_extractor.save_pretrained(__lowerCAmelCase) recursively_load_weights(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase) hf_model.save_pretrained(__lowerCAmelCase) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .modeling_utils import ModelMixin @dataclass class __lowercase (_snake_case ): _lowerCamelCase = 42 class __lowercase (_snake_case , _snake_case ): @register_to_config def __init__( self : Optional[int] , UpperCAmelCase_ : int = 16 , UpperCAmelCase_ : int = 88 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ): super().__init__() UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Union[str, Any] = attention_head_dim UpperCamelCase__ : Any = num_attention_heads * attention_head_dim UpperCamelCase__ : Tuple = in_channels UpperCamelCase__ : Dict = torch.nn.GroupNorm(num_groups=UpperCAmelCase_ , num_channels=UpperCAmelCase_ , eps=1e-6 , affine=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_) # 3. Define transformers blocks UpperCamelCase__ : Tuple = nn.ModuleList( [ BasicTransformerBlock( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , dropout=UpperCAmelCase_ , cross_attention_dim=UpperCAmelCase_ , activation_fn=UpperCAmelCase_ , attention_bias=UpperCAmelCase_ , double_self_attention=UpperCAmelCase_ , norm_elementwise_affine=UpperCAmelCase_ , ) for d in range(UpperCAmelCase_) ]) UpperCamelCase__ : List[str] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : int=None , UpperCAmelCase_ : bool = True , ): UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = hidden_states.shape UpperCamelCase__ : List[Any] = batch_frames // num_frames UpperCamelCase__ : Any = hidden_states UpperCamelCase__ : Dict = hidden_states[None, :].reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = hidden_states.permute(0 , 2 , 1 , 3 , 4) UpperCamelCase__ : List[Any] = self.norm(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = hidden_states.permute(0 , 3 , 4 , 2 , 1).reshape(batch_size * height * width , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.proj_in(UpperCAmelCase_) # 2. Blocks for block in self.transformer_blocks: UpperCamelCase__ : Optional[Any] = block( UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ , timestep=UpperCAmelCase_ , cross_attention_kwargs=UpperCAmelCase_ , class_labels=UpperCAmelCase_ , ) # 3. Output UpperCamelCase__ : Optional[Any] = self.proj_out(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = ( hidden_states[None, None, :] .reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) .permute(0 , 3 , 4 , 1 , 2) .contiguous() ) UpperCamelCase__ : Tuple = hidden_states.reshape(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = hidden_states + residual if not return_dict: return (output,) return TransformerTemporalModelOutput(sample=UpperCAmelCase_)
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets lowerCAmelCase__ = datasets.logging.get_logger(__name__) lowerCAmelCase__ = '\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = \"Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric\",\n author = \"Moosavi, Nafise Sadat and\n Strube, Michael\",\n booktitle = \"Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = aug,\n year = \"2016\",\n address = \"Berlin, Germany\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P16-1060\",\n doi = \"10.18653/v1/P16-1060\",\n pages = \"632--642\",\n}\n\n' lowerCAmelCase__ = '\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the \"([pos] [word])\" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a \"-\"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section \"*_conll File Format\"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n' lowerCAmelCase__ = '\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=True , lowerCamelCase_=False , lowerCamelCase_="dummy_doc") -> Any: UpperCamelCase__ : Any = {doc: key_lines} UpperCamelCase__ : Any = {doc: sys_lines} UpperCamelCase__ : int = {} UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : str = 0 UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Tuple = 0 UpperCamelCase__, UpperCamelCase__ : List[Any] = reader.get_doc_mentions(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__) key_singletons_num += singletons_num if NP_only or min_span: UpperCamelCase__ : Tuple = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__) UpperCamelCase__, UpperCamelCase__ : Tuple = reader.get_doc_mentions(lowerCAmelCase__ , sys_doc_lines[doc] , lowerCAmelCase__) sys_singletons_num += singletons_num if NP_only or min_span: UpperCamelCase__ : Dict = reader.set_annotated_parse_trees(lowerCAmelCase__ , key_doc_lines[doc] , lowerCAmelCase__ , lowerCAmelCase__) if remove_nested: UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters UpperCamelCase__, UpperCamelCase__ : List[Any] = reader.remove_nested_coref_mentions(lowerCAmelCase__ , lowerCAmelCase__) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters UpperCamelCase__ : Optional[Any] = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__) UpperCamelCase__ : str = reader.get_mention_assignments(lowerCAmelCase__ , lowerCAmelCase__) UpperCamelCase__ : Optional[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( 'Number of removed nested coreferring mentions in the key ' f'annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}') logger.info( 'Number of resulting singleton clusters in the key ' f'annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}') if not keep_singletons: logger.info( f'{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system ' 'files, respectively') return doc_coref_infos def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Any = get_coref_infos(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) UpperCamelCase__ : List[Any] = {} UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Any = 0 for name, metric in metrics: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Dict = evaluator.evaluate_documents(lowerCAmelCase__ , lowerCAmelCase__ , beta=1) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f'{name}/recall': recall, f'{name}/precision': precision, f'{name}/f1': fa}) logger.info( name.ljust(10) , f'Recall: {recall * 100:.2f}' , f' Precision: {precision * 100:.2f}' , f' F1: {fa * 100:.2f}' , ) if conll_subparts_num == 3: UpperCamelCase__ : Optional[int] = (conll / 3) * 100 logger.info(f'CoNLL score: {conll:.2f}') output_scores.update({'conll_score': conll}) return output_scores def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : int = False for line in key_lines: if not line.startswith('#'): if len(line.split()) > 6: UpperCamelCase__ : Tuple = line.split()[5] if not parse_col == "-": UpperCamelCase__ : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): def __UpperCamelCase ( self : List[str]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string')), 'references': datasets.Sequence(datasets.Value('string')), }) , codebase_urls=['https://github.com/ns-moosavi/coval'] , reference_urls=[ 'https://github.com/ns-moosavi/coval', 'https://www.aclweb.org/anthology/P16-1060', 'http://www.conll.cemantix.org/2012/data.html', ] , ) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Dict=False): UpperCamelCase__ : Tuple = [ ('mentions', evaluator.mentions), ('muc', evaluator.muc), ('bcub', evaluator.b_cubed), ('ceafe', evaluator.ceafe), ('lea', evaluator.lea), ] if min_span: UpperCamelCase__ : Union[str, Any] = util.check_gold_parse_annotation(_UpperCAmelCase) if not has_gold_parse: raise NotImplementedError('References should have gold parse annotation to use \'min_span\'.') # util.parse_key_file(key_file) # key_file = key_file + ".parsed" UpperCamelCase__ : List[str] = evaluate( key_lines=_UpperCAmelCase , sys_lines=_UpperCAmelCase , metrics=_UpperCAmelCase , NP_only=_UpperCAmelCase , remove_nested=_UpperCAmelCase , keep_singletons=_UpperCAmelCase , min_span=_UpperCAmelCase , ) return score
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowerCAmelCase__ = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None) -> Union[str, Any]: UpperCamelCase__ : Tuple = XLNetConfig.from_json_file(__A) UpperCamelCase__ : List[Any] = finetuning_task.lower() if finetuning_task is not None else """""" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}') UpperCamelCase__ : int = finetuning_task UpperCamelCase__ : Union[str, Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] UpperCamelCase__ : int = XLNetForSequenceClassification(__A) elif "squad" in finetuning_task: UpperCamelCase__ : Dict = finetuning_task UpperCamelCase__ : Optional[Any] = XLNetForQuestionAnswering(__A) else: UpperCamelCase__ : Any = XLNetLMHeadModel(__A) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__A , __A , __A) # Save pytorch-model UpperCamelCase__ : Optional[Any] = os.path.join(__A , __A) UpperCamelCase__ : Any = os.path.join(__A , __A) print(f'Save PyTorch model to {os.path.abspath(__A)}') torch.save(model.state_dict() , __A) print(f'Save configuration file to {os.path.abspath(__A)}') with open(__A , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--xlnet_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained XLNet model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--finetuning_task', default=None, type=str, help='Name of a task on which the XLNet TensorFlow model was fine-tuned', ) lowerCAmelCase__ = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCAmelCase__ = get_tests_dir('fixtures') lowerCAmelCase__ = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCAmelCase__ = get_tests_dir('fixtures/dummy-config.json') class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = 0 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h') self.assertIsInstance(_A , _A) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = AutoFeatureExtractor.from_pretrained(_A) self.assertIsInstance(_A , _A) def __UpperCamelCase ( self : List[str]): with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase__ : int = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally UpperCamelCase__ : Any = AutoFeatureExtractor.from_pretrained(_A).to_dict() config_dict.pop('feature_extractor_type') UpperCamelCase__ : str = WavaVecaFeatureExtractor(**_A) # save in new folder model_config.save_pretrained(_A) config.save_pretrained(_A) UpperCamelCase__ : List[str] = AutoFeatureExtractor.from_pretrained(_A) # make sure private variable is not incorrectly saved UpperCamelCase__ : Dict = json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(_A , _A) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A) self.assertIsInstance(_A , _A) def __UpperCamelCase ( self : Union[str, Any]): with self.assertRaisesRegex( _A , 'bert-base is not a local folder and is not a valid model identifier'): UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('bert-base') def __UpperCamelCase ( self : Any): with self.assertRaisesRegex( _A , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A , revision='aaaaaa') def __UpperCamelCase ( self : Any): with self.assertRaisesRegex( _A , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): UpperCamelCase__ : str = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model') def __UpperCamelCase ( self : Any): with self.assertRaises(_A): UpperCamelCase__ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') # If remote code is disabled, we can't load this config. with self.assertRaises(_A): UpperCamelCase__ : Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_A) UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_A) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A) UpperCamelCase__ : str = AutoFeatureExtractor.from_pretrained(_A , trust_remote_code=_A) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor') def __UpperCamelCase ( self : str): try: AutoConfig.register('custom' , _A) AutoFeatureExtractor.register(_A , _A) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A): AutoFeatureExtractor.register(_A , _A) # Now that the config is registered, it can be used as any other config with the auto-API UpperCamelCase__ : Tuple = CustomFeatureExtractor.from_pretrained(_A) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_A) UpperCamelCase__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained(_A) self.assertIsInstance(_A , _A) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def __UpperCamelCase ( self : Union[str, Any]): class __lowercase (a__ ): _lowerCamelCase = True try: AutoConfig.register('custom' , _A) AutoFeatureExtractor.register(_A , _A) # If remote code is not set, the default is to use local UpperCamelCase__ : Tuple = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor') self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. UpperCamelCase__ : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_A) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub UpperCamelCase__ : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=_A) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor') self.assertTrue(not hasattr(_A , 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __lowercase (nn.Module ): def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "layer_norm" , UpperCAmelCase_ : bool = False , ): super().__init__() UpperCamelCase__ : Tuple = only_cross_attention UpperCamelCase__ : List[Any] = (num_embeds_ada_norm is not None) and norm_type == "ada_norm_zero" UpperCamelCase__ : Any = (num_embeds_ada_norm is not None) and norm_type == "ada_norm" if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.') # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: UpperCamelCase__ : str = AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: UpperCamelCase__ : Union[str, Any] = AdaLayerNormZero(__lowerCamelCase , __lowerCamelCase) else: UpperCamelCase__ : Tuple = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) UpperCamelCase__ : Optional[int] = Attention( query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__lowerCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. UpperCamelCase__ : Any = ( AdaLayerNorm(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) ) UpperCamelCase__ : int = Attention( query_dim=__lowerCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__lowerCamelCase , dim_head=__lowerCamelCase , dropout=__lowerCamelCase , bias=__lowerCamelCase , upcast_attention=__lowerCamelCase , ) # is self-attn if encoder_hidden_states is none else: UpperCamelCase__ : Union[str, Any] = None UpperCamelCase__ : str = None # 3. Feed-forward UpperCamelCase__ : Dict = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) UpperCamelCase__ : int = FeedForward(__lowerCamelCase , dropout=__lowerCamelCase , activation_fn=__lowerCamelCase , final_dropout=__lowerCamelCase) # let chunk size default to None UpperCamelCase__ : str = None UpperCamelCase__ : Any = 0 def __UpperCamelCase ( self : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int): # Sets chunk feed-forward UpperCamelCase__ : Tuple = chunk_size UpperCamelCase__ : Union[str, Any] = dim def __UpperCamelCase ( self : Any , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Dict[str, Any] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , ): # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: UpperCamelCase__ : Tuple = self.norma(__lowerCamelCase , __lowerCamelCase) elif self.use_ada_layer_norm_zero: UpperCamelCase__ : Dict = self.norma( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hidden_dtype=hidden_states.dtype) else: UpperCamelCase__ : Union[str, Any] = self.norma(__lowerCamelCase) UpperCamelCase__ : Optional[Any] = cross_attention_kwargs if cross_attention_kwargs is not None else {} UpperCamelCase__ : Dict = self.attna( __lowerCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) if self.use_ada_layer_norm_zero: UpperCamelCase__ : Dict = gate_msa.unsqueeze(1) * attn_output UpperCamelCase__ : Optional[Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: UpperCamelCase__ : Optional[Any] = ( self.norma(__lowerCamelCase , __lowerCamelCase) if self.use_ada_layer_norm else self.norma(__lowerCamelCase) ) UpperCamelCase__ : int = self.attna( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=__lowerCamelCase , **__lowerCamelCase , ) UpperCamelCase__ : List[Any] = attn_output + hidden_states # 3. Feed-forward UpperCamelCase__ : Union[str, Any] = self.norma(__lowerCamelCase) if self.use_ada_layer_norm_zero: UpperCamelCase__ : Dict = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.') UpperCamelCase__ : str = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size UpperCamelCase__ : Dict = torch.cat( [self.ff(__lowerCamelCase) for hid_slice in norm_hidden_states.chunk(__lowerCamelCase , dim=self._chunk_dim)] , dim=self._chunk_dim , ) else: UpperCamelCase__ : List[str] = self.ff(__lowerCamelCase) if self.use_ada_layer_norm_zero: UpperCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1) * ff_output UpperCamelCase__ : Union[str, Any] = ff_output + hidden_states return hidden_states class __lowercase (nn.Module ): def __init__( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : str = "geglu" , UpperCAmelCase_ : bool = False , ): super().__init__() UpperCamelCase__ : List[str] = int(dim * mult) UpperCamelCase__ : Tuple = dim_out if dim_out is not None else dim if activation_fn == "gelu": UpperCamelCase__ : List[str] = GELU(__lowerCamelCase , __lowerCamelCase) if activation_fn == "gelu-approximate": UpperCamelCase__ : str = GELU(__lowerCamelCase , __lowerCamelCase , approximate='tanh') elif activation_fn == "geglu": UpperCamelCase__ : Any = GEGLU(__lowerCamelCase , __lowerCamelCase) elif activation_fn == "geglu-approximate": UpperCamelCase__ : Optional[int] = ApproximateGELU(__lowerCamelCase , __lowerCamelCase) UpperCamelCase__ : Any = nn.ModuleList([]) # project in self.net.append(__lowerCamelCase) # project dropout self.net.append(nn.Dropout(__lowerCamelCase)) # project out self.net.append(nn.Linear(__lowerCamelCase , __lowerCamelCase)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__lowerCamelCase)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[int]): for module in self.net: UpperCamelCase__ : Optional[int] = module(__lowerCamelCase) return hidden_states class __lowercase (nn.Module ): def __init__( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str = "none"): super().__init__() UpperCamelCase__ : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase) UpperCamelCase__ : int = approximate def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str): if gate.device.type != "mps": return F.gelu(__lowerCamelCase , approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa) , approximate=self.approximate).to(dtype=gate.dtype) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = self.proj(__lowerCamelCase) UpperCamelCase__ : Optional[int] = self.gelu(__lowerCamelCase) return hidden_states class __lowercase (nn.Module ): def __init__( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): super().__init__() UpperCamelCase__ : str = nn.Linear(__lowerCamelCase , dim_out * 2) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): if gate.device.type != "mps": return F.gelu(__lowerCamelCase) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa)).to(dtype=gate.dtype) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Union[str, Any] = self.proj(__lowerCamelCase).chunk(2 , dim=-1) return hidden_states * self.gelu(__lowerCamelCase) class __lowercase (nn.Module ): def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int): super().__init__() UpperCamelCase__ : int = nn.Linear(__lowerCamelCase , __lowerCamelCase) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Tuple = self.proj(__lowerCamelCase) return x * torch.sigmoid(1.7_02 * x) class __lowercase (nn.Module ): def __init__( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int]): super().__init__() UpperCamelCase__ : List[str] = nn.Embedding(__lowerCamelCase , __lowerCamelCase) UpperCamelCase__ : Dict = nn.SiLU() UpperCamelCase__ : Any = nn.Linear(__lowerCamelCase , embedding_dim * 2) UpperCamelCase__ : Optional[Any] = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[int] = self.linear(self.silu(self.emb(__lowerCamelCase))) UpperCamelCase__ : str = torch.chunk(__lowerCamelCase , 2) UpperCamelCase__ : Optional[int] = self.norm(__lowerCamelCase) * (1 + scale) + shift return x class __lowercase (nn.Module ): def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): super().__init__() UpperCamelCase__ : Dict = CombinedTimestepLabelEmbeddings(__lowerCamelCase , __lowerCamelCase) UpperCamelCase__ : Dict = nn.SiLU() UpperCamelCase__ : Any = nn.Linear(__lowerCamelCase , 6 * embedding_dim , bias=__lowerCamelCase) UpperCamelCase__ : Tuple = nn.LayerNorm(__lowerCamelCase , elementwise_affine=__lowerCamelCase , eps=1e-6) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict=None): UpperCamelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(__lowerCamelCase , __lowerCamelCase , hidden_dtype=__lowerCamelCase))) UpperCamelCase__ : Optional[Any] = emb.chunk(6 , dim=1) UpperCamelCase__ : int = self.norm(__lowerCamelCase) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __lowercase (nn.Module ): def __init__( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : float = 1e-5): super().__init__() UpperCamelCase__ : Dict = num_groups UpperCamelCase__ : List[str] = eps if act_fn is None: UpperCamelCase__ : List[str] = None else: UpperCamelCase__ : Optional[int] = get_activation(__lowerCamelCase) UpperCamelCase__ : List[Any] = nn.Linear(__lowerCamelCase , out_dim * 2) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int): if self.act: UpperCamelCase__ : int = self.act(__lowerCamelCase) UpperCamelCase__ : Optional[int] = self.linear(__lowerCamelCase) UpperCamelCase__ : Any = emb[:, :, None, None] UpperCamelCase__ : Union[str, Any] = emb.chunk(2 , dim=1) UpperCamelCase__ : Optional[Any] = F.group_norm(__lowerCamelCase , self.num_groups , eps=self.eps) UpperCamelCase__ : Any = x * (1 + scale) + shift return x
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowercase (_UpperCAmelCase ): _lowerCamelCase = '''dpr''' def __init__( self : Optional[int] , UpperCAmelCase_ : Dict=30_522 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : List[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Union[str, Any]=3_072 , UpperCAmelCase_ : List[Any]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[str]=512 , UpperCAmelCase_ : Optional[Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Any="absolute" , UpperCAmelCase_ : int = 0 , **UpperCAmelCase_ : Tuple , ): super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : Any = hidden_size UpperCamelCase__ : int = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : Optional[Any] = hidden_act UpperCamelCase__ : Dict = intermediate_size UpperCamelCase__ : int = hidden_dropout_prob UpperCamelCase__ : Optional[int] = attention_probs_dropout_prob UpperCamelCase__ : List[str] = max_position_embeddings UpperCamelCase__ : Optional[int] = type_vocab_size UpperCamelCase__ : Any = initializer_range UpperCamelCase__ : List[str] = layer_norm_eps UpperCamelCase__ : List[Any] = projection_dim UpperCamelCase__ : List[Any] = position_embedding_type
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = int(_A) if decimal in (0, 1): # Exit cases for the recursion return str(_A) UpperCamelCase__, UpperCamelCase__ : int = divmod(_A , 2) return binary_recursive(_A) + str(_A) def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : List[str] = str(_A).strip() if not number: raise ValueError('No input value was provided') UpperCamelCase__ : Any = '-' if number.startswith('-') else '' UpperCamelCase__ : Dict = number.lstrip('-') if not number.isnumeric(): raise ValueError('Input value is not an integer') return f'{negative}0b{binary_recursive(int(_A))}' if __name__ == "__main__": from doctest import testmod testmod()
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0
'''simple docstring''' import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger lowerCAmelCase__ = get_logger(__name__) lowerCAmelCase__ = Path(__file__).parent / """model_card_template.md""" lowerCAmelCase__ = uuida().hex lowerCAmelCase__ = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES lowerCAmelCase__ = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def __UpperCAmelCase ( lowerCamelCase_ = None) -> str: UpperCamelCase__ : Optional[int] = f'diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}' if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += f'; torch/{_torch_version}' if is_flax_available(): ua += f'; jax/{_jax_version}' ua += f'; flax/{_flax_version}' if is_onnx_available(): ua += f'; onnxruntime/{_onnxruntime_version}' # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '').upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(lowerCamelCase_ , lowerCamelCase_): ua += "; " + "; ".join(f'{k}/{v}' for k, v in user_agent.items()) elif isinstance(lowerCamelCase_ , lowerCamelCase_): ua += "; " + user_agent return ua def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None) -> Union[str, Any]: if token is None: UpperCamelCase__ : Union[str, Any] = HfFolder.get_token() if organization is None: UpperCamelCase__ : Optional[Any] = whoami(lowerCamelCase_)['name'] return f'{username}/{model_id}' else: return f'{organization}/{model_id}' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.') if hasattr(lowerCamelCase_ , 'local_rank') and args.local_rank not in [-1, 0]: return UpperCamelCase__ : Tuple = args.hub_token if hasattr(lowerCamelCase_ , 'hub_token') else None UpperCamelCase__ : Union[str, Any] = get_full_repo_name(lowerCamelCase_ , token=lowerCamelCase_) UpperCamelCase__ : List[Any] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=lowerCamelCase_ , model_name=lowerCamelCase_ , repo_name=lowerCamelCase_ , dataset_name=args.dataset_name if hasattr(lowerCamelCase_ , 'dataset_name') else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(lowerCamelCase_ , 'gradient_accumulation_steps') else None ) , adam_betaa=args.adam_betaa if hasattr(lowerCamelCase_ , 'adam_beta1') else None , adam_betaa=args.adam_betaa if hasattr(lowerCamelCase_ , 'adam_beta2') else None , adam_weight_decay=args.adam_weight_decay if hasattr(lowerCamelCase_ , 'adam_weight_decay') else None , adam_epsilon=args.adam_epsilon if hasattr(lowerCamelCase_ , 'adam_epsilon') else None , lr_scheduler=args.lr_scheduler if hasattr(lowerCamelCase_ , 'lr_scheduler') else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(lowerCamelCase_ , 'lr_warmup_steps') else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(lowerCamelCase_ , 'ema_inv_gamma') else None , ema_power=args.ema_power if hasattr(lowerCamelCase_ , 'ema_power') else None , ema_max_decay=args.ema_max_decay if hasattr(lowerCamelCase_ , 'ema_max_decay') else None , mixed_precision=args.mixed_precision , ) UpperCamelCase__ : List[str] = os.path.join(args.output_dir , 'README.md') model_card.save(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None) -> str: if resolved_file is None or commit_hash is not None: return commit_hash UpperCamelCase__ : Union[str, Any] = str(Path(lowerCamelCase_).as_posix()) UpperCamelCase__ : List[Any] = re.search(R'snapshots/([^/]+)/' , lowerCamelCase_) if search is None: return None UpperCamelCase__ : str = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(lowerCamelCase_) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. lowerCAmelCase__ = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) lowerCAmelCase__ = os.path.join(hf_cache_home, 'diffusers') def __UpperCAmelCase ( lowerCamelCase_ = None , lowerCamelCase_ = None) -> None: if new_cache_dir is None: UpperCamelCase__ : Optional[Any] = DIFFUSERS_CACHE if old_cache_dir is None: UpperCamelCase__ : str = old_diffusers_cache UpperCamelCase__ : Optional[int] = Path(lowerCamelCase_).expanduser() UpperCamelCase__ : Any = Path(lowerCamelCase_).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*'): if old_blob_path.is_file() and not old_blob_path.is_symlink(): UpperCamelCase__ : str = new_cache_dir / old_blob_path.relative_to(lowerCamelCase_) new_blob_path.parent.mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_) os.replace(lowerCamelCase_ , lowerCamelCase_) try: os.symlink(lowerCamelCase_ , lowerCamelCase_) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.') # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). lowerCAmelCase__ = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): lowerCAmelCase__ = 0 else: with open(cache_version_file) as f: try: lowerCAmelCase__ = int(f.read()) except ValueError: lowerCAmelCase__ = 0 if cache_version < 1: lowerCAmelCase__ = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: lowerCAmelCase__ = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( f'''There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ''' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( f'''There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ''' 'the directory exists and can be written to.' ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None) -> str: if variant is not None: UpperCamelCase__ : Any = weights_name.split('.') UpperCamelCase__ : Optional[Any] = splits[:-1] + [variant] + splits[-1:] UpperCamelCase__ : Optional[Any] = '.'.join(lowerCamelCase_) return weights_name def __UpperCAmelCase ( lowerCamelCase_ , *, lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , ) -> Optional[Any]: UpperCamelCase__ : str = str(lowerCamelCase_) if os.path.isfile(lowerCamelCase_): return pretrained_model_name_or_path elif os.path.isdir(lowerCamelCase_): if os.path.isfile(os.path.join(lowerCamelCase_ , lowerCamelCase_)): # Load from a PyTorch checkpoint UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) return model_file elif subfolder is not None and os.path.isfile( os.path.join(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_)): UpperCamelCase__ : List[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) return model_file else: raise EnvironmentError( f'Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.') else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(lowerCamelCase_).base_version) >= version.parse('0.20.0') ): try: UpperCamelCase__ : List[Any] = hf_hub_download( lowerCamelCase_ , filename=_add_variant(lowerCamelCase_ , lowerCamelCase_) , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , user_agent=lowerCamelCase_ , subfolder=lowerCamelCase_ , revision=revision or commit_hash , ) warnings.warn( f'Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.' , lowerCamelCase_ , ) return model_file except: # noqa: E722 warnings.warn( f'You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(lowerCamelCase_ , lowerCamelCase_)} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(lowerCamelCase_ , lowerCamelCase_)}\' so that the correct variant file can be added.' , lowerCamelCase_ , ) try: # 2. Load model file as usual UpperCamelCase__ : Dict = hf_hub_download( lowerCamelCase_ , filename=lowerCamelCase_ , cache_dir=lowerCamelCase_ , force_download=lowerCamelCase_ , proxies=lowerCamelCase_ , resume_download=lowerCamelCase_ , local_files_only=lowerCamelCase_ , use_auth_token=lowerCamelCase_ , user_agent=lowerCamelCase_ , subfolder=lowerCamelCase_ , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier ' 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.') except RevisionNotFoundError: raise EnvironmentError( f'{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for ' 'this model name. Check the model page at ' f'\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.') except EntryNotFoundError: raise EnvironmentError( f'{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.') except HTTPError as err: raise EnvironmentError( f'There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}') except ValueError: raise EnvironmentError( f'We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it' f' in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a' f' directory containing a file named {weights_name} or' ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.') except EnvironmentError: raise EnvironmentError( f'Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from ' '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' f'Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory ' f'containing a file named {weights_name}')
719
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class __lowercase (SCREAMING_SNAKE_CASE__ ): _lowerCamelCase = '''nllb-moe''' _lowerCamelCase = ['''past_key_values'''] _lowerCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : str , UpperCAmelCase_ : Union[str, Any]=128_112 , UpperCAmelCase_ : List[Any]=1_024 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : List[Any]=4_096 , UpperCAmelCase_ : Optional[Any]=16 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Union[str, Any]=4_096 , UpperCAmelCase_ : List[str]=16 , UpperCAmelCase_ : int=0.05 , UpperCAmelCase_ : Tuple=0.05 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]="relu" , UpperCAmelCase_ : Any=1_024 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Union[str, Any]="float32" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : List[Any]=128 , UpperCAmelCase_ : Union[str, Any]=64 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Tuple=0.0_01 , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : Tuple="all" , UpperCAmelCase_ : Optional[Any]=False , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : str=1.0 , UpperCAmelCase_ : Any=0.2 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Optional[int]=False , **UpperCAmelCase_ : Union[str, Any] , ): UpperCamelCase__ : str = vocab_size UpperCamelCase__ : Any = max_position_embeddings UpperCamelCase__ : str = d_model UpperCamelCase__ : List[Any] = encoder_ffn_dim UpperCamelCase__ : Optional[int] = encoder_layers UpperCamelCase__ : Union[str, Any] = encoder_attention_heads UpperCamelCase__ : List[Any] = decoder_ffn_dim UpperCamelCase__ : Optional[Any] = decoder_layers UpperCamelCase__ : Optional[Any] = decoder_attention_heads UpperCamelCase__ : List[str] = dropout UpperCamelCase__ : int = attention_dropout UpperCamelCase__ : int = activation_dropout UpperCamelCase__ : List[str] = activation_function UpperCamelCase__ : Any = init_std UpperCamelCase__ : str = encoder_layerdrop UpperCamelCase__ : Optional[int] = decoder_layerdrop UpperCamelCase__ : Optional[int] = use_cache UpperCamelCase__ : Tuple = encoder_layers UpperCamelCase__ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True UpperCamelCase__ : int = router_z_loss_coef UpperCamelCase__ : Optional[int] = router_aux_loss_coef UpperCamelCase__ : Union[str, Any] = decoder_sparse_step UpperCamelCase__ : Any = encoder_sparse_step UpperCamelCase__ : Optional[Any] = num_experts UpperCamelCase__ : Union[str, Any] = expert_capacity UpperCamelCase__ : Union[str, Any] = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}') UpperCamelCase__ : Optional[int] = router_dtype UpperCamelCase__ : Optional[Any] = router_ignore_padding_tokens UpperCamelCase__ : Union[str, Any] = batch_prioritized_routing UpperCamelCase__ : List[str] = second_expert_policy UpperCamelCase__ : Optional[Any] = normalize_router_prob_before_dropping UpperCamelCase__ : List[Any] = moe_eval_capacity_token_fraction UpperCamelCase__ : List[Any] = moe_token_dropout UpperCamelCase__ : Tuple = output_router_logits super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , is_encoder_decoder=_lowercase , decoder_start_token_id=_lowercase , **_lowercase , )
720
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'uw-madison/mra-base-512-4': 'https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json', } class __lowercase (_lowercase ): _lowerCamelCase = '''mra''' def __init__( self : List[Any] , UpperCAmelCase_ : Tuple=50_265 , UpperCAmelCase_ : int=768 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : Tuple="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Any=1 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : List[Any]=1e-5 , UpperCAmelCase_ : Optional[Any]="absolute" , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Union[str, Any]="full" , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Optional[Any]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : Any=2 , **UpperCAmelCase_ : Tuple , ): super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_) UpperCamelCase__ : Union[str, Any] = vocab_size UpperCamelCase__ : List[str] = max_position_embeddings UpperCamelCase__ : str = hidden_size UpperCamelCase__ : Optional[int] = num_hidden_layers UpperCamelCase__ : List[Any] = num_attention_heads UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : Tuple = hidden_act UpperCamelCase__ : List[str] = hidden_dropout_prob UpperCamelCase__ : Any = attention_probs_dropout_prob UpperCamelCase__ : List[str] = initializer_range UpperCamelCase__ : List[str] = type_vocab_size UpperCamelCase__ : Any = layer_norm_eps UpperCamelCase__ : Optional[Any] = position_embedding_type UpperCamelCase__ : Any = block_per_row UpperCamelCase__ : Optional[Any] = approx_mode UpperCamelCase__ : List[Any] = initial_prior_first_n_blocks UpperCamelCase__ : Any = initial_prior_diagonal_n_blocks
721
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : str = [1] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[Any] = 0, 0, 0 UpperCamelCase__ : int = ugly_nums[ia] * 2 UpperCamelCase__ : str = ugly_nums[ia] * 3 UpperCamelCase__ : List[str] = ugly_nums[ia] * 5 for _ in range(1 , __SCREAMING_SNAKE_CASE): UpperCamelCase__ : Tuple = min(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) ugly_nums.append(__SCREAMING_SNAKE_CASE) if next_num == next_a: ia += 1 UpperCamelCase__ : Tuple = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 UpperCamelCase__ : Optional[Any] = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 UpperCamelCase__ : str = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(200) = }''')
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
'''simple docstring''' import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } lowerCAmelCase__ = { 'allenai/led-base-16384': 1_6384, } class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = LEDTokenizer _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Union[str, Any]="replace" , UpperCAmelCase_ : str="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : Tuple="<s>" , UpperCAmelCase_ : Optional[int]="<unk>" , UpperCAmelCase_ : Optional[Any]="<pad>" , UpperCAmelCase_ : Tuple="<mask>" , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : List[Any] , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , trim_offsets=UpperCAmelCase_ , **UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space: UpperCamelCase__ : Any = getattr(UpperCAmelCase_ , pre_tok_state.pop('type')) UpperCamelCase__ : Optional[int] = add_prefix_space UpperCamelCase__ : Union[str, Any] = pre_tok_class(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase__ : str = 'post_processor' UpperCamelCase__ : str = getattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) if tokenizer_component_instance: UpperCamelCase__ : Optional[int] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ : int = tuple(state['sep']) if "cls" in state: UpperCamelCase__ : Tuple = tuple(state['cls']) UpperCamelCase__ : Optional[Any] = False if state.get('add_prefix_space' , UpperCAmelCase_) != add_prefix_space: UpperCamelCase__ : int = add_prefix_space UpperCamelCase__ : Union[str, Any] = True if state.get('trim_offsets' , UpperCAmelCase_) != trim_offsets: UpperCamelCase__ : List[str] = trim_offsets UpperCamelCase__ : Tuple = True if changes_to_apply: UpperCamelCase__ : List[str] = getattr(UpperCAmelCase_ , state.pop('type')) UpperCamelCase__ : Any = component_class(**UpperCAmelCase_) setattr(self.backend_tokenizer , UpperCAmelCase_ , UpperCAmelCase_) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __UpperCamelCase ( self : Dict): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : str = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else value UpperCamelCase__ : Optional[int] = value def __UpperCamelCase ( self : List[Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[str]): UpperCamelCase__ : str = kwargs.get('is_split_into_words' , UpperCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : List[str] = kwargs.get('is_split_into_words' , UpperCAmelCase_) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : Any = None): UpperCamelCase__ : List[str] = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_) return tuple(UpperCAmelCase_) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str]=None): UpperCamelCase__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple = None): UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Union[str, Any] = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = None , ): UpperCamelCase__ : int = super()._pad( encoded_inputs=UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding_strategy=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) # Load from model defaults if return_attention_mask is None: UpperCamelCase__ : Union[str, Any] = 'attention_mask' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCamelCase__ : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCamelCase__ : Union[str, Any] = len(encoded_inputs['global_attention_mask']) != len(UpperCAmelCase_) if needs_to_be_padded: UpperCamelCase__ : int = len(UpperCAmelCase_) - len(encoded_inputs['global_attention_mask']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCamelCase__ : List[str] = ( encoded_inputs['global_attention_mask'] + [-1] * difference ) elif self.padding_side == "left": UpperCamelCase__ : Any = [-1] * difference + encoded_inputs[ 'global_attention_mask' ] else: raise ValueError('Invalid padding strategy:' + str(self.padding_side)) return encoded_inputs
701
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
0
'''simple docstring''' import string def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Union[str, Any] = "" for i in sequence: UpperCamelCase__ : int = ord(snake_case_) if 65 <= extract <= 90: output += chr(155 - extract) elif 97 <= extract <= 122: output += chr(219 - extract) else: output += i return output def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : str = string.ascii_letters UpperCamelCase__ : Optional[int] = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(snake_case_)] if c in letters else c for c in sequence) def __UpperCAmelCase ( ) -> Optional[Any]: from timeit import timeit print('Running performance benchmarks...') UpperCamelCase__ : str = "from string import printable ; from __main__ import atbash, atbash_slow" print(f'> atbash_slow(): {timeit("atbash_slow(printable)" , setup=snake_case_)} seconds') print(f'> atbash(): {timeit("atbash(printable)" , setup=snake_case_)} seconds') if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(f'''{example} encrypted in atbash: {atbash(example)}''') benchmark()
702
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : int = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __UpperCAmelCase ( lowerCamelCase_ = 5_000) -> Dict: UpperCamelCase__ : List[Any] = [(i * (3 * i - 1)) // 2 for i in range(1 , _lowerCamelCase)] for i, pentagonal_i in enumerate(_lowerCamelCase): for j in range(_lowerCamelCase , len(_lowerCamelCase)): UpperCamelCase__ : Any = pentagonal_nums[j] UpperCamelCase__ : int = pentagonal_i + pentagonal_j UpperCamelCase__ : Optional[Any] = pentagonal_j - pentagonal_i if is_pentagonal(_lowerCamelCase) and is_pentagonal(_lowerCamelCase): return b return -1 if __name__ == "__main__": print(f'''{solution() = }''')
703
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=_a).to(_a) UpperCamelCase__ : int = AutoTokenizer.from_pretrained('google/mt5-small') UpperCamelCase__ : int = tokenizer('Hello there' , return_tensors='pt').input_ids UpperCamelCase__ : Union[str, Any] = tokenizer('Hi I am' , return_tensors='pt').input_ids UpperCamelCase__ : Tuple = model(input_ids.to(_a) , labels=labels.to(_a)).loss UpperCamelCase__ : Optional[int] = -(labels.shape[-1] * loss.item()) UpperCamelCase__ : Optional[int] = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
704
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCAmelCase__ = logging.getLogger(__name__) class __lowercase (__a ): _lowerCamelCase = '''sequence-classification''' def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any): if type(a_) == dict: UpperCamelCase__ : Dict = Namespace(**a_) UpperCamelCase__ : List[Any] = glue_output_modes[hparams.task] UpperCamelCase__ : Optional[Any] = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode) def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : Optional[Any]): return self.model(**a_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Optional[int] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None UpperCamelCase__ : Union[str, Any] = self(**a_) UpperCamelCase__ : List[str] = outputs[0] UpperCamelCase__ : Tuple = self.trainer.lr_schedulers[0]["""scheduler"""] UpperCamelCase__ : List[Any] = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = self.hparams UpperCamelCase__ : List[str] = processors[args.task]() UpperCamelCase__ : Optional[Any] = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase__ : Union[str, Any] = self._feature_file(a_) if os.path.exists(a_) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , a_) else: logger.info('Creating features from dataset file at %s' , args.data_dir) UpperCamelCase__ : Any = ( processor.get_dev_examples(args.data_dir) if mode == """dev""" else processor.get_train_examples(args.data_dir) ) UpperCamelCase__ : str = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , a_) torch.save(a_ , a_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : bool = False): UpperCamelCase__ : Optional[int] = """dev""" if mode == """test""" else mode UpperCamelCase__ : str = self._feature_file(a_) logger.info('Loading features from cached file %s' , a_) UpperCamelCase__ : int = torch.load(a_) UpperCamelCase__ : Optional[int] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) UpperCamelCase__ : List[str] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) UpperCamelCase__ : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : Optional[int] = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : List[Any] = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(a_ , a_ , a_ , a_) , batch_size=a_ , shuffle=a_ , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[str]): UpperCamelCase__ : List[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Union[str, Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None UpperCamelCase__ : Optional[int] = self(**a_) UpperCamelCase__ : Union[str, Any] = outputs[:2] UpperCamelCase__ : List[str] = logits.detach().cpu().numpy() UpperCamelCase__ : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = torch.stack([x['val_loss'] for x in outputs]).mean().detach().cpu().item() UpperCamelCase__ : Tuple = np.concatenate([x['pred'] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : Tuple = np.argmax(a_ , axis=1) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : Optional[int] = np.squeeze(a_) UpperCamelCase__ : Optional[Any] = np.concatenate([x['target'] for x in outputs] , axis=0) UpperCamelCase__ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : Tuple = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : Tuple = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_)} UpperCamelCase__ : Optional[int] = dict(results.items()) UpperCamelCase__ : str = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : str , UpperCAmelCase_ : list): UpperCamelCase__ : Tuple = self._eval_end(a_) UpperCamelCase__ : int = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : str , UpperCAmelCase_ : Any): UpperCamelCase__ : str = self._eval_end(a_) UpperCamelCase__ : List[str] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple): BaseTransformer.add_model_specific_args(a_ , a_) parser.add_argument( '--max_seq_length' , default=128 , type=a_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=a_ , required=a_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=a_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser def __UpperCAmelCase ( ) -> str: UpperCamelCase__ : Dict = argparse.ArgumentParser() add_generic_args(snake_case__ , os.getcwd()) UpperCamelCase__ : Optional[Any] = GLUETransformer.add_model_specific_args(snake_case__ , os.getcwd()) UpperCamelCase__ : Tuple = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase__ : int = os.path.join( './results' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S")}' , ) os.makedirs(args.output_dir) UpperCamelCase__ : Optional[Any] = GLUETransformer(snake_case__) UpperCamelCase__ : Union[str, Any] = generic_train(snake_case__ , snake_case__) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase__ : List[Any] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt') , recursive=snake_case__)) UpperCamelCase__ : Any = model.load_from_checkpoint(checkpoints[-1]) return trainer.test(snake_case__) if __name__ == "__main__": main()
705
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
0
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=0) -> Optional[Any]: return sorted(__snake_case , key=lambda lowerCamelCase_: x[column]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=float('inf')) -> int: for i in range(points_counts - 1): for j in range(i + 1 , __snake_case): UpperCamelCase__ : int = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: UpperCamelCase__ : Union[str, Any] = current_dis return min_dis def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=float('inf')) -> Dict: for i in range(min(6 , points_counts - 1) , __snake_case): for j in range(max(0 , i - 6) , __snake_case): UpperCamelCase__ : Optional[Any] = euclidean_distance_sqr(points[i] , points[j]) if current_dis < min_dis: UpperCamelCase__ : int = current_dis return min_dis def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: if points_counts <= 3: return dis_between_closest_pair(__snake_case , __snake_case) # recursion UpperCamelCase__ : str = points_counts // 2 UpperCamelCase__ : List[Any] = closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[:mid] , __snake_case) UpperCamelCase__ : Dict = closest_pair_of_points_sqr( __snake_case , points_sorted_on_y[mid:] , points_counts - mid) UpperCamelCase__ : Dict = min(__snake_case , __snake_case) UpperCamelCase__ : Optional[int] = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0]) < closest_pair_dis: cross_strip.append(__snake_case) UpperCamelCase__ : Optional[Any] = dis_between_closest_in_strip( __snake_case , len(__snake_case) , __snake_case) return min(__snake_case , __snake_case) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[str] = column_based_sort(__snake_case , column=0) UpperCamelCase__ : Optional[Any] = column_based_sort(__snake_case , column=1) return ( closest_pair_of_points_sqr( __snake_case , __snake_case , __snake_case) ) ** 0.5 if __name__ == "__main__": lowerCAmelCase__ = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('Distance:', closest_pair_of_points(points, len(points)))
706
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
0
'''simple docstring''' import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase__ = None lowerCAmelCase__ = "<" if sys.byteorder == "little" else ">" # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase__ = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class __lowercase : _lowerCamelCase = True _lowerCamelCase = None # Automatically constructed _lowerCamelCase = '''PIL.Image.Image''' _lowerCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) _lowerCamelCase = field(default='''Image''' , init=_UpperCAmelCase , repr=_UpperCAmelCase ) def __call__( self : Optional[int]): return self.pa_type def __UpperCamelCase ( self : int , UpperCAmelCase_ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"]): if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if isinstance(lowercase_ , lowercase_): UpperCamelCase__ : str = np.array(lowercase_) if isinstance(lowercase_ , lowercase_): return {"path": value, "bytes": None} elif isinstance(lowercase_ , lowercase_): return {"path": None, "bytes": value} elif isinstance(lowercase_ , np.ndarray): # convert the image array to PNG/TIFF bytes return encode_np_array(lowercase_) elif isinstance(lowercase_ , PIL.Image.Image): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(lowercase_) elif value.get('path') is not None and os.path.isfile(value['path']): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path')} elif value.get('bytes') is not None or value.get('path') is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes'), "path": value.get('path')} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.') def __UpperCamelCase ( self : Any , UpperCAmelCase_ : dict , UpperCAmelCase_ : Any=None): if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.') if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.') if token_per_repo_id is None: UpperCamelCase__ : Any = {} UpperCamelCase__ : Optional[Any] = value["""path"""], value["""bytes"""] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.') else: if is_local_path(lowercase_): UpperCamelCase__ : List[str] = PIL.Image.open(lowercase_) else: UpperCamelCase__ : Any = path.split('::')[-1] try: UpperCamelCase__ : Optional[Any] = string_to_dict(lowercase_ , config.HUB_DATASETS_URL)["""repo_id"""] UpperCamelCase__ : Tuple = token_per_repo_id.get(lowercase_) except ValueError: UpperCamelCase__ : Tuple = None with xopen(lowercase_ , 'rb' , use_auth_token=lowercase_) as f: UpperCamelCase__ : Any = BytesIO(f.read()) UpperCamelCase__ : str = PIL.Image.open(bytes_) else: UpperCamelCase__ : Optional[int] = PIL.Image.open(BytesIO(bytes_)) image.load() # to avoid "Too many open files" errors return image def __UpperCamelCase ( self : Optional[Any]): from .features import Value return ( self if self.decode else { "bytes": Value('binary'), "path": Value('string'), } ) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[pa.StringArray, pa.StructArray, pa.ListArray]): if pa.types.is_string(storage.type): UpperCamelCase__ : Any = pa.array([None] * len(lowercase_) , type=pa.binary()) UpperCamelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCamelCase__ : Union[str, Any] = pa.array([None] * len(lowercase_) , type=pa.string()) UpperCamelCase__ : List[Any] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('bytes') >= 0: UpperCamelCase__ : List[str] = storage.field('bytes') else: UpperCamelCase__ : str = pa.array([None] * len(lowercase_) , type=pa.binary()) if storage.type.get_field_index('path') >= 0: UpperCamelCase__ : List[str] = storage.field('path') else: UpperCamelCase__ : Tuple = pa.array([None] * len(lowercase_) , type=pa.string()) UpperCamelCase__ : int = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null()) elif pa.types.is_list(storage.type): UpperCamelCase__ : List[Any] = pa.array( [encode_np_array(np.array(lowercase_))['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase__ : Dict = pa.array([None] * len(lowercase_) , type=pa.string()) UpperCamelCase__ : Optional[Any] = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowercase_ , self.pa_type) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : pa.StructArray): @no_op_if_value_is_null def path_to_bytes(UpperCAmelCase_ : Any): with xopen(lowercase_ , 'rb') as f: UpperCamelCase__ : Any = f.read() return bytes_ UpperCamelCase__ : Dict = pa.array( [ (path_to_bytes(x['path']) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ : int = pa.array( [os.path.basename(lowercase_) if path is not None else None for path in storage.field('path').to_pylist()] , type=pa.string() , ) UpperCamelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null()) return array_cast(lowercase_ , self.pa_type) def __UpperCAmelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase__ : Union[str, Any] = list(set(PIL.Image.OPEN.keys()) & set(PIL.Image.SAVE.keys())) return _IMAGE_COMPRESSION_FORMATS def __UpperCAmelCase ( lowerCamelCase_) -> bytes: UpperCamelCase__ : List[str] = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase__ : int = image.format else: UpperCamelCase__ : str = """PNG""" if image.mode in ["""1""", """L""", """LA""", """RGB""", """RGBA"""] else """TIFF""" image.save(UpperCAmelCase__ , format=UpperCAmelCase__) return buffer.getvalue() def __UpperCAmelCase ( lowerCamelCase_) -> dict: if hasattr(UpperCAmelCase__ , 'filename') and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__)} def __UpperCAmelCase ( lowerCamelCase_) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') UpperCamelCase__ : Dict = array.dtype UpperCamelCase__ : Dict = dtype.byteorder if dtype.byteorder != """=""" else _NATIVE_BYTEORDER UpperCamelCase__ : Any = dtype.kind UpperCamelCase__ : Tuple = dtype.itemsize UpperCamelCase__ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase__ : Dict = np.dtype('|u1') if dtype_kind not in ["u", "i"]: raise TypeError( f'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.') if dtype is not dest_dtype: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'') # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase__ : List[Any] = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase__ : int = dtype_byteorder + dtype_kind + str(UpperCAmelCase__) UpperCamelCase__ : Union[str, Any] = np.dtype(UpperCAmelCase__) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'') break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}') UpperCamelCase__ : Optional[Any] = PIL.Image.fromarray(array.astype(UpperCAmelCase__)) return {"path": None, "bytes": image_to_bytes(UpperCAmelCase__)} def __UpperCAmelCase ( lowerCamelCase_) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.') if objs: UpperCamelCase__ : Union[str, Any] = first_non_null_value(UpperCAmelCase__) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(UpperCAmelCase__ , np.ndarray): UpperCamelCase__ : Union[str, Any] = no_op_if_value_is_null(UpperCAmelCase__) return [obj_to_image_dict_func(UpperCAmelCase__) for obj in objs] elif isinstance(UpperCAmelCase__ , PIL.Image.Image): UpperCamelCase__ : List[str] = no_op_if_value_is_null(UpperCAmelCase__) return [obj_to_image_dict_func(UpperCAmelCase__) for obj in objs] else: return objs else: return objs
707
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
0
'''simple docstring''' import math import qiskit def __UpperCAmelCase ( lowerCamelCase_ = 1 , lowerCamelCase_ = 1 , lowerCamelCase_ = 1) -> qiskit.result.counts.Counts: if ( isinstance(_lowercase , _lowercase) or isinstance(_lowercase , _lowercase) or isinstance(_lowercase , _lowercase) ): raise TypeError('inputs must be integers.') if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError('inputs must be positive.') if ( (math.floor(_lowercase) != input_a) or (math.floor(_lowercase) != input_a) or (math.floor(_lowercase) != carry_in) ): raise ValueError('inputs must be exact integers.') if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError('inputs must be less or equal to 2.') # build registers UpperCamelCase__ : Optional[int] = qiskit.QuantumRegister(4 , 'qr') UpperCamelCase__ : Any = qiskit.ClassicalRegister(2 , 'cr') # list the entries UpperCamelCase__ : List[str] = [input_a, input_a, carry_in] UpperCamelCase__ : List[str] = qiskit.QuantumCircuit(_lowercase , _lowercase) for i in range(0 , 3): if entry[i] == 2: quantum_circuit.h(_lowercase) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(_lowercase) # for 1 entries elif entry[i] == 0: quantum_circuit.i(_lowercase) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3) # ccx = toffoli gate quantum_circuit.cx(0 , 1) quantum_circuit.ccx(1 , 2 , 3) quantum_circuit.cx(1 , 2) quantum_circuit.cx(0 , 1) quantum_circuit.measure([2, 3] , _lowercase) # measure the last two qbits UpperCamelCase__ : int = qiskit.Aer.get_backend('aer_simulator') UpperCamelCase__ : Optional[int] = qiskit.execute(_lowercase , _lowercase , shots=1_000) return job.result().get_counts(_lowercase) if __name__ == "__main__": print(f'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
708
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowerCAmelCase__ = {'''allegro/herbert-base-cased''': 514} lowerCAmelCase__ = {} class __lowercase (UpperCAmelCase__ ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = HerbertTokenizer def __init__( self : Any , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[Any]="<s>" , UpperCAmelCase_ : Optional[Any]="<unk>" , UpperCAmelCase_ : Union[str, Any]="<pad>" , UpperCAmelCase_ : Union[str, Any]="<mask>" , UpperCAmelCase_ : str="</s>" , **UpperCAmelCase_ : List[Any] , ): super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , **__lowerCAmelCase , ) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Dict = [self.cls_token_id] UpperCamelCase__ : Tuple = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase) if token_ids_a is None: return [1] + ([0] * len(__lowerCAmelCase)) + [1] return [1] + ([0] * len(__lowerCAmelCase)) + [1] + ([0] * len(__lowerCAmelCase)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : int = [self.sep_token_id] UpperCamelCase__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): UpperCamelCase__ : Union[str, Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase) return tuple(__lowerCAmelCase)
709
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class __lowercase (__UpperCAmelCase ): _lowerCamelCase = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''image''': Image()} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "image" _lowerCamelCase = "labels" def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Union[str, Any]): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F'Column {self.label_column} is not a ClassLabel.') UpperCamelCase__ : Tuple = copy.deepcopy(self) UpperCamelCase__ : Optional[int] = self.label_schema.copy() UpperCamelCase__ : Optional[int] = features[self.label_column] UpperCamelCase__ : str = label_schema return task_template @property def __UpperCamelCase ( self : int): return { self.image_column: "image", self.label_column: "labels", }
710
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
0
'''simple docstring''' import numpy as np def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: return 1 / (1 + np.exp(-vector)) if __name__ == "__main__": import doctest doctest.testmod()
711
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): def __init__( self : List[Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any]): warnings.warn( 'The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use FlavaImageProcessor instead.' , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE)
712
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> int: UpperCamelCase__ : List[Any] = sorted(numsa + numsa) UpperCamelCase__ : Tuple = divmod(len(lowerCamelCase_) , 2) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [float(x) for x in input('Enter the elements of first array: ').split()] lowerCAmelCase__ = [float(x) for x in input('Enter the elements of second array: ').split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
713
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
0
'''simple docstring''' import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase__ = getLogger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 8 , lowerCamelCase_ = 1_024 , lowerCamelCase_="val" , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_="summarization" , lowerCamelCase_=None , lowerCamelCase_=1 , lowerCamelCase_ = None , lowerCamelCase_="" , **lowerCamelCase_ , ) -> Union[str, Any]: UpperCamelCase__ : List[Any] = str(SCREAMING_SNAKE_CASE_) assert local_rank is not None torch.distributed.init_process_group(backend='nccl' , rank=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : str = Path(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Any = save_dir.joinpath(f'rank_{local_rank}_output.json') torch.cuda.set_device(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Union[str, Any] = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE_).cuda() if fpaa: UpperCamelCase__ : List[Any] = model.half() # determine if we need to increase num_beams use_task_specific_params(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # update config with task specific params UpperCamelCase__ : int = generate_kwargs.pop('num_beams' , model.config.num_beams) # AttributeError risk? if num_return_sequences > num_beams: UpperCamelCase__ : int = num_return_sequences UpperCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}') # if this is wrong, check config.model_type. if max_source_length is None: UpperCamelCase__ : int = tokenizer.model_max_length if prefix is None: UpperCamelCase__ : List[Any] = prefix or getattr(model.config , 'prefix' , '') or '' UpperCamelCase__ : Optional[int] = SeqaSeqDataset( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , max_target_length=1_024 , type_path=SCREAMING_SNAKE_CASE_ , n_obs=SCREAMING_SNAKE_CASE_ , prefix=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. UpperCamelCase__ : List[str] = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE_ , distributed=SCREAMING_SNAKE_CASE_ , add_extra_examples=SCREAMING_SNAKE_CASE_ , shuffle=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : List[str] = DataLoader(SCREAMING_SNAKE_CASE_ , sampler=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , collate_fn=ds.collate_fn) UpperCamelCase__ : Optional[Any] = [] for batch in tqdm(SCREAMING_SNAKE_CASE_): UpperCamelCase__ : List[str] = model.generate( input_ids=batch['input_ids'].to(model.device) , attention_mask=batch['attention_mask'].to(model.device) , num_return_sequences=SCREAMING_SNAKE_CASE_ , num_beams=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : List[Any] = batch['ids'] if num_return_sequences > 1: UpperCamelCase__ : str = chunks(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) # batch size chunks, each of size num_return_seq for i, pred in enumerate(SCREAMING_SNAKE_CASE_): results.append({'pred': pred, 'id': ids[i].item()}) save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return results, sampler.num_replicas def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = argparse.ArgumentParser( epilog='Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate') parser.add_argument('--data_dir' , type=SCREAMING_SNAKE_CASE_ , help='like cnn_dm/test.source') parser.add_argument( '--model_name' , type=SCREAMING_SNAKE_CASE_ , help='like facebook/bart-large-cnn,t5-base, etc.' , default='sshleifer/distilbart-xsum-12-3' , ) parser.add_argument('--save_dir' , type=SCREAMING_SNAKE_CASE_ , help='where to save' , default='tmp_gen') parser.add_argument('--max_source_length' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_) parser.add_argument( '--type_path' , type=SCREAMING_SNAKE_CASE_ , default='test' , help='which subset to evaluate typically train/val/test') parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE_ , default='summarization' , help='used for task_specific_params + metrics') parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE_ , default=8 , required=SCREAMING_SNAKE_CASE_ , help='batch size') parser.add_argument( '--local_rank' , type=SCREAMING_SNAKE_CASE_ , default=-1 , required=SCREAMING_SNAKE_CASE_ , help='should be passed by distributed.launch') parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='How many observations. Defaults to all.') parser.add_argument( '--num_return_sequences' , type=SCREAMING_SNAKE_CASE_ , default=1 , required=SCREAMING_SNAKE_CASE_ , help='How many sequences to return') parser.add_argument( '--sync_timeout' , type=SCREAMING_SNAKE_CASE_ , default=600 , required=SCREAMING_SNAKE_CASE_ , help='How long should master process wait for other processes to finish.' , ) parser.add_argument('--src_lang' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_) parser.add_argument('--tgt_lang' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='will be added to the begininng of src examples') parser.add_argument('--fp16' , action='store_true') parser.add_argument('--debug' , action='store_true') UpperCamelCase__ : Optional[int] = time.time() UpperCamelCase__, UpperCamelCase__ : Optional[int] = parser.parse_known_args() UpperCamelCase__ : Union[str, Any] = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE_) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}') UpperCamelCase__ : Tuple = Path(args.save_dir + '_tmp') Path(SCREAMING_SNAKE_CASE_).mkdir(exist_ok=SCREAMING_SNAKE_CASE_) # this handles locking. UpperCamelCase__ : Optional[Any] = list(json_save_dir.glob('rank_*.json')) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.') # In theory, a node could finish and save before another node hits this. If this happens, we can address later. UpperCamelCase__ : Union[str, Any] = {} if args.src_lang is not None: UpperCamelCase__ : Optional[int] = args.src_lang if args.tgt_lang is not None: UpperCamelCase__ : Union[str, Any] = args.tgt_lang Path(args.save_dir).mkdir(exist_ok=SCREAMING_SNAKE_CASE_) UpperCamelCase__, UpperCamelCase__ : Optional[int] = eval_data_dir( args.data_dir , SCREAMING_SNAKE_CASE_ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) if args.local_rank <= 0: UpperCamelCase__ : List[str] = Path(args.save_dir) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE_) UpperCamelCase__ : str = gather_results_from_each_node(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , args.sync_timeout) UpperCamelCase__ : int = combine_partial_results(SCREAMING_SNAKE_CASE_) if args.num_return_sequences > 1: UpperCamelCase__ : Any = save_dir.joinpath('pseudolabel_results.json') print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/') save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return UpperCamelCase__ : Optional[int] = Path(args.data_dir).joinpath(args.type_path + '.target') with open(SCREAMING_SNAKE_CASE_) as f: UpperCamelCase__ : Any = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE_)] # Calculate metrics, save metrics, and save _generations.txt UpperCamelCase__ : Tuple = 'translation' in args.task UpperCamelCase__ : Optional[int] = calculate_bleu if calc_bleu else calculate_rouge UpperCamelCase__ : List[Any] = 'bleu' if calc_bleu else 'rouge' UpperCamelCase__ : Optional[int] = score_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) UpperCamelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Optional[Any] = time.time() - start_time UpperCamelCase__ : List[str] = round(runtime / metrics['n_obs'] , 4) UpperCamelCase__ : Optional[Any] = num_replicas # TODO(@stas00): add whatever metadata to metrics UpperCamelCase__ : Any = save_dir.joinpath(f'{args.type_path}_{metric_name}.json') save_json(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=SCREAMING_SNAKE_CASE_) print(SCREAMING_SNAKE_CASE_) write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(f'{args.type_path}_generations.txt')) if args.debug: write_txt_file(SCREAMING_SNAKE_CASE_ , save_dir.joinpath(f'{args.type_path}.target')) else: shutil.rmtree(SCREAMING_SNAKE_CASE_) def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Tuple = [] for partial_result in partial_results: records.extend(SCREAMING_SNAKE_CASE_) UpperCamelCase__ : Tuple = sorted(SCREAMING_SNAKE_CASE_ , key=lambda lowerCamelCase_: x["id"]) UpperCamelCase__ : Optional[int] = [x['pred'] for x in records] return preds def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: # WAIT FOR lots of .json files UpperCamelCase__ : Optional[int] = time.time() logger.info('waiting for all nodes to finish') UpperCamelCase__ : Tuple = None while (time.time() - start_wait) < timeout: UpperCamelCase__ : Tuple = list(save_dir.glob('rank_*.json')) if len(SCREAMING_SNAKE_CASE_) < num_replicas: continue try: # make sure all json files are fully saved UpperCamelCase__ : str = lmap(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) return json_data except JSONDecodeError: continue else: raise TimeoutError('Rank 0 gave up on waiting for other processes') # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
714
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors lowerCAmelCase__ = logging.getLogger(__name__) class __lowercase (__snake_case ): _lowerCamelCase = 'sequence-classification' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]): if type(A_) == dict: UpperCamelCase__ : Any = Namespace(**A_) UpperCamelCase__ : Optional[int] = glue_output_modes[hparams.task] UpperCamelCase__ : Any = glue_tasks_num_labels[hparams.task] super().__init__(A_ , A_ , self.mode) def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : int): return self.model(**A_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Any = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Optional[int] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ : List[Any] = self(**A_) UpperCamelCase__ : Dict = outputs[0] UpperCamelCase__ : Optional[Any] = self.trainer.lr_schedulers[0]["scheduler"] UpperCamelCase__ : int = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Tuple = self.hparams UpperCamelCase__ : Tuple = processors[args.task]() UpperCamelCase__ : List[str] = processor.get_labels() for mode in ["train", "dev"]: UpperCamelCase__ : str = self._feature_file(A_) if os.path.exists(A_) and not args.overwrite_cache: logger.info('Loading features from cached file %s' , A_) else: logger.info('Creating features from dataset file at %s' , args.data_dir) UpperCamelCase__ : Optional[Any] = ( processor.get_dev_examples(args.data_dir) if mode == "dev" else processor.get_train_examples(args.data_dir) ) UpperCamelCase__ : Any = convert_examples_to_features( A_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info('Saving features into cached file %s' , A_) torch.save(A_ , A_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any = False): UpperCamelCase__ : Dict = "dev" if mode == "test" else mode UpperCamelCase__ : str = self._feature_file(A_) logger.info('Loading features from cached file %s' , A_) UpperCamelCase__ : Dict = torch.load(A_) UpperCamelCase__ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long) UpperCamelCase__ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long) UpperCamelCase__ : Optional[Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : List[str] = torch.tensor([f.label for f in features] , dtype=torch.long) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : List[str] = torch.tensor([f.label for f in features] , dtype=torch.float) return DataLoader( TensorDataset(A_ , A_ , A_ , A_) , batch_size=A_ , shuffle=A_ , ) def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: UpperCamelCase__ : Union[str, Any] = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None UpperCamelCase__ : Tuple = self(**A_) UpperCamelCase__ : Dict = outputs[:2] UpperCamelCase__ : Dict = logits.detach().cpu().numpy() UpperCamelCase__ : int = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : int , UpperCAmelCase_ : Dict): UpperCamelCase__ : Tuple = torch.stack([x['val_loss'] for x in outputs]).mean().detach().cpu().item() UpperCamelCase__ : Optional[int] = np.concatenate([x['pred'] for x in outputs] , axis=0) if self.hparams.glue_output_mode == "classification": UpperCamelCase__ : Any = np.argmax(A_ , axis=1) elif self.hparams.glue_output_mode == "regression": UpperCamelCase__ : List[str] = np.squeeze(A_) UpperCamelCase__ : Union[str, Any] = np.concatenate([x['target'] for x in outputs] , axis=0) UpperCamelCase__ : List[str] = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : Any = [[] for _ in range(out_label_ids.shape[0])] UpperCamelCase__ : List[str] = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , A_ , A_)} UpperCamelCase__ : Optional[Any] = dict(results.items()) UpperCamelCase__ : str = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Dict): UpperCamelCase__ : List[Any] = self._eval_end(A_) UpperCamelCase__ : Union[str, Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str): UpperCamelCase__ : List[Any] = self._eval_end(A_) UpperCamelCase__ : List[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any): BaseTransformer.add_model_specific_args(A_ , A_) parser.add_argument( '--max_seq_length' , default=128 , type=A_ , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--task' , default='' , type=A_ , required=A_ , help='The GLUE task to run' , ) parser.add_argument( '--gpus' , default=0 , type=A_ , help='The number of GPUs allocated for this, it is by default 0 meaning none' , ) parser.add_argument( '--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets') return parser def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : Dict = argparse.ArgumentParser() add_generic_args(_lowerCAmelCase , os.getcwd()) UpperCamelCase__ : Optional[int] = GLUETransformer.add_model_specific_args(_lowerCAmelCase , os.getcwd()) UpperCamelCase__ : List[str] = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: UpperCamelCase__ : List[Any] = os.path.join( './results' , f'{args.task}_{time.strftime("%Y%m%d_%H%M%S")}' , ) os.makedirs(args.output_dir) UpperCamelCase__ : Optional[int] = GLUETransformer(_lowerCAmelCase) UpperCamelCase__ : str = generic_train(_lowerCAmelCase , _lowerCAmelCase) # Optionally, predict on dev set and write to output_dir if args.do_predict: UpperCamelCase__ : List[str] = sorted(glob.glob(os.path.join(args.output_dir , 'checkpoint-epoch=*.ckpt') , recursive=_lowerCAmelCase)) UpperCamelCase__ : Tuple = model.load_from_checkpoint(checkpoints[-1]) return trainer.test(_lowerCAmelCase) if __name__ == "__main__": main()
715
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class __lowercase (UpperCamelCase__ ): def __init__( self : List[str]): # test for the above condition self.test() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Tuple = False while not completed: if counter == 1: self.reset() UpperCamelCase__ : str = self.advance() if not self.does_advance(UpperCAmelCase_): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.') UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Any = self.update(UpperCAmelCase_) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.') if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.') @abstractmethod def __UpperCamelCase ( self : Tuple): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') @abstractmethod def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') @abstractmethod def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[int]): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') @abstractmethod def __UpperCamelCase ( self : Optional[Any]): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') @abstractmethod def __UpperCamelCase ( self : Union[str, Any]): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') @abstractmethod def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Optional[Any]=False): raise NotImplementedError( F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.') class __lowercase (UpperCamelCase__ ): def __init__( self : List[str] , UpperCAmelCase_ : Optional[int]): super(UpperCAmelCase_ , self).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or len(UpperCAmelCase_) == 0: raise ValueError(F'`token_ids` has to be a non-empty list, but is {token_ids}.') if any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or token_id < 0) for token_id in token_ids): raise ValueError(F'Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.') UpperCamelCase__ : str = token_ids UpperCamelCase__ : Union[str, Any] = len(self.token_ids) UpperCamelCase__ : str = -1 # the index of the currently fulfilled step UpperCamelCase__ : Optional[int] = False def __UpperCamelCase ( self : Optional[int]): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[Any]): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_)}') if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Union[str, Any]): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError(F'`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase_)}') UpperCamelCase__ : int = False UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : List[Any] = False if self.does_advance(UpperCAmelCase_): self.fulfilled_idx += 1 UpperCamelCase__ : Tuple = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase__ : Tuple = True UpperCamelCase__ : List[str] = completed else: # failed to make progress. UpperCamelCase__ : Union[str, Any] = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = False UpperCamelCase__ : Optional[int] = 0 def __UpperCamelCase ( self : str): return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict=False): UpperCamelCase__ : Optional[Any] = PhrasalConstraint(self.token_ids) if stateful: UpperCamelCase__ : Tuple = self.seqlen UpperCamelCase__ : Dict = self.fulfilled_idx UpperCamelCase__ : List[Any] = self.completed return new_constraint class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int=True): UpperCamelCase__ : Optional[Any] = max([len(UpperCAmelCase_) for one in nested_token_ids]) UpperCamelCase__ : Tuple = {} for token_ids in nested_token_ids: UpperCamelCase__ : List[Any] = root for tidx, token_id in enumerate(UpperCAmelCase_): if token_id not in level: UpperCamelCase__ : List[str] = {} UpperCamelCase__ : List[str] = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F' {nested_token_ids}.') UpperCamelCase__ : List[str] = root def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Union[str, Any] = self.trie for current_token in current_seq: UpperCamelCase__ : Any = start[current_token] UpperCamelCase__ : Optional[int] = list(start.keys()) return next_tokens def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Any): UpperCamelCase__ : List[str] = self.next_tokens(UpperCAmelCase_) return len(UpperCAmelCase_) == 0 def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Any = list(root.values()) if len(UpperCAmelCase_) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase_) for nn in next_nodes]) def __UpperCamelCase ( self : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : int = self.count_leaves(UpperCAmelCase_) return len(UpperCAmelCase_) != leaf_count class __lowercase (UpperCamelCase__ ): def __init__( self : Optional[int] , UpperCAmelCase_ : Dict): super(UpperCAmelCase_ , self).__init__() if not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or len(UpperCAmelCase_) == 0: raise ValueError(F'`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.') if any(not isinstance(UpperCAmelCase_ , UpperCAmelCase_) for token_ids in nested_token_ids): raise ValueError(F'`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.') if any( any((not isinstance(UpperCAmelCase_ , UpperCAmelCase_) or token_id < 0) for token_id in token_ids) for token_ids in nested_token_ids): raise ValueError( F'Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.') UpperCamelCase__ : Optional[int] = DisjunctiveTrie(UpperCAmelCase_) UpperCamelCase__ : int = nested_token_ids UpperCamelCase__ : List[Any] = self.trie.max_height UpperCamelCase__ : str = [] UpperCamelCase__ : Optional[Any] = False def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Dict = self.trie.next_tokens(self.current_seq) if len(UpperCAmelCase_) == 0: return None else: return token_list def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_)}') UpperCamelCase__ : Tuple = self.trie.next_tokens(self.current_seq) return token_id in next_tokens def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[Any]): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError(F'`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase_)}') UpperCamelCase__ : Optional[Any] = False UpperCamelCase__ : List[str] = False UpperCamelCase__ : Tuple = False if self.does_advance(UpperCAmelCase_): self.current_seq.append(UpperCAmelCase_) UpperCamelCase__ : str = True else: UpperCamelCase__ : int = True self.reset() UpperCamelCase__ : str = self.trie.reached_leaf(self.current_seq) UpperCamelCase__ : Any = completed return stepped, completed, reset def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = False UpperCamelCase__ : List[str] = [] def __UpperCamelCase ( self : List[Any]): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : int=False): UpperCamelCase__ : int = DisjunctiveConstraint(self.token_ids) if stateful: UpperCamelCase__ : Dict = self.seqlen UpperCamelCase__ : Tuple = self.current_seq UpperCamelCase__ : Optional[Any] = self.completed return new_constraint class __lowercase : def __init__( self : Any , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Union[str, Any] = constraints # max # of steps required to fulfill a given constraint UpperCamelCase__ : Any = max([c.seqlen for c in constraints]) UpperCamelCase__ : Dict = len(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = False self.init_state() def __UpperCamelCase ( self : int): UpperCamelCase__ : Any = [] UpperCamelCase__ : int = None UpperCamelCase__ : Optional[int] = [constraint.copy(stateful=UpperCAmelCase_) for constraint in self.constraints] def __UpperCamelCase ( self : str): UpperCamelCase__ : Any = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints) * self.max_seqlen) + add def __UpperCamelCase ( self : str): UpperCamelCase__ : List[str] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase__ : str = constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_): token_list.append(UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): token_list.extend(UpperCAmelCase_) else: UpperCamelCase__ : List[str] = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase_ , UpperCAmelCase_): token_list.append(UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): token_list.extend(UpperCAmelCase_) if len(UpperCAmelCase_) == 0: return None else: return token_list def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Dict): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.add(UpperCAmelCase_) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self : Any , UpperCAmelCase_ : List[Any]): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise ValueError(F'`token_id` should be an `int`, but is `{token_id}`.') UpperCamelCase__, UpperCamelCase__ : Optional[Any] = False, False if self.completed: UpperCamelCase__ : List[Any] = True UpperCamelCase__ : List[str] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = self.inprogress_constraint.update(UpperCAmelCase_) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint) UpperCamelCase__ : str = None if len(self.pending_constraints) == 0: # we're done! UpperCamelCase__ : str = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints): if pending_constraint.does_advance(UpperCAmelCase_): UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = pending_constraint.update(UpperCAmelCase_) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.') if complete: self.complete_constraints.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = None if not complete and stepped: UpperCamelCase__ : List[str] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase__ : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase__ : Tuple = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[int]=True): UpperCamelCase__ : str = ConstraintListState(self.constraints) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase__ : Optional[int] = [ constraint.copy(stateful=UpperCAmelCase_) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase__ : Tuple = self.inprogress_constraint.copy(stateful=UpperCAmelCase_) UpperCamelCase__ : Tuple = [constraint.copy() for constraint in self.pending_constraints] return new_state
716
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
0
'''simple docstring''' import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __lowercase (UpperCAmelCase__ , unittest.TestCase ): _lowerCamelCase = CTRLTokenizer _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : List[str]): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ : str = ["adapt", "re@@", "a@@", "apt", "c@@", "t", "<unk>"] UpperCamelCase__ : List[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__)))) UpperCamelCase__ : Dict = ["#version: 0.2", "a p", "ap t</w>", "r e", "a d", "ad apt</w>", ""] UpperCamelCase__ : Any = {"unk_token": "<unk>"} UpperCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowerCamelCase__) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowerCamelCase__)) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : Optional[int]): kwargs.update(self.special_tokens_map) return CTRLTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : int = "adapt react readapt apt" UpperCamelCase__ : Optional[int] = "adapt react readapt apt" return input_text, output_text def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) UpperCamelCase__ : int = "adapt react readapt apt" UpperCamelCase__ : List[str] = "adapt re@@ a@@ c@@ t re@@ adapt apt".split() UpperCamelCase__ : str = tokenizer.tokenize(lowerCamelCase__) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__) UpperCamelCase__ : Tuple = tokens + [tokenizer.unk_token] UpperCamelCase__ : Optional[int] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__) , lowerCamelCase__)
717
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = None _lowerCamelCase = None def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = Node(1) UpperCamelCase__ : Union[str, Any] = Node(2) UpperCamelCase__ : str = Node(3) UpperCamelCase__ : Union[str, Any] = Node(4) UpperCamelCase__ : Optional[Any] = Node(5) return tree def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: return [root.data, *preorder(root.left), *preorder(root.right)] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: return postorder(root.left) + postorder(root.right) + [root.data] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: return [*inorder(root.left), root.data, *inorder(root.right)] if root else [] def __UpperCAmelCase ( lowerCamelCase_) -> str: return (max(height(root.left) , height(root.right)) + 1) if root else 0 def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: UpperCamelCase__ : Optional[Any] = [] if root is None: return output UpperCamelCase__ : Union[str, Any] = deque([root]) while process_queue: UpperCamelCase__ : Tuple = process_queue.popleft() output.append(node.data) if node.left: process_queue.append(node.left) if node.right: process_queue.append(node.right) return output def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: UpperCamelCase__ : Union[str, Any] = [] def populate_output(lowerCamelCase_ , lowerCamelCase_) -> None: if not root: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.left , level - 1) populate_output(root.right , level - 1) populate_output(lowercase__ , lowercase__) return output def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : List[Any] = [] def populate_output(lowerCamelCase_ , lowerCamelCase_) -> None: if root is None: return if level == 1: output.append(root.data) elif level > 1: populate_output(root.right , level - 1) populate_output(root.left , level - 1) populate_output(lowercase__ , lowercase__) return output def __UpperCAmelCase ( lowerCamelCase_) -> int: if root is None: return [] UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : str = 0 UpperCamelCase__ : Union[str, Any] = height(lowercase__) for h in range(1 , height_tree + 1): if not flag: output.append(get_nodes_from_left_to_right(lowercase__ , lowercase__)) UpperCamelCase__ : Union[str, Any] = 1 else: output.append(get_nodes_from_right_to_left(lowercase__ , lowercase__)) UpperCamelCase__ : Any = 0 return output def __UpperCAmelCase ( ) -> int: # Main function for testing. UpperCamelCase__ : Optional[Any] = make_tree() print(f'In-order Traversal: {inorder(lowercase__)}') print(f'Pre-order Traversal: {preorder(lowercase__)}') print(f'Post-order Traversal: {postorder(lowercase__)}' , '\n') print(f'Height of Tree: {height(lowercase__)}' , '\n') print('Complete Level Order Traversal: ') print(level_order(lowercase__) , '\n') print('Level-wise order Traversal: ') for level in range(1 , height(lowercase__) + 1): print(f'Level {level}:' , get_nodes_from_left_to_right(lowercase__ , level=lowercase__)) print('\nZigZag order Traversal: ') print(zigzag(lowercase__)) if __name__ == "__main__": import doctest doctest.testmod() main()
718
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
0