code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import argparse A : Tuple = "docs/source/_static/js/custom.js" def lowercase_ ( _A : List[Any] ): """simple docstring""" with open(_A , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase__ : Tuple = f.readlines() lowerCamelCase__ : str = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 lowerCamelCase__ : int = F"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F" \"v{version}\": \"v{version}\",\n" with open(_A , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_A ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument("--version", help="Release version.") A : Optional[int] = parser.parse_args() update_custom_js(args.version)
705
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
0
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
0
def lowercase_ ( _A : int = 10 , _A : int = 1000 , _A : bool = True ): """simple docstring""" assert ( isinstance(_A , _A ) and isinstance(_A , _A ) and isinstance(_A , _A ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def lowercase_ ( _A : int , _A : int ): """simple docstring""" return int((number_a + number_a) / 2 ) def lowercase_ ( _A : int , _A : int , _A : int ): """simple docstring""" assert ( isinstance(_A , _A ) and isinstance(_A , _A ) and isinstance(_A , _A ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(_A : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) lowerCamelCase__ : int = lower lowerCamelCase__ : Optional[int] = higher lowerCamelCase__ : Any = [] while True: lowerCamelCase__ : str = get_avg(_A , _A ) last_numbers.append(_A ) if answer(_A ) == "low": lowerCamelCase__ : Optional[Any] = number elif answer(_A ) == "high": lowerCamelCase__ : Union[str, Any] = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = int(input("Enter lower value : " ).strip() ) lowerCamelCase__ : Dict = int(input("Enter high value : " ).strip() ) lowerCamelCase__ : int = int(input("Enter value to guess : " ).strip() ) guess_the_number(_A , _A , _A ) if __name__ == "__main__": main()
707
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
import os def lowercase_ ( _A : Tuple ): """simple docstring""" lowerCamelCase__ : Optional[Any] = len(grid[0] ) lowerCamelCase__ : List[str] = len(_A ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_A ): for j in range(n_rows - 3 ): lowerCamelCase__ : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__ : Optional[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__ : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__ : Union[str, Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__ : List[Any] = max( _A , _A , _A , _A ) if max_product > largest: lowerCamelCase__ : Union[str, Any] = max_product return largest def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = [] with open(os.path.dirname(_A ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase__ : Any = [[int(_A ) for i in grid[j]] for j in range(len(_A ) )] return largest_product(_A ) if __name__ == "__main__": print(solution())
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[str] = logging.get_logger(__name__) A : Optional[int] = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class _lowercase ( lowercase__): A__ = "sew" def __init__( self : Optional[Any] , __lowerCamelCase : int=32 , __lowerCamelCase : Dict=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : Optional[int]="group" , __lowerCamelCase : int="gelu" , __lowerCamelCase : Any=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Dict=16 , __lowerCamelCase : int=True , __lowerCamelCase : Any=0.0_5 , __lowerCamelCase : int=10 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : str=10 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Dict="mean" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : List[str] = feat_extract_norm lowerCamelCase__ : Dict = feat_extract_activation lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Dict = list(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = conv_bias lowerCamelCase__ : List[str] = num_conv_pos_embeddings lowerCamelCase__ : Tuple = num_conv_pos_embedding_groups lowerCamelCase__ : Optional[Any] = len(self.conv_dim ) lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : int = squeeze_factor lowerCamelCase__ : str = hidden_act lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : Any = hidden_dropout lowerCamelCase__ : Tuple = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : Tuple = feat_proj_dropout lowerCamelCase__ : str = final_dropout lowerCamelCase__ : int = layerdrop lowerCamelCase__ : Union[str, Any] = layer_norm_eps lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : int = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : Tuple = apply_spec_augment lowerCamelCase__ : Optional[Any] = mask_time_prob lowerCamelCase__ : Tuple = mask_time_length lowerCamelCase__ : List[Any] = mask_time_min_masks lowerCamelCase__ : List[Any] = mask_feature_prob lowerCamelCase__ : Any = mask_feature_length lowerCamelCase__ : Any = mask_feature_min_masks # ctc loss lowerCamelCase__ : List[str] = ctc_loss_reduction lowerCamelCase__ : Dict = ctc_zero_infinity # sequence classification lowerCamelCase__ : Tuple = use_weighted_layer_sum lowerCamelCase__ : Optional[Any] = classifier_proj_size @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
709
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
0
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = "vision-encoder-decoder" A__ = True def __init__( self : int , **__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) lowerCamelCase__ : Dict = kwargs.pop("encoder" ) lowerCamelCase__ : Union[str, Any] = encoder_config.pop("model_type" ) lowerCamelCase__ : Tuple = kwargs.pop("decoder" ) lowerCamelCase__ : List[Any] = decoder_config.pop("model_type" ) lowerCamelCase__ : Dict = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : int = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[int] = True @classmethod def lowerCAmelCase ( cls : Tuple , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : int ): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCamelCase__ : Tuple = True lowerCamelCase__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Dict = self.encoder.to_dict() lowerCamelCase__ : List[Any] = self.decoder.to_dict() lowerCamelCase__ : Optional[Any] = self.__class__.model_type return output class _lowercase ( lowercase__): """simple docstring""" A__ = version.parse("1.11") @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return 1E-4 @property def lowerCAmelCase ( self : str ): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OrderedDict() lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} lowerCamelCase__ : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 1: "encoder_sequence"} return common_inputs def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : "PreTrainedTokenizerBase" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , ): '''simple docstring''' import torch lowerCamelCase__ : str = OrderedDict() lowerCamelCase__ : Optional[int] = super().generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) lowerCamelCase__ : Any = dummy_input["input_ids"].shape lowerCamelCase__ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) lowerCamelCase__ : Optional[int] = dummy_input.pop("input_ids" ) lowerCamelCase__ : Dict = dummy_input.pop("attention_mask" ) lowerCamelCase__ : Union[str, Any] = torch.zeros(__lowerCamelCase ) return common_inputs class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(__lowerCamelCase ) def lowerCAmelCase ( self : str , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : str = "default" ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCamelCase , __lowerCamelCase )
710
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A : List[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase_ ( _A : List[str] , _A : Any , _A : Union[str, Any]=None , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[str]=None , _A : str=None , _A : Dict=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Dict=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : str=2 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : str=4 , __lowerCamelCase : int="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Any=0.0_2 , ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Tuple = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Tuple = pad_token_id lowerCamelCase__ : Union[str, Any] = bos_token_id lowerCamelCase__ : List[str] = initializer_range def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase__ : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase__ : int = shift_tokens_right(__lowerCamelCase , 1 , 2 ) lowerCamelCase__ : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) lowerCamelCase__ : Tuple = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = 20 lowerCamelCase__ : Any = model_class_name(__lowerCamelCase ) lowerCamelCase__ : Tuple = model.encode(inputs_dict["input_ids"] ) lowerCamelCase__ : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__ : str = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCamelCase__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Dict = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = model.decode(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = 20 lowerCamelCase__ : Optional[int] = model_class_name(__lowerCamelCase ) lowerCamelCase__ : List[str] = model.encode(inputs_dict["input_ids"] ) lowerCamelCase__ : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) lowerCamelCase__ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class _lowercase ( unittest.TestCase): """simple docstring""" A__ = 99 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__ : Optional[Any] = input_ids.shape[0] lowerCamelCase__ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[str] = self._get_config_and_data() lowerCamelCase__ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) lowerCamelCase__ : Any = lm_model(input_ids=__lowerCamelCase ) lowerCamelCase__ : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__ : Optional[int] = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) lowerCamelCase__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase__ : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase__ : int = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) lowerCamelCase__ : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase__ : int = shift_tokens_right(__lowerCamelCase , 1 , 2 ) lowerCamelCase__ : List[Any] = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() lowerCamelCase__ : Dict = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( lowercase__ , unittest.TestCase , lowercase__): """simple docstring""" A__ = True A__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : int = FlaxBlenderbotModelTester(self ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase : List[str] , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): lowerCamelCase__ : Optional[Any] = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase__ : List[Any] = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) lowerCamelCase__ : str = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCamelCase__ : List[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): lowerCamelCase__ : Optional[int] = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase__ : Any = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ : str = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__ : Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__ : Dict = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=__lowerCamelCase ) lowerCamelCase__ : Dict = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) lowerCamelCase__ : Dict = ["Sam"] lowerCamelCase__ : List[Any] = tokenizer(__lowerCamelCase , return_tensors="jax" ) lowerCamelCase__ : Any = model.generate(**__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = "Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__ : int = tokenizer.batch_decode(__lowerCamelCase , **__lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
711
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
0
A : Optional[int] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : Any = [{"type": "code", "content": INSTALL_CONTENT}] A : str = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
712
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
0
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer A : List[str] = logging.get_logger(__name__) A : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} A : Union[str, Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Optional[int] = { "allenai/led-base-16384": 16384, } class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = LEDTokenizer A__ = ["input_ids", "attention_mask"] def __init__( self : List[Any] , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]="replace" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Optional[int]="</s>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : str="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Dict="<mask>" , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : int=True , **__lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__( __lowerCamelCase , __lowerCamelCase , tokenizer_file=__lowerCamelCase , errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , trim_offsets=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: lowerCamelCase__ : List[str] = getattr(__lowerCamelCase , pre_tok_state.pop("type" ) ) lowerCamelCase__ : Tuple = add_prefix_space lowerCamelCase__ : str = pre_tok_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowerCamelCase__ : Dict = "post_processor" lowerCamelCase__ : List[Any] = getattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) if tokenizer_component_instance: lowerCamelCase__ : str = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : List[str] = tuple(state["sep"] ) if "cls" in state: lowerCamelCase__ : List[str] = tuple(state["cls"] ) lowerCamelCase__ : str = False if state.get("add_prefix_space" , __lowerCamelCase ) != add_prefix_space: lowerCamelCase__ : Any = add_prefix_space lowerCamelCase__ : Dict = True if state.get("trim_offsets" , __lowerCamelCase ) != trim_offsets: lowerCamelCase__ : int = trim_offsets lowerCamelCase__ : Any = True if changes_to_apply: lowerCamelCase__ : Union[str, Any] = getattr(__lowerCamelCase , state.pop("type" ) ) lowerCamelCase__ : Union[str, Any] = component_class(**__lowerCamelCase ) setattr(self.backend_tokenizer , __lowerCamelCase , __lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else value lowerCamelCase__ : Optional[Any] = value def lowerCAmelCase ( self : Tuple , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , *__lowerCamelCase : Dict , **__lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = kwargs.get("is_split_into_words" , __lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowerCamelCase__ : Dict = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase ) def lowerCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=None ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : str , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = [self.sep_token_id] lowerCamelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : Optional[Any] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : int = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Any = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[Any] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Dict = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
713
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
0
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A : List[Any] = logging.get_logger("transformers.models.encodec") A : Optional[int] = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A : Dict = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A : str = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A : List[str] = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A : str = [] A : List[str] = [] def lowercase_ ( _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : Optional[int] , _A : int ) -> Optional[Any]: """simple docstring""" for attribute in key.split("." ): lowerCamelCase__ : Optional[Any] = getattr(_A , _A ) if weight_type is not None: lowerCamelCase__ : List[str] = getattr(_A , _A ).shape else: lowerCamelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCamelCase__ : Dict = value elif weight_type == "weight_g": lowerCamelCase__ : str = value elif weight_type == "weight_v": lowerCamelCase__ : Optional[int] = value elif weight_type == "bias": lowerCamelCase__ : Tuple = value elif weight_type == "running_mean": lowerCamelCase__ : List[Any] = value elif weight_type == "running_var": lowerCamelCase__ : str = value elif weight_type == "num_batches_tracked": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_ih_l0": lowerCamelCase__ : Optional[Any] = value elif weight_type == "weight_hh_l0": lowerCamelCase__ : Tuple = value elif weight_type == "bias_ih_l0": lowerCamelCase__ : str = value elif weight_type == "bias_hh_l0": lowerCamelCase__ : Optional[int] = value elif weight_type == "weight_ih_l1": lowerCamelCase__ : Dict = value elif weight_type == "weight_hh_l1": lowerCamelCase__ : str = value elif weight_type == "bias_ih_l1": lowerCamelCase__ : Optional[Any] = value elif weight_type == "bias_hh_l1": lowerCamelCase__ : int = value else: lowerCamelCase__ : Optional[Any] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowercase_ ( _A : Tuple , _A : Any ) -> Optional[int]: """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ : Any = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( _A : List[Any] , _A : Optional[int] , _A : Optional[Any] ) -> List[str]: """simple docstring""" lowerCamelCase__ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase__ : str = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase__ : Any = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_A , _A ): logger.info(F"{name} was ignored" ) continue lowerCamelCase__ : int = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase__ : Any = key.split(".*." ) if prefix in name and suffix in name: lowerCamelCase__ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue lowerCamelCase__ : Optional[Any] = True if "*" in mapped_key: lowerCamelCase__ : Optional[Any] = name.split(_A )[0].split("." )[-2] lowerCamelCase__ : str = mapped_key.replace("*" , _A ) if "weight_g" in name: lowerCamelCase__ : Any = "weight_g" elif "weight_v" in name: lowerCamelCase__ : List[Any] = "weight_v" elif "weight_ih_l0" in name: lowerCamelCase__ : Union[str, Any] = "weight_ih_l0" elif "weight_hh_l0" in name: lowerCamelCase__ : Dict = "weight_hh_l0" elif "bias_ih_l0" in name: lowerCamelCase__ : Optional[Any] = "bias_ih_l0" elif "bias_hh_l0" in name: lowerCamelCase__ : Optional[int] = "bias_hh_l0" elif "weight_ih_l1" in name: lowerCamelCase__ : Dict = "weight_ih_l1" elif "weight_hh_l1" in name: lowerCamelCase__ : Optional[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: lowerCamelCase__ : List[str] = "bias_ih_l1" elif "bias_hh_l1" in name: lowerCamelCase__ : List[Any] = "bias_hh_l1" elif "bias" in name: lowerCamelCase__ : str = "bias" elif "weight" in name: lowerCamelCase__ : List[Any] = "weight" elif "running_mean" in name: lowerCamelCase__ : Any = "running_mean" elif "running_var" in name: lowerCamelCase__ : List[Any] = "running_var" elif "num_batches_tracked" in name: lowerCamelCase__ : str = "num_batches_tracked" else: lowerCamelCase__ : Optional[int] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def lowercase_ ( _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : List[str]=None , _A : Optional[int]=None , ) -> Tuple: """simple docstring""" if config_path is not None: lowerCamelCase__ : str = EncodecConfig.from_pretrained(_A ) else: lowerCamelCase__ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase__ : Union[str, Any] = [8, 5, 4, 4] lowerCamelCase__ : Tuple = [2.2] lowerCamelCase__ : int = 64 lowerCamelCase__ : List[Any] = 32000 lowerCamelCase__ : Optional[int] = 2048 lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : int = False lowerCamelCase__ : int = False elif model_name == "encodec_48khz": lowerCamelCase__ : Any = [8, 5, 4, 2] lowerCamelCase__ : str = [3.0, 6.0, 12.0, 24.0] lowerCamelCase__ : Dict = 48000 lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = "time_group_norm" lowerCamelCase__ : int = True lowerCamelCase__ : Optional[Any] = 1.0 lowerCamelCase__ : Union[str, Any] = 0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) lowerCamelCase__ : Dict = EncodecModel(_A ) lowerCamelCase__ : Dict = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A ) lowerCamelCase__ : Dict = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase__ : List[str] = original_checkpoint["best_state"] recursively_load_weights(_A , _A , _A ) model.save_pretrained(_A ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
714
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
0
'''simple docstring''' import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = "ssube/stable-diffusion-x4-upscaler-onnx" def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Dict=0 ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowerCamelCase ) ) lowerCamelCase__ : str = torch.manual_seed(__lowerCamelCase ) lowerCamelCase__ : str = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : List[Any] = self.get_dummy_inputs() lowerCamelCase__ : List[Any] = pipe(**__lowerCamelCase ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : str = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : int = self.get_dummy_inputs() lowerCamelCase__ : Tuple = pipe(**__lowerCamelCase ).images lowerCamelCase__ : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Dict = np.array( [0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : List[Any] = np.array( [0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Any = self.get_dummy_inputs() lowerCamelCase__ : Tuple = pipe(**__lowerCamelCase ).images lowerCamelCase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Optional[Any] = np.array( [0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase__ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : str = self.get_dummy_inputs() lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images lowerCamelCase__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Optional[int] = np.array( [0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Any = ort.SessionOptions() lowerCamelCase__ : List[Any] = False return options def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCamelCase__ : List[str] = init_image.resize((128, 128) ) # using the PNDM scheduler by default lowerCamelCase__ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : List[str] = "A fantasy landscape, trending on artstation" lowerCamelCase__ : Any = torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCamelCase , output_type="np" , ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase__ : Optional[int] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowerCamelCase__ : Tuple = init_image.resize((128, 128) ) lowerCamelCase__ : str = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" ) lowerCamelCase__ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = "A fantasy landscape, trending on artstation" lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCamelCase__ : List[str] = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowerCamelCase , output_type="np" , ) lowerCamelCase__ : Optional[Any] = output.images lowerCamelCase__ : Optional[int] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) lowerCamelCase__ : str = np.array( [0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
715
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process A : int = logging.getLogger(__name__) def lowercase_ ( _A : Dict , _A : str ): """simple docstring""" return (preds == labels).mean() @dataclass class _lowercase : """simple docstring""" A__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}) A__ = field( default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"}) A__ = field( default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}) A__ = field( default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class _lowercase : """simple docstring""" A__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())}) A__ = field(metadata={"help": "Should contain the data files for the task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCamelCase__ : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. Use" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , _A ) # Set seed set_seed(training_args.seed ) try: lowerCamelCase__ : Dict = processors[data_args.task_name]() lowerCamelCase__ : Dict = processor.get_labels() lowerCamelCase__ : Optional[int] = len(_A ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCamelCase__ : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase__ : str = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , ) # Get datasets lowerCamelCase__ : int = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCamelCase__ : Tuple = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_A : EvalPrediction ) -> Dict: lowerCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_A , p.label_ids )} # Data collator lowerCamelCase__ : Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCamelCase__ : List[str] = Trainer( model=_A , args=_A , train_dataset=_A , eval_dataset=_A , compute_metrics=_A , data_collator=_A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase__ : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase__ : str = trainer.evaluate() lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(_A , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , _A , _A ) writer.write("%s = %s\n" % (key, value) ) results.update(_A ) return results def lowercase_ ( _A : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
716
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Any = logging.get_logger(__name__) class _lowercase ( lowercase__ , lowercase__): """simple docstring""" A__ = "maskformer-swin" A__ = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Any , __lowerCamelCase : Dict=224 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : int=3 , __lowerCamelCase : int=96 , __lowerCamelCase : Tuple=[2, 2, 6, 2] , __lowerCamelCase : Tuple=[3, 6, 12, 24] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Union[str, Any]=4.0 , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : List[Any]=1E-5 , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : int = image_size lowerCamelCase__ : Dict = patch_size lowerCamelCase__ : Optional[int] = num_channels lowerCamelCase__ : Optional[Any] = embed_dim lowerCamelCase__ : str = depths lowerCamelCase__ : str = len(__lowerCamelCase ) lowerCamelCase__ : Dict = num_heads lowerCamelCase__ : Optional[Any] = window_size lowerCamelCase__ : str = mlp_ratio lowerCamelCase__ : Tuple = qkv_bias lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : List[str] = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = drop_path_rate lowerCamelCase__ : int = hidden_act lowerCamelCase__ : Optional[Any] = use_absolute_embeddings lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCamelCase__ : List[str] = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) lowerCamelCase__ : Optional[Any] = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] lowerCamelCase__ : int = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def UpperCamelCase__ ( ): """simple docstring""" raise RuntimeError("CUDA out of memory." ) class _lowercase ( nn.Module): """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = nn.Linear(3 , 4 ) lowerCamelCase__ : List[str] = nn.BatchNormad(4 ) lowerCamelCase__ : Any = nn.Linear(4 , 5 ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : str = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Dict ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase__ : Tuple = mock_training_loop_function("hello" ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : List[str] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : List[Any] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated() lowerCamelCase__ : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) lowerCamelCase__ : Dict = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
719
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
from __future__ import annotations def lowercase_ ( _A : list[int] ): """simple docstring""" if not nums: return 0 lowerCamelCase__ : List[str] = nums[0] lowerCamelCase__ : str = 0 for num in nums[1:]: lowerCamelCase__ : str = ( max_excluding + num, max(_A , _A ), ) return max(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
720
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : Any = botoa.client("iam" ) lowerCamelCase__ : List[str] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) lowerCamelCase__ : Tuple = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : List[str] = botoa.client("iam" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , _A , ) lowerCamelCase__ : Tuple = None if credentials_configuration == 0: lowerCamelCase__ : List[str] = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) lowerCamelCase__ : Optional[int] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) lowerCamelCase__ : Optional[int] = _ask_field("AWS Access Key ID: " ) lowerCamelCase__ : List[str] = aws_access_key_id lowerCamelCase__ : List[Any] = _ask_field("AWS Secret Access Key: " ) lowerCamelCase__ : Tuple = aws_secret_access_key lowerCamelCase__ : Optional[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) lowerCamelCase__ : Union[str, Any] = aws_region lowerCamelCase__ : Optional[Any] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , _A , ) if role_management == 0: lowerCamelCase__ : Optional[int] = _ask_field("Enter your IAM role name: " ) else: lowerCamelCase__ : Any = "accelerate_sagemaker_execution_role" print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_A ) lowerCamelCase__ : str = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Dict = None if is_custom_docker_image: lowerCamelCase__ : List[str] = _ask_field("Enter your Docker image: " , lambda _A : str(_A ).lower() ) lowerCamelCase__ : Optional[int] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Tuple = None if is_sagemaker_inputs_enabled: lowerCamelCase__ : Optional[int] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda _A : str(_A ).lower() , ) lowerCamelCase__ : Union[str, Any] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : List[str] = None if is_sagemaker_metrics_enabled: lowerCamelCase__ : str = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda _A : str(_A ).lower() , ) lowerCamelCase__ : Tuple = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_dynamo: lowerCamelCase__ : List[Any] = "dynamo_" lowerCamelCase__ : List[str] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCamelCase__ : Dict = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_custom_options: lowerCamelCase__ : Any = _ask_options( "Which mode do you want to use?" , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default="default" , ) lowerCamelCase__ : str = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Any = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : int = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowerCamelCase__ : List[str] = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCamelCase__ : Tuple = _ask_field(_A , lambda _A : str(_A ).lower() , default="ml.p3.2xlarge" ) lowerCamelCase__ : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCamelCase__ : List[Any] = _ask_field( "How many machines do you want use? [1]: " , _A , default=1 , ) lowerCamelCase__ : Tuple = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
721
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
0
from typing import TYPE_CHECKING from ...utils import _LazyModule A : List[str] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
700
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = KandinskyVaaImgaImgPipeline A__ = ["image_embeds", "negative_image_embeds", "image"] A__ = [ "image_embeds", "negative_image_embeds", "image", ] A__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ = False @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.dummy_unet lowerCamelCase__ : Optional[Any] = self.dummy_movq lowerCamelCase__ : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase ) lowerCamelCase__ : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = "cpu" lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCamelCase__ : List[str] = output.images lowerCamelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase__ : Any = "A red cartoon frog, 4k" lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase__ : Optional[Any] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
5
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowercase ( lowercase__): """simple docstring""" def __get__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCamelCase__ : Optional[int] = "__cached_" + self.fget.__name__ lowerCamelCase__ : Optional[Any] = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if cached is None: lowerCamelCase__ : List[Any] = self.fget(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return cached def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def lowercase_ ( _A : str ): """simple docstring""" if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def lowercase_ ( _A : int ): """simple docstring""" return isinstance(_A , np.ndarray ) def lowercase_ ( _A : Dict ): """simple docstring""" return _is_numpy(_A ) def lowercase_ ( _A : List[str] ): """simple docstring""" import torch return isinstance(_A , torch.Tensor ) def lowercase_ ( _A : Any ): """simple docstring""" return False if not is_torch_available() else _is_torch(_A ) def lowercase_ ( _A : str ): """simple docstring""" import torch return isinstance(_A , torch.device ) def lowercase_ ( _A : Any ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(_A ) def lowercase_ ( _A : int ): """simple docstring""" import torch if isinstance(_A , _A ): if hasattr(_A , _A ): lowerCamelCase__ : List[Any] = getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def lowercase_ ( _A : Tuple ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_A ) def lowercase_ ( _A : str ): """simple docstring""" import tensorflow as tf return isinstance(_A , tf.Tensor ) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_A ) def lowercase_ ( _A : Dict ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def lowercase_ ( _A : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def lowercase_ ( _A : Optional[int] ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def lowercase_ ( _A : List[Any] ): """simple docstring""" return False if not is_flax_available() else _is_jax(_A ) def lowercase_ ( _A : Any ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase_ ( _A : List[Any] ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class _lowercase ( lowercase__): """simple docstring""" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[int] = fields(self ) # Safety and consistency checks if not len(__lowerCamelCase ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) lowerCamelCase__ : str = getattr(self , class_fields[0].name ) lowerCamelCase__ : List[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Dict = first_field.items() lowerCamelCase__ : List[str] = True else: try: lowerCamelCase__ : Dict = iter(__lowerCamelCase ) lowerCamelCase__ : Dict = True except TypeError: lowerCamelCase__ : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowerCamelCase ): if ( not isinstance(__lowerCamelCase , (list, tuple) ) or not len(__lowerCamelCase ) == 2 or not isinstance(element[0] , __lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCamelCase__ : Optional[int] = element[1] elif first_field is not None: lowerCamelCase__ : str = first_field else: for field in class_fields: lowerCamelCase__ : str = getattr(self , field.name ) if v is not None: lowerCamelCase__ : Any = v def __delitem__( self : Tuple , *__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[int] ): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : str , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : str ): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : int , __lowerCamelCase : Any ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowerCamelCase , __lowerCamelCase ) super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def __setitem__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): '''simple docstring''' super().__setitem__(__lowerCamelCase , __lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _lowercase ( lowercase__ , lowercase__): """simple docstring""" @classmethod def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class _lowercase ( lowercase__): """simple docstring""" A__ = "longest" A__ = "max_length" A__ = "do_not_pad" class _lowercase ( lowercase__): """simple docstring""" A__ = "pt" A__ = "tf" A__ = "np" A__ = "jax" class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : List[ContextManager] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = context_managers lowerCamelCase__ : Dict = ExitStack() def __enter__( self : Dict ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__lowerCamelCase ) def __exit__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): '''simple docstring''' self.stack.__exit__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : str = infer_framework(_A ) if framework == "tf": lowerCamelCase__ : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Any = model_class.__name__ lowerCamelCase__ : Optional[Any] = infer_framework(_A ) if framework == "tf": lowerCamelCase__ : Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase_ ( _A : MutableMapping , _A : str = "" , _A : str = "." ): """simple docstring""" def _flatten_dict(_A : Optional[int] , _A : Any="" , _A : Any="." ): for k, v in d.items(): lowerCamelCase__ : List[str] = str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def lowercase_ ( _A : Dict , _A : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase_ ( _A : Optional[int] , _A : Optional[int]=None ): """simple docstring""" if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(F"Type not supported for transpose: {type(_A )}." ) def lowercase_ ( _A : Any , _A : Any ): """simple docstring""" if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(F"Type not supported for reshape: {type(_A )}." ) def lowercase_ ( _A : Dict , _A : int=None ): """simple docstring""" if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(F"Type not supported for squeeze: {type(_A )}." ) def lowercase_ ( _A : Any , _A : Union[str, Any] ): """simple docstring""" if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(F"Type not supported for expand_dims: {type(_A )}." ) def lowercase_ ( _A : int ): """simple docstring""" if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_A )}." ) def lowercase_ ( _A : Tuple , _A : Tuple ): """simple docstring""" for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): lowerCamelCase__ : Optional[Any] = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Tuple = F"{repo_id}--{value}" return auto_map def lowercase_ ( _A : Dict ): """simple docstring""" for base_class in inspect.getmro(_A ): lowerCamelCase__ : Optional[int] = base_class.__module__ lowerCamelCase__ : List[str] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
701
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowerCamelCase__ : List[str] = 1024 lowerCamelCase__ : Tuple = 4096 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : int = 16 lowerCamelCase__ : Optional[int] = [5, 11, 17, 23] lowerCamelCase__ : Dict = [256, 512, 1024, 1024] lowerCamelCase__ : int = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ : Dict = 768 lowerCamelCase__ : Tuple = [1, 1, 1, 0.5] lowerCamelCase__ : Optional[Any] = [256, 512, 768, 768] lowerCamelCase__ : List[Any] = 150 lowerCamelCase__ : Tuple = 16 lowerCamelCase__ : Any = (1, 384, 384) lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = "project" if "ade" in checkpoint_url: lowerCamelCase__ : Tuple = True lowerCamelCase__ : Any = 768 lowerCamelCase__ : Union[str, Any] = [1, 1, 1, 0.5] lowerCamelCase__ : Optional[Any] = 150 lowerCamelCase__ : List[Any] = 16 lowerCamelCase__ : List[Any] = "huggingface/label-files" lowerCamelCase__ : Tuple = "ade20k-id2label.json" lowerCamelCase__ : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type="dataset" ) ) , "r" ) ) lowerCamelCase__ : List[Any] = {int(_A ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_A , _A ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ : Any = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowerCamelCase__ : int = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowerCamelCase__ : Dict = name.replace("patch_embed" , "" ) if "pos_embed" in name: lowerCamelCase__ : str = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowerCamelCase__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowerCamelCase__ : str = name.replace("proj" , "projection" ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ : Optional[int] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowerCamelCase__ : Tuple = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowerCamelCase__ : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowerCamelCase__ : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowerCamelCase__ : Tuple = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowerCamelCase__ : Any = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowerCamelCase__ : Any = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowerCamelCase__ : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ : List[Any] = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCamelCase__ : Dict = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowerCamelCase__ : Optional[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowerCamelCase__ : List[str] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowerCamelCase__ : Union[str, Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowerCamelCase__ : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ : List[str] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ : Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ : str = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ : Tuple = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowerCamelCase__ : int = name.replace("pretrained" , "dpt" ) if "bn" in name: lowerCamelCase__ : List[str] = name.replace("bn" , "batch_norm" ) if "head" in name: lowerCamelCase__ : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowerCamelCase__ : Union[str, Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowerCamelCase__ : List[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: lowerCamelCase__ : int = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: lowerCamelCase__ : int = name.replace(".." , "." ) if "stem.conv" in name: lowerCamelCase__ : Any = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowerCamelCase__ : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ : Dict = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: lowerCamelCase__ : List[str] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ : List[str] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: lowerCamelCase__ : Optional[Any] = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ : str = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowercase_ ( _A : List[Any] , _A : Dict ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCamelCase__ : Any = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : str = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase_ ( _A : List[str] , _A : str , _A : List[str] , _A : Optional[Any] , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Tuple = get_dpt_config(_A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ : Dict = torch.load(_A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] = state_dict.pop(_A ) lowerCamelCase__ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model lowerCamelCase__ : Optional[int] = DPTForSemanticSegmentation(_A ) if "ade" in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image lowerCamelCase__ : List[Any] = 480 if "ade" in checkpoint_url else 384 lowerCamelCase__ : int = DPTImageProcessor(size=_A ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(_A , return_tensors="pt" ) # forward pass lowerCamelCase__ : str = model(**_A ).logits if "ade" in checkpoint_url else model(**_A ).predicted_depth if show_prediction: lowerCamelCase__ : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) A : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
702
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
0
import os from collections.abc import Iterator def lowercase_ ( _A : str = "." ): """simple docstring""" for dir_path, dir_names, filenames in os.walk(_A ): lowerCamelCase__ : Union[str, Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_A )[1] in (".py", ".ipynb"): yield os.path.join(_A , _A ).lstrip("./" ) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" return F"{i * ' '}*" if i else "\n##" def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : str = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_A ) or old_parts[i] != new_part) and new_part: print(F"{md_prefix(_A )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def lowercase_ ( _A : str = "." ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = "" for filepath in sorted(good_file_paths(_A ) ): lowerCamelCase__ : List[str] = os.path.split(_A ) if filepath != old_path: lowerCamelCase__ : List[Any] = print_path(_A , _A ) lowerCamelCase__ : Tuple = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCamelCase__ : Union[str, Any] = F"{filepath}/{filename}".replace(" " , "%20" ) lowerCamelCase__ : str = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(F"{md_prefix(_A )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(".")
703
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
0
from __future__ import annotations def lowercase_ ( _A : list[int | float] , _A : int , _A : int ): """simple docstring""" if len(_A ) == 0: raise ValueError("find_max() arg is an empty sequence" ) if ( left >= len(_A ) or left < -len(_A ) or right >= len(_A ) or right < -len(_A ) ): raise IndexError("list index out of range" ) if left == right: return nums[left] lowerCamelCase__ : List[Any] = (left + right) >> 1 # the middle lowerCamelCase__ : List[Any] = find_max(_A , _A , _A ) # find max in range[left, mid] lowerCamelCase__ : List[Any] = find_max(_A , mid + 1 , _A ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
704
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Tuple = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
0
def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) if n == 0: return 0 lowerCamelCase__ : Any = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : List[str] = max( _A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) ) return max_revue def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(_A , _A , _A ) def lowercase_ ( _A : int , _A : list , _A : list ): """simple docstring""" if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: lowerCamelCase__ : Optional[Any] = float("-inf" ) for i in range(1 , n + 1 ): lowerCamelCase__ : int = max( _A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , ) lowerCamelCase__ : List[Any] = max_revenue return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" _enforce_args(_A , _A ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )] lowerCamelCase__ : List[Any] = 0 for i in range(1 , n + 1 ): lowerCamelCase__ : Tuple = max_rev[i] for j in range(1 , i + 1 ): lowerCamelCase__ : List[str] = max(_A , prices[j - 1] + max_rev[i - j] ) lowerCamelCase__ : Any = max_revenue_i return max_rev[n] def lowercase_ ( _A : int , _A : list ): """simple docstring""" if n < 0: lowerCamelCase__ : str = F"n must be greater than or equal to 0. Got n = {n}" raise ValueError(_A ) if n > len(_A ): lowerCamelCase__ : List[Any] = ( "Each integral piece of rod must have a corresponding price. " F"Got n = {n} but length of prices = {len(_A )}" ) raise ValueError(_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [6, 10, 12, 15, 20, 23] lowerCamelCase__ : Tuple = len(_A ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. lowerCamelCase__ : Any = 36 lowerCamelCase__ : Optional[Any] = top_down_cut_rod(_A , _A ) lowerCamelCase__ : int = bottom_up_cut_rod(_A , _A ) lowerCamelCase__ : Union[str, Any] = naive_cut_rod_recursive(_A , _A ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
706
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowercase : """simple docstring""" A__ = 42 A__ = None A__ = None def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = Node(1 ) lowerCamelCase__ : str = Node(2 ) lowerCamelCase__ : int = Node(3 ) lowerCamelCase__ : Any = Node(4 ) lowerCamelCase__ : Dict = Node(5 ) return tree def lowercase_ ( _A : Node | None ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( _A : Node | None ): """simple docstring""" lowerCamelCase__ : list[Any] = [] if root is None: return output lowerCamelCase__ : Optional[Any] = deque([root] ) while process_queue: lowerCamelCase__ : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( _A : Node | None , _A : int ): """simple docstring""" lowerCamelCase__ : list[Any] = [] def populate_output(_A : Node | None , _A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def lowercase_ ( _A : Node | None , _A : int ): """simple docstring""" lowerCamelCase__ : list[Any] = [] def populate_output(_A : Node | None , _A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def lowercase_ ( _A : Node | None ): """simple docstring""" if root is None: return [] lowerCamelCase__ : list[Sequence[Node | None]] = [] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : int = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) lowerCamelCase__ : str = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) lowerCamelCase__ : int = 0 return output def lowercase_ ( ): # Main function for testing. """simple docstring""" lowerCamelCase__ : str = make_tree() print(F"In-order Traversal: {inorder(_A )}" ) print(F"Pre-order Traversal: {preorder(_A )}" ) print(F"Post-order Traversal: {postorder(_A )}" , "\n" ) print(F"Height of Tree: {height(_A )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(_A ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(_A ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(_A , level=_A ) ) print("\nZigZag order Traversal: " ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
707
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
0
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A : List[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = ["audio_values", "audio_mask"] def __init__( self : List[str] , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Optional[int]=[16, 16] , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : List[Any]=44100 , __lowerCamelCase : Any=86 , __lowerCamelCase : Dict=2048 , __lowerCamelCase : List[Any]=0.0 , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : Dict = spectrogram_length lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : str = patch_size lowerCamelCase__ : Dict = feature_size // self.patch_size[1] lowerCamelCase__ : List[Any] = n_fft lowerCamelCase__ : str = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : Optional[int] = sampling_rate lowerCamelCase__ : Tuple = padding_value lowerCamelCase__ : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ).T def lowerCAmelCase ( self : str , __lowerCamelCase : np.array ): '''simple docstring''' lowerCamelCase__ : Optional[int] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=80.0 , ) lowerCamelCase__ : str = log_spec[:, :-1] lowerCamelCase__ : str = log_spec - 20.0 lowerCamelCase__ : int = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase__ : str = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase__ : Any = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): lowerCamelCase__ : Optional[Any] = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCamelCase ): lowerCamelCase__ : int = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Tuple = np.array(__lowerCamelCase ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : List[str] = np.ones([len(__lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Optional[Any] = padded_audio_features * self.padding_value for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ : Tuple = audio_features[i] lowerCamelCase__ : Tuple = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : Any = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowerCamelCase__ : List[str] = {"audio_values": padded_audio_features} lowerCamelCase__ : Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
708
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
0
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() A : Dict = logging.get_logger(__name__) def lowercase_ ( _A : Optional[int] , _A : Any , _A : int ): """simple docstring""" lowerCamelCase__ : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(_A , config=_A ) lowerCamelCase__ : Optional[int] = downstream_dict["projector.weight"] lowerCamelCase__ : Optional[int] = downstream_dict["projector.bias"] lowerCamelCase__ : int = downstream_dict["model.post_net.linear.weight"] lowerCamelCase__ : Optional[Any] = downstream_dict["model.post_net.linear.bias"] return model def lowercase_ ( _A : str , _A : List[Any] , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Tuple = UniSpeechSatForAudioFrameClassification.from_pretrained(_A , config=_A ) lowerCamelCase__ : List[str] = downstream_dict["model.linear.weight"] lowerCamelCase__ : Optional[int] = downstream_dict["model.linear.bias"] return model def lowercase_ ( _A : Optional[int] , _A : str , _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : int = UniSpeechSatForXVector.from_pretrained(_A , config=_A ) lowerCamelCase__ : List[Any] = downstream_dict["connector.weight"] lowerCamelCase__ : int = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCamelCase__ : Optional[Any] = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] lowerCamelCase__ : Dict = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] lowerCamelCase__ : str = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowerCamelCase__ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowerCamelCase__ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowerCamelCase__ : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowerCamelCase__ : Dict = downstream_dict["objective.W"] return model @torch.no_grad() def lowercase_ ( _A : str , _A : Tuple , _A : str , _A : Tuple ): """simple docstring""" lowerCamelCase__ : List[str] = torch.load(_A , map_location="cpu" ) lowerCamelCase__ : Dict = checkpoint["Downstream"] lowerCamelCase__ : List[Any] = UniSpeechSatConfig.from_pretrained(_A ) lowerCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained( _A , return_attention_mask=_A , do_normalize=_A ) lowerCamelCase__ : int = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowerCamelCase__ : str = convert_classification(_A , _A , _A ) elif arch.endswith("ForAudioFrameClassification" ): lowerCamelCase__ : Optional[Any] = convert_diarization(_A , _A , _A ) elif arch.endswith("ForXVector" ): lowerCamelCase__ : Optional[Any] = convert_xvector(_A , _A , _A ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: lowerCamelCase__ : Optional[Any] = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(_A ) hf_model.save_pretrained(_A ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") A : List[Any] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
709
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
0
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class _lowercase ( unittest.TestCase): """simple docstring""" A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowerCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Any = hf_hub_download( repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCamelCase__ : Union[str, Any] = VideoClassificationPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase , top_k=2 ) lowerCamelCase__ : List[Any] = [ example_video_filepath, "https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4", ] return video_classifier, examples def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ): '''simple docstring''' for example in examples: lowerCamelCase__ : Dict = video_classifier(__lowerCamelCase ) self.assertEqual( __lowerCamelCase , [ {"score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase )}, {"score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase )}, ] , ) @require_torch def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification" lowerCamelCase__ : List[str] = VideoMAEFeatureExtractor( size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} ) lowerCamelCase__ : str = pipeline( "video-classification" , model=__lowerCamelCase , feature_extractor=__lowerCamelCase , frame_sampling_rate=4 ) lowerCamelCase__ : List[Any] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" ) lowerCamelCase__ : Union[str, Any] = video_classifier(__lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}] , ) lowerCamelCase__ : Any = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__lowerCamelCase , decimals=4 ) , [ [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}], ] , ) @require_tf def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass
710
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
0
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Any=14 , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : int=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=0.0_2 , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_token_type_ids lowerCamelCase__ : Dict = use_input_mask lowerCamelCase__ : Any = use_labels lowerCamelCase__ : List[str] = use_mc_token_ids lowerCamelCase__ : str = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : Tuple = scope lowerCamelCase__ : str = self.vocab_size - 1 def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = None if self.use_input_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : int = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None if self.use_mc_token_ids: lowerCamelCase__ : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Tuple = self.get_config() lowerCamelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( lowerCamelCase__ ) : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , *__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A__ = (CTRLLMHeadModel,) if is_torch_available() else () A__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A__ = True A__ = False A__ = False def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = CTRLModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCamelCase ) # Legal the president is lowerCamelCase__ : Optional[Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCamelCase__ : List[Any] = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
711
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase_ ( _A : List[str] , _A : str , _A : str , _A : Path , _A : str = None , _A : str = None , _A : str = None , ): if config_name_or_path is None: lowerCamelCase__ : List[str] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase__ : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[Any] = question_encoder_name_or_path lowerCamelCase__ : Optional[Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase__ : str = RagConfig.from_pretrained(_A ) lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(_A ) lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(_A ) lowerCamelCase__ : Dict = gen_config lowerCamelCase__ : Dict = question_encoder_config lowerCamelCase__ : List[Any] = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A : Tuple = parser.parse_args() A : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
712
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
713
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
0
from ....configuration_utils import PretrainedConfig from ....utils import logging A : Tuple = logging.get_logger(__name__) # TODO: upload to AWS A : List[Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "retribert" def __init__( self : List[str] , __lowerCamelCase : Tuple=30522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : Dict=8 , __lowerCamelCase : Dict=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=0.0_2 , __lowerCamelCase : Tuple=1E-1_2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=128 , __lowerCamelCase : Optional[int]=0 , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : Dict = share_encoders lowerCamelCase__ : int = projection_dim
714
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
0
'''simple docstring''' import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = FunnelTokenizer A__ = FunnelTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : List[Any] , **__lowerCamelCase : Tuple ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase ( self : Any , **__lowerCamelCase : Optional[int] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : int = "UNwant\u00E9d,running" lowerCamelCase__ : Optional[Any] = "unwanted, running" return input_text, output_text def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: lowerCamelCase__ : Dict = tokenizer("UNwant\u00E9d,running" ) lowerCamelCase__ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCamelCase__ : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
715
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer A : Union[str, Any] = logging.get_logger(__name__) A : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} A : List[Any] = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] A : Optional[int] = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } A : Union[str, Any] = {f'funnel-transformer/{name}': 512 for name in _model_names} A : Union[str, Any] = {f'funnel-transformer/{name}': {"do_lower_case": True} for name in _model_names} class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_INIT_CONFIGURATION A__ = FunnelTokenizer A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = 2 def __init__( self : Optional[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<sep>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : str="<cls>" , __lowerCamelCase : List[str]="<mask>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]="##" , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( __lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , clean_text=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , wordpieces_prefix=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars ): lowerCamelCase__ : int = getattr(__lowerCamelCase , normalizer_state.pop("type" ) ) lowerCamelCase__ : Dict = do_lower_case lowerCamelCase__ : Union[str, Any] = strip_accents lowerCamelCase__ : Dict = tokenize_chinese_chars lowerCamelCase__ : Optional[int] = normalizer_class(**__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = do_lower_case def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None ): '''simple docstring''' lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowerCamelCase__ : List[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase ) return tuple(__lowerCamelCase )
716
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
def lowercase_ ( _A : int = 3 , _A : int = 7 , _A : int = 1000000 ): """simple docstring""" lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : List[str] = 1 for current_denominator in range(1 , limit + 1 ): lowerCamelCase__ : Optional[Any] = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: lowerCamelCase__ : str = current_numerator lowerCamelCase__ : Tuple = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
717
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
0
from typing import List import numpy as np def UpperCamelCase__ ( _A : dict ): """simple docstring""" lowerCamelCase__ : Any = {key: len(_A ) for key, value in gen_kwargs.items() if isinstance(_A , _A )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) lowerCamelCase__ : Optional[Any] = max(lists_lengths.values() , default=0 ) return max(1 , _A ) def UpperCamelCase__ ( _A : int , _A : int ): """simple docstring""" lowerCamelCase__ : List[str] = [] for group_idx in range(_A ): lowerCamelCase__ : str = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCamelCase__ : List[str] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCamelCase__ : Tuple = range(_A , start + num_shards_to_add ) shards_indices_per_group.append(_A ) return shards_indices_per_group def UpperCamelCase__ ( _A : dict , _A : int ): """simple docstring""" lowerCamelCase__ : int = _number_of_shards_in_gen_kwargs(_A ) if num_shards == 1: return [dict(_A )] else: lowerCamelCase__ : Any = _distribute_shards(num_shards=_A , max_num_jobs=_A ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(_A , _A ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(_A ) ) ] def UpperCamelCase__ ( _A : List[dict] ): """simple docstring""" return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , _A ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def UpperCamelCase__ ( _A : np.random.Generator , _A : dict ): """simple docstring""" lowerCamelCase__ : Optional[Any] = {len(_A ) for value in gen_kwargs.values() if isinstance(_A , _A )} lowerCamelCase__ : Any = {} for size in list_sizes: lowerCamelCase__ : str = list(range(_A ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCamelCase__ : Tuple = dict(_A ) for key, value in shuffled_kwargs.items(): if isinstance(_A , _A ): lowerCamelCase__ : Tuple = [value[i] for i in indices_per_size[len(_A )]] return shuffled_kwargs
718
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
719
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
0
A : Optional[int] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : int = [{"type": "code", "content": INSTALL_CONTENT}] A : Any = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
720
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
0
import argparse import struct import unittest class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : bytes ): '''simple docstring''' lowerCamelCase__ : Optional[int] = data # Initialize hash values lowerCamelCase__ : Any = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants lowerCamelCase__ : Optional[int] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] lowerCamelCase__ : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase ( __lowerCamelCase : bytes ): '''simple docstring''' lowerCamelCase__ : Dict = b"\x80" + (b"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) lowerCamelCase__ : List[Any] = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ : Optional[int] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ : List[Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ : Tuple = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) lowerCamelCase__ : Optional[Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) lowerCamelCase__ : Union[str, Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ : Any = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) lowerCamelCase__ : Any = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ : Tuple = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ : List[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ : List[str] = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ : Any = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ : List[str] = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import hashlib lowerCamelCase__ : Union[str, Any] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCamelCase__ : List[str] = f.read() else: lowerCamelCase__ : int = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
721
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Optional[int] = WavaVecaForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : str = downstream_dict['projector.weight'] UpperCamelCase__ : Dict = downstream_dict['projector.bias'] UpperCamelCase__ : Optional[Any] = downstream_dict['model.post_net.linear.weight'] UpperCamelCase__ : Optional[int] = downstream_dict['model.post_net.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Optional[Any] = WavaVecaForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : Tuple = downstream_dict['model.linear.weight'] UpperCamelCase__ : List[str] = downstream_dict['model.linear.bias'] return model def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[str]: UpperCamelCase__ : Optional[Any] = WavaVecaForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_) UpperCamelCase__ : str = downstream_dict['connector.weight'] UpperCamelCase__ : Any = downstream_dict['connector.bias'] for i, kernel_size in enumerate(hf_config.tdnn_kernel): UpperCamelCase__ : int = downstream_dict[ f'model.framelevel_feature_extractor.module.{i}.kernel.weight' ] UpperCamelCase__ : List[Any] = downstream_dict[f'model.framelevel_feature_extractor.module.{i}.kernel.bias'] UpperCamelCase__ : Any = downstream_dict['model.utterancelevel_feature_extractor.linear1.weight'] UpperCamelCase__ : Union[str, Any] = downstream_dict['model.utterancelevel_feature_extractor.linear1.bias'] UpperCamelCase__ : Dict = downstream_dict['model.utterancelevel_feature_extractor.linear2.weight'] UpperCamelCase__ : List[str] = downstream_dict['model.utterancelevel_feature_extractor.linear2.bias'] UpperCamelCase__ : str = downstream_dict['objective.W'] return model @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[int] = torch.load(lowerCamelCase_ , map_location='cpu') UpperCamelCase__ : Optional[int] = checkpoint['Downstream'] UpperCamelCase__ : int = WavaVecaConfig.from_pretrained(lowerCamelCase_) UpperCamelCase__ : str = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_) UpperCamelCase__ : List[str] = hf_config.architectures[0] if arch.endswith('ForSequenceClassification'): UpperCamelCase__ : int = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForAudioFrameClassification'): UpperCamelCase__ : Union[str, Any] = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) elif arch.endswith('ForXVector'): UpperCamelCase__ : Optional[int] = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) else: raise NotImplementedError(f'S3PRL weights conversion is not supported for {arch}') if hf_config.use_weighted_layer_sum: UpperCamelCase__ : Optional[int] = checkpoint['Featurizer']['weights'] hf_feature_extractor.save_pretrained(lowerCamelCase_) hf_model.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.' ) parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.') parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.') lowerCAmelCase__ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> list[int]: UpperCamelCase__ : Optional[Any] = len(lowerCamelCase_) for i in range(lowerCamelCase_): for j in range(i + 1 , lowerCamelCase_): if numbers[j] < numbers[i]: UpperCamelCase__, UpperCamelCase__ : int = numbers[j], numbers[i] return numbers if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] print(exchange_sort(unsorted))
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : str , UpperCAmelCase_ : int = 0): UpperCamelCase__ : Optional[int] = key def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Tuple = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCAmelCase_) ^ key) for ch in content] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : int): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = key or self.__key or 1 # make sure key is an appropriate size key %= 255 return [chr(ord(UpperCAmelCase_) ^ key) for ch in content] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 0): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[str] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ : Union[str, Any] = '' for ch in content: ans += chr(ord(UpperCAmelCase_) ^ key) return ans def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 0): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = key or self.__key or 1 # make sure key can be any size while key > 255: key -= 255 # This will be returned UpperCamelCase__ : Dict = '' for ch in content: ans += chr(ord(UpperCAmelCase_) ^ key) return ans def __UpperCamelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 0): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) try: with open(UpperCAmelCase_) as fin, open('encrypt.out' , 'w+') as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(UpperCAmelCase_ , UpperCAmelCase_)) except OSError: return False return True def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : int): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) try: with open(UpperCAmelCase_) as fin, open('decrypt.out' , 'w+') as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(UpperCAmelCase_ , UpperCAmelCase_)) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : str): UpperCamelCase__ : str = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : str = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } UpperCamelCase__ : str = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 16_000, 'return_attention_mask': False, 'do_normalize': True, } UpperCamelCase__ : List[str] = tempfile.mkdtemp() UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Dict = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.feature_extraction_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') # load decoder from hub UpperCamelCase__ : List[Any] = 'hf-internal-testing/ngram-beam-search-decoder' def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = self.add_kwargs_tokens_map.copy() kwargs.update(UpperCAmelCase_) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Tuple , **UpperCAmelCase_ : Tuple): return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , **UpperCAmelCase_ : List[Any]): return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : str = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = self.get_decoder() UpperCamelCase__ : int = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : int = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string()) self.assertIsInstance(processor.feature_extractor , UpperCAmelCase_) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) processor.save_pretrained(self.tmpdirname) # make sure that error is thrown when decoder alphabet doesn't match UpperCamelCase__ : Tuple = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3) # decoder self.assertEqual(processor.language_model.alpha , 5.0) self.assertEqual(processor.language_model.beta , 3.0) self.assertEqual(processor.language_model.score_boundary , -7.0) self.assertEqual(processor.language_model.unk_score_offset , 3) def __UpperCamelCase ( self : Any): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx']) with self.assertRaisesRegex(UpperCAmelCase_ , 'include'): WavaVecaProcessorWithLM( tokenizer=UpperCAmelCase_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder()) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Tuple = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Tuple = self.get_decoder() UpperCamelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = floats_list((3, 1_000)) UpperCamelCase__ : List[Any] = feature_extractor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : str = processor(UpperCAmelCase_ , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[int] = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : str = self.get_decoder() UpperCamelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : Any = 'This is a test string' UpperCamelCase__ : List[Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : str = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : int=(2, 10, 16) , UpperCAmelCase_ : str=77): np.random.seed(UpperCAmelCase_) return np.random.rand(*UpperCAmelCase_) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = self.get_feature_extractor() UpperCamelCase__ : str = self.get_tokenizer() UpperCamelCase__ : str = self.get_decoder() UpperCamelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : Any = self._get_dummy_logits(shape=(10, 16) , seed=13) UpperCamelCase__ : List[str] = processor.decode(UpperCAmelCase_) UpperCamelCase__ : str = decoder.decode_beams(UpperCAmelCase_)[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text) self.assertEqual('</s> <s> </s>' , decoded_processor.text) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score) @parameterized.expand([[None], ['fork'], ['spawn']]) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Tuple): UpperCamelCase__ : Union[str, Any] = self.get_feature_extractor() UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : str = self.get_decoder() UpperCamelCase__ : List[str] = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : Tuple = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: UpperCamelCase__ : Optional[Any] = processor.batch_decode(UpperCAmelCase_) else: with get_context(UpperCAmelCase_).Pool() as pool: UpperCamelCase__ : Optional[int] = processor.batch_decode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = list(UpperCAmelCase_) with get_context('fork').Pool() as p: UpperCamelCase__ : Optional[Any] = decoder.decode_beams_batch(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[Any] = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0]) logit_scores_decoder.append(beams[0][-2]) lm_scores_decoder.append(beams[0][-1]) self.assertListEqual(UpperCAmelCase_ , decoded_processor.text) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text) self.assertListEqual(UpperCAmelCase_ , decoded_processor.logit_score) self.assertListEqual(UpperCAmelCase_ , decoded_processor.lm_score) def __UpperCamelCase ( self : str): UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : List[Any] = self.get_tokenizer() UpperCamelCase__ : str = self.get_decoder() UpperCamelCase__ : Dict = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : Any = self._get_dummy_logits() UpperCamelCase__ : Optional[Any] = 15 UpperCamelCase__ : Optional[int] = -20.0 UpperCamelCase__ : int = -4.0 UpperCamelCase__ : List[str] = processor.batch_decode( UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , ) UpperCamelCase__ : Any = decoded_processor_out.text UpperCamelCase__ : List[Any] = list(UpperCAmelCase_) with get_context('fork').Pool() as pool: UpperCamelCase__ : Any = decoder.decode_beams_batch( UpperCAmelCase_ , UpperCAmelCase_ , beam_width=UpperCAmelCase_ , beam_prune_logp=UpperCAmelCase_ , token_min_logp=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = [d[0][0] for d in decoded_decoder_out] UpperCamelCase__ : Union[str, Any] = [d[0][2] for d in decoded_decoder_out] UpperCamelCase__ : Union[str, Any] = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , UpperCAmelCase_) self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.logit_score)) self.assertTrue(np.allclose([-20.0_54, -18.4_47] , UpperCAmelCase_ , atol=1e-3)) self.assertTrue(np.array_equal(UpperCAmelCase_ , decoded_processor_out.lm_score)) self.assertTrue(np.allclose([-15.5_54, -13.94_74] , UpperCAmelCase_ , atol=1e-3)) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = self.get_feature_extractor() UpperCamelCase__ : Optional[int] = self.get_tokenizer() UpperCamelCase__ : List[Any] = self.get_decoder() UpperCamelCase__ : List[str] = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) UpperCamelCase__ : int = self._get_dummy_logits() UpperCamelCase__ : int = 2.0 UpperCamelCase__ : List[Any] = 5.0 UpperCamelCase__ : Union[str, Any] = -20.0 UpperCamelCase__ : Any = True UpperCamelCase__ : Tuple = processor.batch_decode( UpperCAmelCase_ , alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = decoded_processor_out.text UpperCamelCase__ : Optional[int] = list(UpperCAmelCase_) decoder.reset_params( alpha=UpperCAmelCase_ , beta=UpperCAmelCase_ , unk_score_offset=UpperCAmelCase_ , lm_score_boundary=UpperCAmelCase_ , ) with get_context('fork').Pool() as pool: UpperCamelCase__ : List[str] = decoder.decode_beams_batch( UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : str = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , UpperCAmelCase_) UpperCamelCase__ : Any = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0) self.assertEqual(lm_model.beta , 5.0) self.assertEqual(lm_model.unk_score_offset , -20.0) self.assertEqual(lm_model.score_boundary , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') UpperCamelCase__ : List[Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase__ : Any = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() UpperCamelCase__ : List[str] = os.listdir(UpperCAmelCase_) UpperCamelCase__ : Any = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : List[str] = snapshot_download('hf-internal-testing/processor_with_lm') UpperCamelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = processor.decoder.model_container[processor.decoder._model_key] UpperCamelCase__ : Optional[int] = Path(language_model._kenlm_model.path.decode('utf-8')).parent.parent.absolute() UpperCamelCase__ : str = os.listdir(UpperCAmelCase_) UpperCamelCase__ : str = os.listdir(UpperCAmelCase_) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : int = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') UpperCamelCase__ : Optional[int] = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm') UpperCamelCase__ : List[str] = floats_list((3, 1_000)) UpperCamelCase__ : Union[str, Any] = processor_wavaveca(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Dict = processor_auto(UpperCAmelCase_ , return_tensors='np') for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2) UpperCamelCase__ : Any = self._get_dummy_logits() UpperCamelCase__ : int = processor_wavaveca.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = processor_auto.batch_decode(UpperCAmelCase_) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = self.get_feature_extractor() UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_decoder() UpperCamelCase__ : List[str] = WavaVecaProcessorWithLM(tokenizer=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , decoder=UpperCAmelCase_) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : Tuple = [d[key] for d in offsets] return retrieved_list def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') UpperCamelCase__ : Dict = self._get_dummy_logits()[0] UpperCamelCase__ : Any = processor.decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word')) , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset') , [1, 3, 5]) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm') UpperCamelCase__ : Dict = self._get_dummy_logits() UpperCamelCase__ : Optional[int] = processor.batch_decode(UpperCAmelCase_ , output_word_offsets=UpperCAmelCase_) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys()) , 4) self.assertTrue('text' in outputs) self.assertTrue('word_offsets' in outputs) self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) self.assertListEqual( [' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word')) for o in outputs['word_offsets']] , outputs.text) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word') , ['<s>', '<s>', '</s>']) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset') , [0, 2, 4]) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset') , [1, 3, 5]) @slow @require_torch @require_torchaudio def __UpperCamelCase ( self : Optional[int]): import torch UpperCamelCase__ : List[str] = load_dataset('common_voice' , 'en' , split='train' , streaming=UpperCAmelCase_) UpperCamelCase__ : int = ds.cast_column('audio' , datasets.Audio(sampling_rate=16_000)) UpperCamelCase__ : Any = iter(UpperCAmelCase_) UpperCamelCase__ : int = next(UpperCAmelCase_) UpperCamelCase__ : List[Any] = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') UpperCamelCase__ : List[str] = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm') # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train UpperCamelCase__ : int = processor(sample['audio']['array'] , return_tensors='pt').input_values with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_).logits.cpu().numpy() UpperCamelCase__ : Optional[Any] = processor.decode(logits[0] , output_word_offsets=UpperCAmelCase_) UpperCamelCase__ : Tuple = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate UpperCamelCase__ : Union[str, Any] = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] UpperCamelCase__ : Union[str, Any] = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word')) , UpperCAmelCase_) self.assertEqual(' '.join(self.get_from_offsets(UpperCAmelCase_ , 'word')) , output.text) # output times UpperCamelCase__ : Tuple = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'start_time')) UpperCamelCase__ : Tuple = torch.tensor(self.get_from_offsets(UpperCAmelCase_ , 'end_time')) # fmt: off UpperCamelCase__ : Any = torch.tensor([1.41_99, 1.65_99, 2.25_99, 3.0, 3.24, 3.59_99, 3.79_99, 4.09_99, 4.26, 4.94, 5.28, 5.65_99, 5.78, 5.94, 6.32, 6.53_99, 6.65_99]) UpperCamelCase__ : Union[str, Any] = torch.tensor([1.53_99, 1.89_99, 2.9, 3.16, 3.53_99, 3.72, 4.01_99, 4.17_99, 4.76, 5.15_99, 5.55_99, 5.69_99, 5.86, 6.19_99, 6.38, 6.61_99, 6.94]) # fmt: on self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01)) self.assertTrue(torch.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=0.01))
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { 'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'], 'tokenization_roc_bert': ['RoCBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RoCBertForCausalLM', 'RoCBertForMaskedLM', 'RoCBertForMultipleChoice', 'RoCBertForPreTraining', 'RoCBertForQuestionAnswering', 'RoCBertForSequenceClassification', 'RoCBertForTokenClassification', 'RoCBertLayer', 'RoCBertModel', 'RoCBertPreTrainedModel', 'load_tf_weights_in_roc_bert', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> float: UpperCamelCase__ : Dict = sorted(numsa + numsa) UpperCamelCase__, UpperCamelCase__ : Dict = divmod(len(lowerCamelCase_) , 2) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase__ = [float(x) for x in input('Enter the elements of first array: ').split()] lowerCAmelCase__ = [float(x) for x in input('Enter the elements of second array: ').split()] print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset lowerCAmelCase__ = pd.read_csv( 'https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/' 'position_salaries.csv' ) lowerCAmelCase__ = dataset.iloc[:, 1:2].values lowerCAmelCase__ = dataset.iloc[:, 2].values lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = train_test_split(X, y, test_size=0.2, random_state=0) lowerCAmelCase__ = PolynomialFeatures(degree=4) lowerCAmelCase__ = poly_reg.fit_transform(X) lowerCAmelCase__ = LinearRegression() pol_reg.fit(X_poly, y) def __UpperCAmelCase ( ) -> int: plt.scatter(lowerCamelCase_ , lowerCamelCase_ , color='red') plt.plot(lowerCamelCase_ , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase_)) , color='blue') plt.title('Truth or Bluff (Linear Regression)') plt.xlabel('Position level') plt.ylabel('Salary') plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowerCAmelCase__ = ['text', 'image', 'audio'] def __UpperCAmelCase ( lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : int = [] for input_type in input_types: if input_type == "text": inputs.append('Text input') elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO')) / '000000039769.png').resize((512, 512))) elif input_type == "audio": inputs.append(torch.ones(3_000)) elif isinstance(lowerCamelCase_ , lowerCamelCase_): inputs.append(create_inputs(lowerCamelCase_)) else: raise ValueError(f'Invalid type requested: {input_type}') return inputs def __UpperCAmelCase ( lowerCamelCase_) -> Dict: UpperCamelCase__ : Tuple = [] for output in outputs: if isinstance(lowerCamelCase_ , (str, AgentText)): output_types.append('text') elif isinstance(lowerCamelCase_ , (Image.Image, AgentImage)): output_types.append('image') elif isinstance(lowerCamelCase_ , (torch.Tensor, AgentAudio)): output_types.append('audio') else: raise ValueError(f'Invalid output: {output}') return output_types @is_tool_test class __lowercase : def __UpperCamelCase ( self : List[str]): self.assertTrue(hasattr(self.tool , 'inputs')) self.assertTrue(hasattr(self.tool , 'outputs')) UpperCamelCase__ : int = self.tool.inputs for _input in inputs: if isinstance(_input , UpperCAmelCase_): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) UpperCamelCase__ : Any = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = create_inputs(self.tool.inputs) UpperCamelCase__ : Any = self.tool(*UpperCAmelCase_) # There is a single output if len(self.tool.outputs) == 1: UpperCamelCase__ : Optional[Any] = [outputs] self.assertListEqual(output_types(UpperCAmelCase_) , self.tool.outputs) def __UpperCamelCase ( self : Optional[int]): self.assertTrue(hasattr(self.tool , 'description')) self.assertTrue(hasattr(self.tool , 'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = create_inputs(self.tool.inputs) UpperCamelCase__ : Optional[Any] = self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : int = [outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs)) for output, output_type in zip(UpperCAmelCase_ , self.tool.outputs): UpperCamelCase__ : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(UpperCAmelCase_ , UpperCAmelCase_)) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[str] = create_inputs(self.tool.inputs) UpperCamelCase__ : Optional[int] = [] for _input, input_type in zip(UpperCAmelCase_ , self.tool.inputs): if isinstance(UpperCAmelCase_ , UpperCAmelCase_): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error UpperCamelCase__ : List[Any] = self.tool(*UpperCAmelCase_) if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : int = [outputs] self.assertEqual(len(UpperCAmelCase_) , len(self.tool.outputs))
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : str): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = text, pattern UpperCamelCase__, UpperCamelCase__ : Optional[Any] = len(UpperCAmelCase_), len(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int): for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCamelCase ( self : Tuple): # searches pattern in text and returns index positions UpperCamelCase__ : str = [] for i in range(self.textLen - self.patLen + 1): UpperCamelCase__ : Tuple = self.mismatch_in_text(UpperCAmelCase_) if mismatch_index == -1: positions.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.match_in_pattern(self.text[mismatch_index]) UpperCamelCase__ : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions lowerCAmelCase__ = 'ABAABA' lowerCAmelCase__ = 'AB' lowerCAmelCase__ = BoyerMooreSearch(text, pattern) lowerCAmelCase__ = bms.bad_character_heuristic() if len(positions) == 0: print('No match found') else: print('Pattern found in following positions: ') print(positions)
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCamelCase ) class __lowercase (__lowerCamelCase ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization _lowerCamelCase = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowerCamelCase = Features({'''text''': Value('''string''' )} ) _lowerCamelCase = Features({'''labels''': ClassLabel} ) _lowerCamelCase = "text" _lowerCamelCase = "labels" def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.') if not isinstance(features[self.label_column] , UpperCAmelCase_): raise ValueError(F'Column {self.label_column} is not a ClassLabel.') UpperCamelCase__ : Dict = copy.deepcopy(self) UpperCamelCase__ : int = self.label_schema.copy() UpperCamelCase__ : Union[str, Any] = features[self.label_column] UpperCamelCase__ : Tuple = label_schema return task_template @property def __UpperCamelCase ( self : Optional[int]): return { self.text_column: "text", self.label_column: "labels", }
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class __lowercase (unittest.TestCase ): def __init__( self : Tuple , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any=7 , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[Any]=10 , UpperCAmelCase_ : Any=18 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : str=None , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : int=[0.5, 0.5, 0.5] , UpperCAmelCase_ : List[str]=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Tuple=None , ): UpperCamelCase__ : Optional[int] = size if size is not None else {'shortest_edge': 18} UpperCamelCase__ : Tuple = crop_size if crop_size is not None else {'height': 18, 'width': 18} UpperCamelCase__ : Any = parent UpperCamelCase__ : int = batch_size UpperCamelCase__ : Optional[int] = num_channels UpperCamelCase__ : Tuple = num_frames UpperCamelCase__ : Dict = image_size UpperCamelCase__ : Tuple = min_resolution UpperCamelCase__ : Any = max_resolution UpperCamelCase__ : Tuple = do_resize UpperCamelCase__ : Optional[Any] = size UpperCamelCase__ : Dict = do_normalize UpperCamelCase__ : str = image_mean UpperCamelCase__ : Dict = image_std UpperCamelCase__ : str = crop_size def __UpperCamelCase ( self : Tuple): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = VivitImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Optional[int] = VivitImageProcessingTester(self) @property def __UpperCamelCase ( self : Union[str, Any]): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_mean')) self.assertTrue(hasattr(UpperCAmelCase_ , 'image_std')) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize')) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_resize')) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_center_crop')) self.assertTrue(hasattr(UpperCAmelCase_ , 'size')) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'shortest_edge': 18}) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18}) UpperCamelCase__ : int = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {'shortest_edge': 42}) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84}) def __UpperCamelCase ( self : Optional[int]): # Initialize image_processing UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL videos UpperCamelCase__ : Dict = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(video[0] , Image.Image) # Test not batched input UpperCamelCase__ : str = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase__ : Tuple = image_processing(UpperCAmelCase_ , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCamelCase ( self : Union[str, Any]): # Initialize image_processing UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCamelCase__ : List[Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(video[0] , np.ndarray) # Test not batched input UpperCamelCase__ : Optional[int] = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase__ : str = image_processing(UpperCAmelCase_ , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def __UpperCamelCase ( self : Tuple): # Initialize image_processing UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCamelCase__ : int = prepare_video_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for video in video_inputs: self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) self.assertIsInstance(video[0] , torch.Tensor) # Test not batched input UpperCamelCase__ : List[str] = image_processing(video_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched UpperCamelCase__ : List[Any] = image_processing(UpperCAmelCase_ , return_tensors='pt').pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowerCAmelCase__ = data_utils.TransfoXLTokenizer lowerCAmelCase__ = data_utils.TransfoXLCorpus lowerCAmelCase__ = data_utils lowerCAmelCase__ = data_utils def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(lowerCamelCase_ , 'rb') as fp: UpperCamelCase__ : List[str] = pickle.load(lowerCamelCase_ , encoding='latin1') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase__ : str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(f'Save vocabulary to {pytorch_vocab_dump_path}') UpperCamelCase__ : Any = corpus.vocab.__dict__ torch.save(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , lowerCamelCase_) UpperCamelCase__ : Tuple = pytorch_dump_folder_path + '/' + CORPUS_NAME print(f'Save dataset to {pytorch_dataset_dump_path}') torch.save(lowerCamelCase_ , lowerCamelCase_) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase__ : Optional[int] = os.path.abspath(lowerCamelCase_) UpperCamelCase__ : Optional[int] = os.path.abspath(lowerCamelCase_) print(f'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.') # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase__ : List[Any] = TransfoXLConfig() else: UpperCamelCase__ : str = TransfoXLConfig.from_json_file(lowerCamelCase_) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : Optional[int] = TransfoXLLMHeadModel(lowerCamelCase_) UpperCamelCase__ : int = load_tf_weights_in_transfo_xl(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Save pytorch-model UpperCamelCase__ : Union[str, Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = os.path.join(lowerCamelCase_ , lowerCamelCase_) print(f'Save PyTorch model to {os.path.abspath(lowerCamelCase_)}') torch.save(model.state_dict() , lowerCamelCase_) print(f'Save configuration file to {os.path.abspath(lowerCamelCase_)}') with open(lowerCamelCase_ , 'w' , encoding='utf-8') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) lowerCAmelCase__ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''''' _lowerCamelCase = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) _lowerCamelCase = None # compression type in fsspec. ex: "gzip" _lowerCamelCase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : Optional[Any] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , **UpperCAmelCase_ : Dict): super().__init__(self , **UpperCAmelCase_) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase__ : int = fsspec.open( UpperCAmelCase_ , mode='rb' , protocol=UpperCAmelCase_ , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase__ : Tuple = os.path.basename(self.file.path.split('::')[0]) UpperCamelCase__ : Union[str, Any] = ( self.compressed_name[: self.compressed_name.rindex('.')] if '.' in self.compressed_name else self.compressed_name ) UpperCamelCase__ : str = None @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : Dict): # compressed file paths are always relative to the archive root return super()._strip_protocol(UpperCAmelCase_).lstrip('/') def __UpperCamelCase ( self : Any): if self.dir_cache is None: UpperCamelCase__ : Tuple = {**self.file.fs.info(self.file.path), 'name': self.uncompressed_name} UpperCamelCase__ : Dict = {f['name']: f} def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): return self.file.open().read() def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Any=None , **UpperCAmelCase_ : str , ): UpperCamelCase__ : str = self._strip_protocol(UpperCAmelCase_) if mode != "rb": raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'') return self.file.open() class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''bz2''' _lowerCamelCase = '''bz2''' _lowerCamelCase = '''.bz2''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''gzip''' _lowerCamelCase = '''gzip''' _lowerCamelCase = '''.gz''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''lz4''' _lowerCamelCase = '''lz4''' _lowerCamelCase = '''.lz4''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''xz''' _lowerCamelCase = '''xz''' _lowerCamelCase = '''.xz''' class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''zstd''' _lowerCamelCase = '''zstd''' _lowerCamelCase = '''.zst''' def __init__( self : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = "rb" , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[dict] = None , UpperCAmelCase_ : int = DEFAULT_BLOCK_SIZE , **UpperCAmelCase_ : Dict , ): super().__init__( fo=UpperCAmelCase_ , mode=UpperCAmelCase_ , target_protocol=UpperCAmelCase_ , target_options=UpperCAmelCase_ , block_size=UpperCAmelCase_ , **UpperCAmelCase_ , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase__ : str = self.file.__enter__ class __lowercase : def __init__( self : Optional[int] , UpperCAmelCase_ : Dict): UpperCamelCase__ : str = file_ def __enter__( self : str): self._file.__enter__() return self def __exit__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): self._file.__exit__(*UpperCAmelCase_ , **UpperCAmelCase_) def __iter__( self : Tuple): return iter(self._file) def __UpperCamelCase ( self : Any): return next(self._file) def __getattr__( self : str , UpperCAmelCase_ : Tuple): return getattr(self._file , UpperCAmelCase_) def fixed_enter(*UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict): return WrappedFile(_enter(*UpperCAmelCase_ , **UpperCAmelCase_)) UpperCamelCase__ : str = fixed_enter
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''LayoutLMv3ImageProcessor''' _lowerCamelCase = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__( self : Any , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Tuple=None , **UpperCAmelCase_ : Any): UpperCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Dict = kwargs.pop('feature_extractor') UpperCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) def __call__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , UpperCAmelCase_ : Union[List[List[int]], List[List[List[int]]]] = None , UpperCAmelCase_ : Optional[Union[List[int], List[List[int]]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : List[str] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( 'You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.') if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( 'You cannot provide word labels if you initialized the image processor with apply_ocr set to True.') # first, apply the image processor UpperCamelCase__ : Optional[Any] = self.image_processor(images=UpperCAmelCase_ , return_tensors=UpperCAmelCase_) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ : int = features['words'] UpperCamelCase__ : int = self.tokenizer( text=text if text is not None else features['words'] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['boxes'] , word_labels=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) # add pixel values UpperCamelCase__ : Any = features.pop('pixel_values') if return_overflowing_tokens is True: UpperCamelCase__ : List[Any] = self.get_overflowing_images(UpperCAmelCase_ , encoded_inputs['overflow_to_sample_mapping']) UpperCamelCase__ : Any = images return encoded_inputs def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[str]): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image UpperCamelCase__ : List[str] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(UpperCAmelCase_) != len(UpperCAmelCase_): raise ValueError( 'Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got' F' {len(UpperCAmelCase_)} and {len(UpperCAmelCase_)}') return images_with_overflow def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any]): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : Dict): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCamelCase ( self : List[Any]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : Any): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import argparse import copy def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : List[str] = {} with open(lowerCamelCase_) as f: for line in f: if line.split()[0] not in dict_of_neighbours: UpperCamelCase__ : Any = [] _list.append([line.split()[1], line.split()[2]]) UpperCamelCase__ : int = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]]) if line.split()[1] not in dict_of_neighbours: UpperCamelCase__ : Union[str, Any] = [] _list.append([line.split()[0], line.split()[2]]) UpperCamelCase__ : Optional[Any] = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]]) return dict_of_neighbours def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: with open(lowerCamelCase_) as f: UpperCamelCase__ : str = f.read(1) UpperCamelCase__ : Dict = start_node UpperCamelCase__ : Optional[int] = [] UpperCamelCase__ : Tuple = start_node UpperCamelCase__ : Optional[Any] = 0 while visiting not in first_solution: UpperCamelCase__ : Dict = 10_000 for k in dict_of_neighbours[visiting]: if int(k[1]) < int(lowerCamelCase_) and k[0] not in first_solution: UpperCamelCase__ : Optional[int] = k[1] UpperCamelCase__ : Optional[Any] = k[0] first_solution.append(lowerCamelCase_) UpperCamelCase__ : Tuple = distance_of_first_solution + int(lowerCamelCase_) UpperCamelCase__ : Tuple = best_node first_solution.append(lowerCamelCase_) UpperCamelCase__ : List[Any] = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 UpperCamelCase__ : int = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1]) - 10_000 ) return first_solution, distance_of_first_solution def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[Any] = [] for n in solution[1:-1]: UpperCamelCase__ : int = solution.index(lowerCamelCase_) for kn in solution[1:-1]: UpperCamelCase__ : List[Any] = solution.index(lowerCamelCase_) if n == kn: continue UpperCamelCase__ : Optional[int] = copy.deepcopy(lowerCamelCase_) UpperCamelCase__ : Dict = kn UpperCamelCase__ : Tuple = n UpperCamelCase__ : int = 0 for k in _tmp[:-1]: UpperCamelCase__ : Union[str, Any] = _tmp[_tmp.index(lowerCamelCase_) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: UpperCamelCase__ : Optional[int] = distance + int(i[1]) _tmp.append(lowerCamelCase_) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp) UpperCamelCase__ : Dict = len(neighborhood_of_solution[0]) - 1 neighborhood_of_solution.sort(key=lambda lowerCamelCase_: x[index_of_last_item_in_the_list]) return neighborhood_of_solution def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Optional[Any] = 1 UpperCamelCase__ : Tuple = first_solution UpperCamelCase__ : Dict = [] UpperCamelCase__ : int = distance_of_first_solution UpperCamelCase__ : List[str] = solution while count <= iters: UpperCamelCase__ : List[str] = find_neighborhood(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Any = neighborhood[index_of_best_solution] UpperCamelCase__ : Any = len(lowerCamelCase_) - 1 UpperCamelCase__ : int = False while not found: UpperCamelCase__ : Any = 0 while i < len(lowerCamelCase_): if best_solution[i] != solution[i]: UpperCamelCase__ : Optional[Any] = best_solution[i] UpperCamelCase__ : Union[str, Any] = solution[i] break UpperCamelCase__ : List[Any] = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node]) UpperCamelCase__ : Union[str, Any] = True UpperCamelCase__ : Optional[int] = best_solution[:-1] UpperCamelCase__ : List[Any] = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: UpperCamelCase__ : Optional[Any] = cost UpperCamelCase__ : Any = solution else: UpperCamelCase__ : List[str] = index_of_best_solution + 1 UpperCamelCase__ : List[str] = neighborhood[index_of_best_solution] if len(lowerCamelCase_) >= size: tabu_list.pop(0) UpperCamelCase__ : List[str] = count + 1 return best_solution_ever, best_cost def __UpperCAmelCase ( lowerCamelCase_=None) -> Dict: UpperCamelCase__ : List[str] = generate_neighbours(args.File) UpperCamelCase__, UpperCamelCase__ : Optional[Any] = generate_first_solution( args.File , lowerCamelCase_) UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = tabu_search( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , args.Iterations , args.Size , ) print(f'Best solution: {best_sol}, with total distance: {best_cost}.') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser(description='Tabu Search') parser.add_argument( '-f', '--File', type=str, help='Path to the file containing the data', required=True, ) parser.add_argument( '-i', '--Iterations', type=int, help='How many iterations the algorithm should perform', required=True, ) parser.add_argument( '-s', '--Size', type=int, help='Size of the tabu list', required=True ) # Pass the arguments to main method main(parser.parse_args())
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' from __future__ import annotations from random import random from typing import Generic, TypeVar lowerCAmelCase__ = TypeVar('KT') lowerCAmelCase__ = TypeVar('VT') class __lowercase (Generic[KT, VT] ): def __init__( self : List[str] , UpperCAmelCase_ : KT | str = "root" , UpperCAmelCase_ : VT | None = None): UpperCamelCase__ : Any = key UpperCamelCase__ : Optional[int] = value UpperCamelCase__ : list[Node[KT, VT]] = [] def __repr__( self : str): return F'Node({self.key}: {self.value})' @property def __UpperCamelCase ( self : Dict): return len(self.forward) class __lowercase (Generic[KT, VT] ): def __init__( self : int , UpperCAmelCase_ : float = 0.5 , UpperCAmelCase_ : int = 16): UpperCamelCase__ : Node[KT, VT] = Node[KT, VT]() UpperCamelCase__ : Any = 0 UpperCamelCase__ : List[str] = p UpperCamelCase__ : List[str] = max_level def __str__( self : List[str]): UpperCamelCase__ : int = list(self) if len(UpperCAmelCase_) == 0: return F'SkipList(level={self.level})' UpperCamelCase__ : Optional[Any] = max((len(str(UpperCAmelCase_)) for item in items) , default=4) UpperCamelCase__ : int = max(UpperCAmelCase_ , 4) + 4 UpperCamelCase__ : Any = self.head UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : Dict = node.forward.copy() lines.append(F'[{node.key}]'.ljust(UpperCAmelCase_ , '-') + '* ' * len(UpperCAmelCase_)) lines.append(' ' * label_size + '| ' * len(UpperCAmelCase_)) while len(node.forward) != 0: UpperCamelCase__ : str = node.forward[0] lines.append( F'[{node.key}]'.ljust(UpperCAmelCase_ , '-') + ' '.join(str(n.key) if n.key == node.key else '|' for n in forwards)) lines.append(' ' * label_size + '| ' * len(UpperCAmelCase_)) UpperCamelCase__ : Tuple = node.forward lines.append('None'.ljust(UpperCAmelCase_) + '* ' * len(UpperCAmelCase_)) return F'SkipList(level={self.level})\n' + "\n".join(UpperCAmelCase_) def __iter__( self : Dict): UpperCamelCase__ : Optional[Any] = self.head while len(node.forward) != 0: yield node.forward[0].key UpperCamelCase__ : str = node.forward[0] def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[str] = 1 while random() < self.p and level < self.max_level: level += 1 return level def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str): UpperCamelCase__ : Dict = [] UpperCamelCase__ : List[str] = self.head for i in reversed(range(self.level)): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: UpperCamelCase__ : Dict = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(UpperCAmelCase_) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def __UpperCamelCase ( self : str , UpperCAmelCase_ : KT): UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_) if node is not None: for i, update_node in enumerate(UpperCAmelCase_): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: UpperCamelCase__ : int = node.forward[i] else: UpperCamelCase__ : Any = update_node.forward[:i] def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : KT , UpperCAmelCase_ : VT): UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_) if node is not None: UpperCamelCase__ : Optional[int] = value else: UpperCamelCase__ : Tuple = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , UpperCAmelCase_): update_vector.append(self.head) UpperCamelCase__ : Union[str, Any] = level UpperCamelCase__ : List[str] = Node(UpperCAmelCase_ , UpperCAmelCase_) for i, update_node in enumerate(update_vector[:level]): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i]) if update_node.level < i + 1: update_node.forward.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = new_node def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : VT): UpperCamelCase__, UpperCamelCase__ : Optional[Any] = self._locate_node(UpperCAmelCase_) if node is not None: return node.value return None def __UpperCAmelCase ( ) -> int: UpperCamelCase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 3) skip_list.insert('Key2' , 12) skip_list.insert('Key3' , 41) skip_list.insert('Key4' , -19) UpperCamelCase__ : str = skip_list.head UpperCamelCase__ : Dict = {} while node.level != 0: UpperCamelCase__ : Union[str, Any] = node.forward[0] UpperCamelCase__ : List[str] = node.value assert len(lowerCamelCase_) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __UpperCAmelCase ( ) -> List[Any]: UpperCamelCase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 10) skip_list.insert('Key1' , 12) skip_list.insert('Key5' , 7) skip_list.insert('Key7' , 10) skip_list.insert('Key10' , 5) skip_list.insert('Key7' , 7) skip_list.insert('Key5' , 5) skip_list.insert('Key10' , 10) UpperCamelCase__ : Union[str, Any] = skip_list.head UpperCamelCase__ : Dict = {} while node.level != 0: UpperCamelCase__ : List[str] = node.forward[0] UpperCamelCase__ : List[str] = node.value if len(lowerCamelCase_) != 4: print() assert len(lowerCamelCase_) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : Optional[Any] = SkipList() assert skip_list.find('Some key') is None def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : str = SkipList() skip_list.insert('Key2' , 20) assert skip_list.find('Key2') == 20 skip_list.insert('Some Key' , 10) skip_list.insert('Key2' , 8) skip_list.insert('V' , 13) assert skip_list.find('Y') is None assert skip_list.find('Key2') == 8 assert skip_list.find('Some Key') == 10 assert skip_list.find('V') == 13 def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : List[str] = SkipList() skip_list.delete('Some key') assert len(skip_list.head.forward) == 0 def __UpperCAmelCase ( ) -> Optional[int]: UpperCamelCase__ : Tuple = SkipList() skip_list.insert('Key1' , 12) skip_list.insert('V' , 13) skip_list.insert('X' , 14) skip_list.insert('Key2' , 15) skip_list.delete('V') skip_list.delete('Key2') assert skip_list.find('V') is None assert skip_list.find('Key2') is None def __UpperCAmelCase ( ) -> str: UpperCamelCase__ : Optional[int] = SkipList() skip_list.insert('Key1' , 12) skip_list.insert('V' , 13) skip_list.insert('X' , 14) skip_list.insert('Key2' , 15) skip_list.delete('V') assert skip_list.find('V') is None assert skip_list.find('X') == 14 assert skip_list.find('Key1') == 12 assert skip_list.find('Key2') == 15 skip_list.delete('X') assert skip_list.find('V') is None assert skip_list.find('X') is None assert skip_list.find('Key1') == 12 assert skip_list.find('Key2') == 15 skip_list.delete('Key1') assert skip_list.find('V') is None assert skip_list.find('X') is None assert skip_list.find('Key1') is None assert skip_list.find('Key2') == 15 skip_list.delete('Key2') assert skip_list.find('V') is None assert skip_list.find('X') is None assert skip_list.find('Key1') is None assert skip_list.find('Key2') is None def __UpperCAmelCase ( ) -> Any: UpperCamelCase__ : Optional[Any] = SkipList() skip_list.insert('Key1' , 12) skip_list.insert('V' , 13) skip_list.insert('X' , 142) skip_list.insert('Key2' , 15) skip_list.delete('X') def traverse_keys(lowerCamelCase_): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCamelCase_) assert len(set(traverse_keys(skip_list.head))) == 4 def __UpperCAmelCase ( ) -> List[str]: def is_sorted(lowerCamelCase_): return all(next_item >= item for item, next_item in zip(lowerCamelCase_ , lst[1:])) UpperCamelCase__ : Any = SkipList() for i in range(10): skip_list.insert(lowerCamelCase_ , lowerCamelCase_) assert is_sorted(list(lowerCamelCase_)) skip_list.delete(5) skip_list.delete(8) skip_list.delete(2) assert is_sorted(list(lowerCamelCase_)) skip_list.insert(-12 , -12) skip_list.insert(77 , 77) assert is_sorted(list(lowerCamelCase_)) def __UpperCAmelCase ( ) -> Optional[int]: for _ in range(100): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __UpperCAmelCase ( ) -> Any: UpperCamelCase__ : List[Any] = SkipList() skip_list.insert(2 , '2') skip_list.insert(4 , '4') skip_list.insert(6 , '4') skip_list.insert(4 , '5') skip_list.insert(8 , '4') skip_list.insert(9 , '4') skip_list.delete(4) print(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod() main()
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' import operator def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None) -> list: UpperCamelCase__ : Union[str, Any] = operator.lt if reverse else operator.gt UpperCamelCase__ : List[str] = solution or [] if not arr: return solution UpperCamelCase__ : Tuple = [arr.pop(0)] for i, item in enumerate(lowerCamelCase_): if _operator(lowerCamelCase_ , sublist[-1]): sublist.append(lowerCamelCase_) arr.pop(lowerCamelCase_) # merging sublist into solution list if not solution: solution.extend(lowerCamelCase_) else: while sublist: UpperCamelCase__ : List[Any] = sublist.pop(0) for i, xx in enumerate(lowerCamelCase_): if not _operator(lowerCamelCase_ , lowerCamelCase_): solution.insert(lowerCamelCase_ , lowerCamelCase_) break else: solution.append(lowerCamelCase_) strand_sort(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''microsoft/speecht5_tts''' _lowerCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) _lowerCamelCase = '''text_reader''' _lowerCamelCase = SpeechTaProcessor _lowerCamelCase = SpeechTaForTextToSpeech _lowerCamelCase = SpeechTaHifiGan _lowerCamelCase = ['''text'''] _lowerCamelCase = ['''audio'''] def __UpperCamelCase ( self : Union[str, Any]): if self.post_processor is None: UpperCamelCase__ : Optional[int] = 'microsoft/speecht5_hifigan' super().setup() def __UpperCamelCase ( self : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int=None): UpperCamelCase__ : List[Any] = self.pre_processor(text=UpperCAmelCase_ , return_tensors='pt' , truncation=UpperCAmelCase_) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.') UpperCamelCase__ : int = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation') UpperCamelCase__ : Optional[int] = torch.tensor(embeddings_dataset[7_305]['xvector']).unsqueeze(0) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def __UpperCamelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any]): with torch.no_grad(): return self.model.generate_speech(**UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any]): with torch.no_grad(): return self.post_processor(UpperCAmelCase_).cpu().detach()
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = ShapEPipeline _lowerCamelCase = ['''prompt'''] _lowerCamelCase = ['''prompt'''] _lowerCamelCase = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] _lowerCamelCase = False @property def __UpperCamelCase ( self : List[Any]): return 32 @property def __UpperCamelCase ( self : Optional[Any]): return 32 @property def __UpperCamelCase ( self : Optional[Any]): return self.time_input_dim * 4 @property def __UpperCamelCase ( self : int): return 8 @property def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[Any]): torch.manual_seed(0) UpperCamelCase__ : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCamelCase__ : Any = PriorTransformer(**UpperCAmelCase_) return model @property def __UpperCamelCase ( self : List[Any]): torch.manual_seed(0) UpperCamelCase__ : Any = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCamelCase__ : Union[str, Any] = ShapERenderer(**UpperCAmelCase_) return model def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : int = self.dummy_prior UpperCamelCase__ : int = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_renderer UpperCamelCase__ : int = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=UpperCAmelCase_ , clip_sample=UpperCAmelCase_ , clip_sample_range=1.0 , ) UpperCamelCase__ : Dict = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int]=0): if str(UpperCAmelCase_).startswith('mps'): UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) else: UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[Any] = 'cpu' UpperCamelCase__ : List[str] = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : Dict = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = pipe(**self.get_dummy_inputs(UpperCAmelCase_)) UpperCamelCase__ : Tuple = output.images[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCamelCase__ : Optional[Any] = np.array( [ 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, 0.00_03_92_16, ]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : int): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2]) def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[str] = torch_device == 'cpu' UpperCamelCase__ : Optional[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCAmelCase_ , relax_max_difference=UpperCAmelCase_ , ) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = self.get_dummy_components() UpperCamelCase__ : Union[str, Any] = self.pipeline_class(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 1 UpperCamelCase__ : Optional[Any] = 2 UpperCamelCase__ : int = self.get_dummy_inputs(UpperCAmelCase_) for key in inputs.keys(): if key in self.batch_params: UpperCamelCase__ : Tuple = batch_size * [inputs[key]] UpperCamelCase__ : List[Any] = pipe(**UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_)[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy') UpperCamelCase__ : List[Any] = ShapEPipeline.from_pretrained('openai/shap-e') UpperCamelCase__ : Dict = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[int] = pipe( 'a shark' , generator=UpperCAmelCase_ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_)
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: UpperCamelCase__ : str = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4']) UpperCamelCase__ : List[Any] = MaskFormerConfig(backbone_config=lowerCamelCase_) UpperCamelCase__ : List[str] = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok UpperCamelCase__ : Tuple = 847 UpperCamelCase__ : List[str] = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok UpperCamelCase__ : Tuple = 150 UpperCamelCase__ : List[str] = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok UpperCamelCase__ : Dict = 171 UpperCamelCase__ : List[Any] = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO UpperCamelCase__ : Tuple = 133 UpperCamelCase__ : List[Any] = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok UpperCamelCase__ : str = 19 UpperCamelCase__ : Tuple = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok UpperCamelCase__ : Optional[int] = 65 UpperCamelCase__ : Dict = 'mapillary-vistas-id2label.json' UpperCamelCase__ : Tuple = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset') , 'r')) UpperCamelCase__ : Dict = {int(lowerCamelCase_): v for k, v in idalabel.items()} return config def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Optional[Any] = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight')) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias')) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight')) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias')) # stages for i in range(len(config.backbone_config.depths)): for j in range(config.backbone_config.depths[i]): rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.attn.proj.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.norm2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight')) rename_keys.append((f'backbone.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias')) if i < 3: rename_keys.append((f'backbone.layers.{i}.downsample.reduction.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight')) rename_keys.append((f'backbone.layers.{i}.downsample.norm.weight', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight')) rename_keys.append((f'backbone.layers.{i}.downsample.norm.bias', f'model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias')) rename_keys.append((f'backbone.norm{i}.weight', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.weight')) rename_keys.append((f'backbone.norm{i}.bias', f'model.pixel_level_module.encoder.hidden_states_norms.{i}.bias')) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight')) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias')) for source_index, target_index in zip(range(3 , 0 , -1) , range(0 , 3)): rename_keys.append((f'sem_seg_head.adapter_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight')) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight')) rename_keys.append((f'sem_seg_head.adapter_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias')) rename_keys.append((f'sem_seg_head.layer_{source_index}.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight')) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.weight', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight')) rename_keys.append((f'sem_seg_head.layer_{source_index}.norm.bias', f'model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias')) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight')) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias')) # Transformer decoder for idx in range(config.decoder_config.decoder_layers): # self-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias')) # cross-attention out projection rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias')) # MLP 1 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight', f'model.transformer_module.decoder.layers.{idx}.fc1.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias', f'model.transformer_module.decoder.layers.{idx}.fc1.bias')) # MLP 2 rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight', f'model.transformer_module.decoder.layers.{idx}.fc2.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias', f'model.transformer_module.decoder.layers.{idx}.fc2.bias')) # layernorm 1 (self-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias', f'model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias')) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias', f'model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias')) # layernorm 3 (final layernorm) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight')) rename_keys.append((f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias', f'model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight')) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias')) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight')) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias')) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight')) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias')) for i in range(3): rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.weight', f'mask_embedder.{i}.0.weight')) rename_keys.append((f'sem_seg_head.predictor.mask_embed.layers.{i}.bias', f'mask_embedder.{i}.0.bias')) # fmt: on return rename_keys def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Optional[Any] = dct.pop(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__ : Optional[Any] = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))] for i in range(len(backbone_config.depths)): UpperCamelCase__ : str = num_features[i] for j in range(backbone_config.depths[i]): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase__ : Dict = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.weight') UpperCamelCase__ : List[str] = state_dict.pop(f'backbone.layers.{i}.blocks.{j}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : str = in_proj_weight[:dim, :] UpperCamelCase__ : int = in_proj_bias[: dim] UpperCamelCase__ : Any = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase__ : List[str] = in_proj_bias[ dim : dim * 2 ] UpperCamelCase__ : Tuple = in_proj_weight[ -dim :, : ] UpperCamelCase__ : List[str] = in_proj_bias[-dim :] # fmt: on def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: # fmt: off UpperCamelCase__ : str = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ : int = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight') UpperCamelCase__ : List[str] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Union[str, Any] = in_proj_weight[: hidden_size, :] UpperCamelCase__ : str = in_proj_bias[:config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ : Optional[int] = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ : List[str] = in_proj_weight[-hidden_size :, :] UpperCamelCase__ : Optional[Any] = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight') UpperCamelCase__ : Any = state_dict.pop(f'sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : Dict = in_proj_weight[: hidden_size, :] UpperCamelCase__ : Tuple = in_proj_bias[:config.hidden_size] UpperCamelCase__ : List[str] = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase__ : Tuple = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase__ : Any = in_proj_weight[-hidden_size :, :] UpperCamelCase__ : Any = in_proj_bias[-hidden_size :] # fmt: on def __UpperCAmelCase ( ) -> torch.Tensor: UpperCamelCase__ : List[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False) -> Any: UpperCamelCase__ : Any = get_maskformer_config(lowerCamelCase_) # load original state_dict with open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : str = pickle.load(lowerCamelCase_) UpperCamelCase__ : str = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCamelCase__ : Optional[int] = create_rename_keys(lowerCamelCase_) for src, dest in rename_keys: rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) read_in_swin_q_k_v(lowerCamelCase_ , config.backbone_config) read_in_decoder_q_k_v(lowerCamelCase_ , lowerCamelCase_) # update to torch tensors for key, value in state_dict.items(): UpperCamelCase__ : Any = torch.from_numpy(lowerCamelCase_) # load 🤗 model UpperCamelCase__ : List[Any] = MaskFormerForInstanceSegmentation(lowerCamelCase_) model.eval() for name, param in model.named_parameters(): print(lowerCamelCase_ , param.shape) UpperCamelCase__, UpperCamelCase__ : int = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(lowerCamelCase_) == 0, f'Unexpected keys: {unexpected_keys}' # verify results UpperCamelCase__ : Union[str, Any] = prepare_img() if "vistas" in model_name: UpperCamelCase__ : Tuple = 65 elif "cityscapes" in model_name: UpperCamelCase__ : str = 65_535 else: UpperCamelCase__ : Dict = 255 UpperCamelCase__ : Tuple = True if 'ade' in model_name else False UpperCamelCase__ : Dict = MaskFormerImageProcessor(ignore_index=lowerCamelCase_ , reduce_labels=lowerCamelCase_) UpperCamelCase__ : List[str] = image_processor(lowerCamelCase_ , return_tensors='pt') UpperCamelCase__ : Dict = model(**lowerCamelCase_) print('Logits:' , outputs.class_queries_logits[0, :3, :3]) if model_name == "maskformer-swin-tiny-ade": UpperCamelCase__ : Dict = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]]) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase_ , atol=1e-4) print('Looks ok!') if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}') Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) model.save_pretrained(lowerCamelCase_) image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model and image processor to the hub...') model.push_to_hub(f'nielsr/{model_name}') image_processor.push_to_hub(f'nielsr/{model_name}') if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) lowerCAmelCase__ = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple): warnings.warn( 'The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DPTImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): def __init__( self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str): warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , UpperCAmelCase_ , ) super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_)
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any]): for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss']): UpperCamelCase__ : str = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Dict = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = 'sgugger/tiny-distilbert-classification' UpperCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , only_pretrain_model=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Optional[Any] = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Optional[int] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : List[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : int = 'sshleifer/tiny-gpt2' UpperCamelCase__ : int = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : int = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : str = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : int = 'sshleifer/tiny-gpt2' UpperCamelCase__ : List[str] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = 'sshleifer/tiny-gpt2' UpperCamelCase__ : Optional[int] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[int] = TensorFlowBenchmark(UpperCAmelCase_ , [config]) UpperCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Tuple = 'patrickvonplaten/t5-tiny-random' UpperCamelCase__ : List[str] = AutoConfig.from_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : str = TensorFlowBenchmark(UpperCAmelCase_ , configs=[config]) UpperCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU')) == 0 , 'Cannot do xla on CPU.') def __UpperCamelCase ( self : int): UpperCamelCase__ : str = 'sshleifer/tiny-gpt2' UpperCamelCase__ : List[Any] = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase_ , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Any = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : str = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , save_to_csv=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase_ , 'inf_time.csv') , inference_memory_csv_file=os.path.join(UpperCAmelCase_ , 'inf_mem.csv') , env_info_csv_file=os.path.join(UpperCAmelCase_ , 'env.csv') , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = TensorFlowBenchmark(UpperCAmelCase_) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'inf_time.csv')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'inf_mem.csv')).exists()) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'env.csv')).exists()) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(UpperCAmelCase_ : Union[str, Any]): self.assertTrue(hasattr(UpperCAmelCase_ , 'sequential')) self.assertTrue(hasattr(UpperCAmelCase_ , 'cumulative')) self.assertTrue(hasattr(UpperCAmelCase_ , 'current')) self.assertTrue(hasattr(UpperCAmelCase_ , 'total')) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase__ : Tuple = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase_ , 'log.txt') , log_print=UpperCAmelCase_ , trace_memory_line_by_line=UpperCAmelCase_ , eager_mode=UpperCAmelCase_ , multi_process=UpperCAmelCase_ , ) UpperCamelCase__ : Any = TensorFlowBenchmark(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary) self.assertTrue(Path(os.path.join(UpperCAmelCase_ , 'log.txt')).exists())
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = None _lowerCamelCase = None lowerCAmelCase__ = namedtuple('CoinsDistribResult', 'moves excess') def __UpperCAmelCase ( lowerCamelCase_) -> int: if root is None: return 0 # Validation def count_nodes(lowerCamelCase_) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(lowerCamelCase_) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(lowerCamelCase_) != count_coins(lowerCamelCase_): raise ValueError('The nodes number should be same as the number of coins') # Main calculation def get_distrib(lowerCamelCase_) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1) UpperCamelCase__, UpperCamelCase__ : List[Any] = get_distrib(node.left) UpperCamelCase__, UpperCamelCase__ : Tuple = get_distrib(node.right) UpperCamelCase__ : Optional[Any] = 1 - left_distrib_excess UpperCamelCase__ : Optional[int] = 1 - right_distrib_excess UpperCamelCase__ : str = ( left_distrib_moves + right_distrib_moves + abs(lowerCamelCase_) + abs(lowerCamelCase_) ) UpperCamelCase__ : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(lowerCamelCase_ , lowerCamelCase_) return get_distrib(lowerCamelCase_)[0] if __name__ == "__main__": import doctest doctest.testmod()
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : Any): UpperCamelCase__ : Tuple = XLMRobertaModel.from_pretrained('xlm-roberta-base') UpperCamelCase__ : Optional[Any] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house UpperCamelCase__ : Union[str, Any] = torch.Size((1, 12, 768)) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ : List[Any] = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3)) @slow def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : List[Any] = XLMRobertaModel.from_pretrained('xlm-roberta-large') UpperCamelCase__ : List[str] = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]]) # The dog is cute and lives in the garden house UpperCamelCase__ : Union[str, Any] = torch.Size((1, 12, 1_024)) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ : Optional[int] = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_)['last_hidden_state'].detach() self.assertEqual(output.shape , UpperCAmelCase_) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCAmelCase_ , atol=1e-3))
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf lowerCAmelCase__ = logging.get_logger(__name__) @dataclass class __lowercase (__lowerCamelCase ): _lowerCamelCase = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any]): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCamelCase__ : List[str] = deprecated_arg[3:] UpperCamelCase__ : str = not kwargs.pop(UpperCAmelCase_) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}') UpperCamelCase__ : Optional[int] = kwargs.pop('tpu_name' , self.tpu_name) UpperCamelCase__ : Union[str, Any] = kwargs.pop('device_idx' , self.device_idx) UpperCamelCase__ : int = kwargs.pop('eager_mode' , self.eager_mode) UpperCamelCase__ : str = kwargs.pop('use_xla' , self.use_xla) super().__init__(**UpperCAmelCase_) _lowerCamelCase = field( default=__lowerCamelCase , metadata={'''help''': '''Name of TPU'''} , ) _lowerCamelCase = field( default=0 , metadata={'''help''': '''CPU / GPU device index. Defaults to 0.'''} , ) _lowerCamelCase = field(default=__lowerCamelCase , metadata={'''help''': '''Benchmark models in eager model.'''} ) _lowerCamelCase = field( default=__lowerCamelCase , metadata={ '''help''': '''Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`.''' } , ) @cached_property def __UpperCamelCase ( self : Dict): requires_backends(self , ['tf']) UpperCamelCase__ : Dict = None if self.tpu: try: if self.tpu_name: UpperCamelCase__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name) else: UpperCamelCase__ : List[Any] = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: UpperCamelCase__ : int = None return tpu @cached_property def __UpperCamelCase ( self : Union[str, Any]): requires_backends(self , ['tf']) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu) UpperCamelCase__ : Optional[int] = tf.distribute.TPUStrategy(self._setup_tpu) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , 'GPU') UpperCamelCase__ : int = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}') else: tf.config.set_visible_devices([] , 'GPU') # disable GPU UpperCamelCase__ : List[Any] = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}') return strategy @property def __UpperCamelCase ( self : Any): requires_backends(self , ['tf']) return self._setup_tpu is not None @property def __UpperCamelCase ( self : Any): requires_backends(self , ['tf']) return self._setup_strategy @property def __UpperCamelCase ( self : int): requires_backends(self , ['tf']) return tf.config.list_physical_devices('GPU') @property def __UpperCamelCase ( self : Optional[int]): requires_backends(self , ['tf']) if self.cuda: return len(self.gpu_list) return 0 @property def __UpperCamelCase ( self : List[Any]): return self.n_gpu > 0
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase__ = collections.namedtuple('_Datasets', ['train', 'validation', 'test']) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase__ = 'https://storage.googleapis.com/cvdf-datasets/mnist/' def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__ : Optional[int] = numpy.dtype(numpy.uintaa).newbyteorder('>') return numpy.frombuffer(bytestream.read(4) , dtype=lowerCamelCase_)[0] @deprecated(lowerCamelCase_ , 'Please use tf.data to implement this functionality.') def __UpperCAmelCase ( lowerCamelCase_) -> Optional[int]: print('Extracting' , f.name) with gzip.GzipFile(fileobj=lowerCamelCase_) as bytestream: UpperCamelCase__ : Any = _readaa(lowerCamelCase_) if magic != 2_051: raise ValueError( 'Invalid magic number %d in MNIST image file: %s' % (magic, f.name)) UpperCamelCase__ : str = _readaa(lowerCamelCase_) UpperCamelCase__ : str = _readaa(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = _readaa(lowerCamelCase_) UpperCamelCase__ : str = bytestream.read(rows * cols * num_images) UpperCamelCase__ : List[Any] = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta) UpperCamelCase__ : Tuple = data.reshape(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , 1) return data @deprecated(lowerCamelCase_ , 'Please use tf.one_hot on tensors.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: UpperCamelCase__ : Dict = labels_dense.shape[0] UpperCamelCase__ : Optional[int] = numpy.arange(lowerCamelCase_) * num_classes UpperCamelCase__ : Optional[int] = numpy.zeros((num_labels, num_classes)) UpperCamelCase__ : Union[str, Any] = 1 return labels_one_hot @deprecated(lowerCamelCase_ , 'Please use tf.data to implement this functionality.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=10) -> Any: print('Extracting' , f.name) with gzip.GzipFile(fileobj=lowerCamelCase_) as bytestream: UpperCamelCase__ : int = _readaa(lowerCamelCase_) if magic != 2_049: raise ValueError( 'Invalid magic number %d in MNIST label file: %s' % (magic, f.name)) UpperCamelCase__ : Tuple = _readaa(lowerCamelCase_) UpperCamelCase__ : Optional[int] = bytestream.read(lowerCamelCase_) UpperCamelCase__ : Any = numpy.frombuffer(lowerCamelCase_ , dtype=numpy.uinta) if one_hot: return _dense_to_one_hot(lowerCamelCase_ , lowerCamelCase_) return labels class __lowercase : @deprecated( UpperCAmelCase_ , 'Please use alternatives such as official/mnist/_DataSet.py' ' from tensorflow/models.' , ) def __init__( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str]=False , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=dtypes.floataa , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Union[str, Any]=None , ): UpperCamelCase__, UpperCamelCase__ : Dict = random_seed.get_seed(UpperCAmelCase_) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) UpperCamelCase__ : Optional[Any] = dtypes.as_dtype(UpperCAmelCase_).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype) if fake_data: UpperCamelCase__ : Any = 10_000 UpperCamelCase__ : int = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F'images.shape: {images.shape} labels.shape: {labels.shape}' UpperCamelCase__ : int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 UpperCamelCase__ : Any = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. UpperCamelCase__ : Union[str, Any] = images.astype(numpy.floataa) UpperCamelCase__ : Dict = numpy.multiply(UpperCAmelCase_ , 1.0 / 2_55.0) UpperCamelCase__ : Union[str, Any] = images UpperCamelCase__ : List[str] = labels UpperCamelCase__ : int = 0 UpperCamelCase__ : Any = 0 @property def __UpperCamelCase ( self : List[Any]): return self._images @property def __UpperCamelCase ( self : List[Any]): return self._labels @property def __UpperCamelCase ( self : Union[str, Any]): return self._num_examples @property def __UpperCamelCase ( self : Dict): return self._epochs_completed def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : Dict=True): if fake_data: UpperCamelCase__ : List[Any] = [1] * 784 UpperCamelCase__ : Optional[int] = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(UpperCAmelCase_)], [fake_label for _ in range(UpperCAmelCase_)], ) UpperCamelCase__ : Tuple = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: UpperCamelCase__ : List[str] = numpy.arange(self._num_examples) numpy.random.shuffle(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.images[perma] UpperCamelCase__ : List[Any] = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch UpperCamelCase__ : List[Any] = self._num_examples - start UpperCamelCase__ : int = self._images[start : self._num_examples] UpperCamelCase__ : int = self._labels[start : self._num_examples] # Shuffle the data if shuffle: UpperCamelCase__ : Any = numpy.arange(self._num_examples) numpy.random.shuffle(UpperCAmelCase_) UpperCamelCase__ : int = self.images[perm] UpperCamelCase__ : str = self.labels[perm] # Start next epoch UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : List[str] = batch_size - rest_num_examples UpperCamelCase__ : List[Any] = self._index_in_epoch UpperCamelCase__ : Any = self._images[start:end] UpperCamelCase__ : Optional[int] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size UpperCamelCase__ : List[Any] = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(lowerCamelCase_ , 'Please write your own downloading logic.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: if not gfile.Exists(lowerCamelCase_): gfile.MakeDirs(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = os.path.join(lowerCamelCase_ , lowerCamelCase_) if not gfile.Exists(lowerCamelCase_): urllib.request.urlretrieve(lowerCamelCase_ , lowerCamelCase_) # noqa: S310 with gfile.GFile(lowerCamelCase_) as f: UpperCamelCase__ : List[str] = f.size() print('Successfully downloaded' , lowerCamelCase_ , lowerCamelCase_ , 'bytes.') return filepath @deprecated( lowerCamelCase_ , 'Please use alternatives such as:' ' tensorflow_datasets.load(\'mnist\')') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=False , lowerCamelCase_=dtypes.floataa , lowerCamelCase_=True , lowerCamelCase_=5_000 , lowerCamelCase_=None , lowerCamelCase_=DEFAULT_SOURCE_URL , ) -> List[str]: if fake_data: def fake(): return _DataSet( [] , [] , fake_data=lowerCamelCase_ , one_hot=lowerCamelCase_ , dtype=lowerCamelCase_ , seed=lowerCamelCase_) UpperCamelCase__ : Any = fake() UpperCamelCase__ : Optional[int] = fake() UpperCamelCase__ : int = fake() return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_) if not source_url: # empty string check UpperCamelCase__ : Any = DEFAULT_SOURCE_URL UpperCamelCase__ : int = 'train-images-idx3-ubyte.gz' UpperCamelCase__ : int = 'train-labels-idx1-ubyte.gz' UpperCamelCase__ : Union[str, Any] = 't10k-images-idx3-ubyte.gz' UpperCamelCase__ : Union[str, Any] = 't10k-labels-idx1-ubyte.gz' UpperCamelCase__ : Any = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_images_file) with gfile.Open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : Any = _extract_images(lowerCamelCase_) UpperCamelCase__ : List[str] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + train_labels_file) with gfile.Open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : int = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_) UpperCamelCase__ : List[Any] = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_images_file) with gfile.Open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : str = _extract_images(lowerCamelCase_) UpperCamelCase__ : Tuple = _maybe_download( lowerCamelCase_ , lowerCamelCase_ , source_url + test_labels_file) with gfile.Open(lowerCamelCase_ , 'rb') as f: UpperCamelCase__ : Tuple = _extract_labels(lowerCamelCase_ , one_hot=lowerCamelCase_) if not 0 <= validation_size <= len(lowerCamelCase_): UpperCamelCase__ : Tuple = ( 'Validation size should be between 0 and ' f'{len(lowerCamelCase_)}. Received: {validation_size}.' ) raise ValueError(lowerCamelCase_) UpperCamelCase__ : Dict = train_images[:validation_size] UpperCamelCase__ : str = train_labels[:validation_size] UpperCamelCase__ : List[str] = train_images[validation_size:] UpperCamelCase__ : Any = train_labels[validation_size:] UpperCamelCase__ : List[str] = {'dtype': dtype, 'reshape': reshape, 'seed': seed} UpperCamelCase__ : Any = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase__ : Optional[int] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = _DataSet(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_) return _Datasets(train=lowerCamelCase_ , validation=lowerCamelCase_ , test=lowerCamelCase_)
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False): UpperCamelCase__ : Any = scheduler UpperCamelCase__ : str = optimizers if isinstance(UpperCAmelCase_ , (list, tuple)) else [optimizers] UpperCamelCase__ : int = split_batches UpperCamelCase__ : Any = step_with_optimizer UpperCamelCase__ : Optional[Any] = GradientState() def __UpperCamelCase ( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Tuple): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCamelCase__ : List[Any] = AcceleratorState().num_processes for _ in range(UpperCAmelCase_): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps'): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_) else: self.scheduler.step(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Any): return self.scheduler.get_last_lr() def __UpperCamelCase ( self : Optional[int]): return self.scheduler.state_dict() def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : Optional[Any]): self.scheduler.load_state_dict(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any]): return self.scheduler.get_lr() def __UpperCamelCase ( self : Tuple , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Tuple): return self.scheduler.print_lr(*UpperCAmelCase_ , **UpperCAmelCase_)
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> list: UpperCamelCase__ : List[str] = len(lowerCamelCase_) for i in range(1 , lowerCamelCase_): UpperCamelCase__ : str = collection[i] UpperCamelCase__ : str = 0 UpperCamelCase__ : Union[str, Any] = i - 1 while low <= high: UpperCamelCase__ : List[str] = (low + high) // 2 if val < collection[mid]: UpperCamelCase__ : str = mid - 1 else: UpperCamelCase__ : Tuple = mid + 1 for j in range(lowerCamelCase_ , lowerCamelCase_ , -1): UpperCamelCase__ : str = collection[j - 1] UpperCamelCase__ : Any = val return collection if __name__ == "__main__": lowerCAmelCase__ = input('Enter numbers separated by a comma:\n').strip() lowerCAmelCase__ = [int(item) for item in user_input.split(',')] print(binary_insertion_sort(unsorted))
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowercase : def __init__( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : str=14 , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : str=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : List[str]=37 , UpperCAmelCase_ : int="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : str=0.02 , ): UpperCamelCase__ : int = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = seq_length UpperCamelCase__ : Tuple = is_training UpperCamelCase__ : Optional[Any] = use_input_mask UpperCamelCase__ : int = use_token_type_ids UpperCamelCase__ : Optional[int] = use_labels UpperCamelCase__ : Any = vocab_size UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Any = rotary_dim UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Union[str, Any] = num_attention_heads UpperCamelCase__ : List[Any] = intermediate_size UpperCamelCase__ : List[str] = hidden_act UpperCamelCase__ : Tuple = hidden_dropout_prob UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase__ : List[Any] = max_position_embeddings UpperCamelCase__ : str = initializer_range UpperCamelCase__ : List[str] = None UpperCamelCase__ : str = vocab_size - 1 UpperCamelCase__ : Optional[Any] = vocab_size - 1 UpperCamelCase__ : Optional[Any] = vocab_size - 1 def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCamelCase__ : Dict = None if self.use_input_mask: UpperCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) UpperCamelCase__ : Optional[int] = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : int = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Optional[int] = config_and_inputs UpperCamelCase__ : Optional[int] = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Tuple = 20 UpperCamelCase__ : int = model_class_name(UpperCAmelCase_) UpperCamelCase__ : int = model.init_cache(input_ids.shape[0] , UpperCAmelCase_) UpperCamelCase__ : int = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4') UpperCamelCase__ : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) UpperCamelCase__ : Tuple = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4') UpperCamelCase__ : int = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = model(UpperCAmelCase_) UpperCamelCase__ : List[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]): UpperCamelCase__ : int = 20 UpperCamelCase__ : int = model_class_name(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))] , axis=-1 , ) UpperCamelCase__ : Any = model.init_cache(input_ids.shape[0] , UpperCAmelCase_) UpperCamelCase__ : str = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1)[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1)) UpperCamelCase__ : Optional[int] = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) UpperCamelCase__ : Any = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4') UpperCamelCase__ : List[str] = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) UpperCamelCase__ : str = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1e-3 , msg=F'Max diff is {diff}') @require_flax class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () _lowerCamelCase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = FlaxGPTJModelTester(self) def __UpperCamelCase ( self : List[Any]): for model_class_name in self.all_model_classes: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Tuple): for model_class_name in self.all_model_classes: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) @tooslow def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left') UpperCamelCase__ : Optional[int] = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B') UpperCamelCase__ : Tuple = False UpperCamelCase__ : Any = model.config.eos_token_id UpperCamelCase__ : Optional[Any] = jax.jit(model.generate) UpperCamelCase__ : Any = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id).sequences UpperCamelCase__ : int = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_) UpperCamelCase__ : Any = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @is_pt_flax_cross_test def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs UpperCamelCase__ : List[str] = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Optional[int] = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ : Optional[int] = getattr(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : str = pt_inputs['input_ids'].shape UpperCamelCase__ : int = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase_): UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : Optional[Any] = pt_model_class(UpperCAmelCase_).eval() UpperCamelCase__ : str = model_class(UpperCAmelCase_ , dtype=jnp.floataa) UpperCamelCase__ : Tuple = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_) UpperCamelCase__ : Dict = fx_state with torch.no_grad(): UpperCamelCase__ : str = pt_model(**UpperCAmelCase_).to_tuple() UpperCamelCase__ : Optional[Any] = fx_model(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[Any] = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_) UpperCamelCase__ : int = fx_model_loaded(**UpperCAmelCase_).to_tuple() self.assertEqual( len(UpperCAmelCase_) , len(UpperCAmelCase_) , 'Output lengths differ between Flax and PyTorch') for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4e-2) @is_pt_flax_cross_test def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): # prepare inputs UpperCamelCase__ : int = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class UpperCamelCase__ : Any = model_class.__name__[4:] # Skip the "Flax" at the beginning UpperCamelCase__ : Optional[Any] = getattr(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : List[Any] = pt_model_class(UpperCAmelCase_).eval() UpperCamelCase__ : str = model_class(UpperCAmelCase_ , dtype=jnp.floataa) UpperCamelCase__ : Optional[int] = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params) UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = pt_inputs['input_ids'].shape UpperCamelCase__ : Tuple = np.random.randint(0 , seq_length - 1 , size=(batch_size,)) for batch_idx, start_index in enumerate(UpperCAmelCase_): UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : int = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): UpperCamelCase__ : List[Any] = pt_model(**UpperCAmelCase_).to_tuple() UpperCamelCase__ : Optional[Any] = fx_model(**UpperCAmelCase_).to_tuple() self.assertEqual(len(UpperCAmelCase_) , len(UpperCAmelCase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : int = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_) with torch.no_grad(): UpperCamelCase__ : Dict = pt_model_loaded(**UpperCAmelCase_).to_tuple() self.assertEqual( len(UpperCAmelCase_) , len(UpperCAmelCase_) , 'Output lengths differ between Flax and PyTorch') for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4e-2) @tooslow def __UpperCamelCase ( self : int): for model_class_name in self.all_model_classes: UpperCamelCase__ : Optional[int] = model_class_name.from_pretrained('EleutherAI/gpt-j-6B') UpperCamelCase__ : Optional[Any] = model(np.ones((1, 1))) self.assertIsNotNone(UpperCAmelCase_)
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''swinv2''' _lowerCamelCase = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : Dict , UpperCAmelCase_ : Union[str, Any]=224 , UpperCAmelCase_ : Union[str, Any]=4 , UpperCAmelCase_ : Any=3 , UpperCAmelCase_ : Optional[Any]=96 , UpperCAmelCase_ : Tuple=[2, 2, 6, 2] , UpperCAmelCase_ : Optional[Any]=[3, 6, 12, 24] , UpperCAmelCase_ : List[str]=7 , UpperCAmelCase_ : Dict=4.0 , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Union[str, Any]=0.0 , UpperCAmelCase_ : Dict=0.0 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : Any=0.02 , UpperCAmelCase_ : int=1e-5 , UpperCAmelCase_ : Any=32 , **UpperCAmelCase_ : Union[str, Any] , ): super().__init__(**UpperCAmelCase_) UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Any = patch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : str = embed_dim UpperCamelCase__ : Optional[int] = depths UpperCamelCase__ : Tuple = len(UpperCAmelCase_) UpperCamelCase__ : Tuple = num_heads UpperCamelCase__ : int = window_size UpperCamelCase__ : int = mlp_ratio UpperCamelCase__ : List[str] = qkv_bias UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : int = attention_probs_dropout_prob UpperCamelCase__ : Optional[Any] = drop_path_rate UpperCamelCase__ : Any = hidden_act UpperCamelCase__ : Any = use_absolute_embeddings UpperCamelCase__ : str = layer_norm_eps UpperCamelCase__ : Tuple = initializer_range UpperCamelCase__ : Optional[Any] = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase__ : List[str] = int(embed_dim * 2 ** (len(UpperCAmelCase_) - 1)) UpperCamelCase__ : Tuple = (0, 0, 0, 0)
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCAmelCase__ = { 'facebook/mask2former-swin-small-coco-instance': ( 'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } lowerCAmelCase__ = logging.get_logger(__name__) class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''mask2former''' _lowerCamelCase = ['''swin'''] _lowerCamelCase = {'''hidden_size''': '''hidden_dim'''} def __init__( self : str , UpperCAmelCase_ : Optional[Dict] = None , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 256 , UpperCAmelCase_ : int = 1_024 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 6 , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 2_048 , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 4 , UpperCAmelCase_ : int = 255 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 2.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : float = 5.0 , UpperCAmelCase_ : int = 12_544 , UpperCAmelCase_ : float = 3.0 , UpperCAmelCase_ : float = 0.75 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : float = 1.0 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : List[int] = [4, 8, 16, 32] , UpperCAmelCase_ : bool = None , **UpperCAmelCase_ : Optional[int] , ): if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.') UpperCamelCase__ : Tuple = CONFIG_MAPPING['swin']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase_ , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Optional[Any] = backbone_config.pop('model_type') UpperCamelCase__ : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] UpperCamelCase__ : Dict = config_class.from_dict(UpperCAmelCase_) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ' F'Supported model types: {",".join(self.backbones_supported)}') UpperCamelCase__ : Optional[Any] = backbone_config UpperCamelCase__ : List[Any] = feature_size UpperCamelCase__ : Dict = mask_feature_size UpperCamelCase__ : Optional[Any] = hidden_dim UpperCamelCase__ : Any = encoder_feedforward_dim UpperCamelCase__ : Optional[Any] = activation_function UpperCamelCase__ : Tuple = encoder_layers UpperCamelCase__ : Optional[int] = decoder_layers UpperCamelCase__ : int = num_attention_heads UpperCamelCase__ : Optional[int] = dropout UpperCamelCase__ : Dict = dim_feedforward UpperCamelCase__ : List[str] = pre_norm UpperCamelCase__ : Dict = enforce_input_projection UpperCamelCase__ : Union[str, Any] = common_stride UpperCamelCase__ : Dict = ignore_value UpperCamelCase__ : List[Any] = num_queries UpperCamelCase__ : List[Any] = no_object_weight UpperCamelCase__ : Optional[int] = class_weight UpperCamelCase__ : Dict = mask_weight UpperCamelCase__ : Tuple = dice_weight UpperCamelCase__ : Any = train_num_points UpperCamelCase__ : str = oversample_ratio UpperCamelCase__ : Any = importance_sample_ratio UpperCamelCase__ : Union[str, Any] = init_std UpperCamelCase__ : str = init_xavier_std UpperCamelCase__ : List[Any] = use_auxiliary_loss UpperCamelCase__ : List[str] = feature_strides UpperCamelCase__ : str = output_auxiliary_logits UpperCamelCase__ : List[Any] = decoder_layers super().__init__(**UpperCAmelCase_) @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : Any): return cls( backbone_config=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : Tuple = copy.deepcopy(self.__dict__) UpperCamelCase__ : Union[str, Any] = self.backbone_config.to_dict() UpperCamelCase__ : Any = self.__class__.model_type return output
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> float: if mass < 0: raise ValueError('The mass of a body cannot be negative') return 0.5 * mass * abs(lowerCamelCase_) * abs(lowerCamelCase_) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' from __future__ import annotations from typing import Any class __lowercase : def __init__( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : float = 0): UpperCamelCase__, UpperCamelCase__ : Tuple = row, column UpperCamelCase__ : Any = [[default_value for c in range(UpperCAmelCase_)] for r in range(UpperCAmelCase_)] def __str__( self : Union[str, Any]): UpperCamelCase__ : Any = F'Matrix consist of {self.row} rows and {self.column} columns\n' # Make string identifier UpperCamelCase__ : str = 0 for row_vector in self.array: for obj in row_vector: UpperCamelCase__ : Any = max(UpperCAmelCase_ , len(str(UpperCAmelCase_))) UpperCamelCase__ : List[str] = F'%{max_element_length}s' # Make string and return def single_line(UpperCAmelCase_ : list[float]) -> str: nonlocal string_format_identifier UpperCamelCase__ : List[str] = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(UpperCAmelCase_) for row_vector in self.array) return s def __repr__( self : Any): return str(self) def __UpperCamelCase ( self : int , UpperCAmelCase_ : tuple[int, int]): if not (isinstance(UpperCAmelCase_ , (list, tuple)) and len(UpperCAmelCase_) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self : Dict , UpperCAmelCase_ : tuple[int, int]): assert self.validate_indicies(UpperCAmelCase_) return self.array[loc[0]][loc[1]] def __setitem__( self : Tuple , UpperCAmelCase_ : tuple[int, int] , UpperCAmelCase_ : float): assert self.validate_indicies(UpperCAmelCase_) UpperCamelCase__ : str = value def __add__( self : Optional[Any] , UpperCAmelCase_ : Matrix): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == another.row and self.column == another.column # Add UpperCamelCase__ : List[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCamelCase__ : Optional[Any] = self[r, c] + another[r, c] return result def __neg__( self : str): UpperCamelCase__ : List[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCamelCase__ : Optional[int] = -self[r, c] return result def __sub__( self : Union[str, Any] , UpperCAmelCase_ : Matrix): return self + (-another) def __mul__( self : Optional[int] , UpperCAmelCase_ : int | float | Matrix): if isinstance(UpperCAmelCase_ , (int, float)): # Scalar multiplication UpperCamelCase__ : str = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): UpperCamelCase__ : int = self[r, c] * another return result elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): # Matrix multiplication assert self.column == another.row UpperCamelCase__ : Tuple = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: UpperCamelCase__ : Optional[Any] = F'Unsupported type given for another ({type(UpperCAmelCase_)})' raise TypeError(UpperCAmelCase_) def __UpperCamelCase ( self : Any): UpperCamelCase__ : List[Any] = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): UpperCamelCase__ : List[str] = self[r, c] return result def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Matrix , UpperCAmelCase_ : Matrix): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) and isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate UpperCamelCase__ : Dict = v.transpose() UpperCamelCase__ : Optional[int] = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def __UpperCAmelCase ( ) -> None: # a^(-1) UpperCamelCase__ : Optional[Any] = Matrix(3 , 3 , 0) for i in range(3): UpperCamelCase__ : int = 1 print(f'a^(-1) is {ainv}') # u, v UpperCamelCase__ : Dict = Matrix(3 , 1 , 0) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = 1, 2, -3 UpperCamelCase__ : Optional[int] = Matrix(3 , 1 , 0) UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = 4, -2, 5 print(f'u is {u}') print(f'v is {v}') print(f'uv^T is {u * v.transpose()}') # Sherman Morrison print(f'(a + uv^T)^(-1) is {ainv.sherman_morrison(lowerCamelCase_ , lowerCamelCase_)}') def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() testa()
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: # Initialise PyTorch model UpperCamelCase__ : Optional[int] = BertConfig.from_json_file(lowerCamelCase_) print(f'Building PyTorch model from configuration: {config}') UpperCamelCase__ : str = BertForPreTraining(lowerCamelCase_) # Load weights from tf checkpoint load_tf_weights_in_bert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}') torch.save(model.state_dict() , lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : list): UpperCamelCase__ : Any = set_counts UpperCamelCase__ : Optional[int] = max(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = len(UpperCAmelCase_) UpperCamelCase__ : str = [1] * num_sets UpperCamelCase__ : Optional[int] = list(range(UpperCAmelCase_)) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : int = self.get_parent(UpperCAmelCase_) UpperCamelCase__ : List[str] = self.get_parent(UpperCAmelCase_) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase__ : Dict = 0 UpperCamelCase__ : Tuple = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase__ : Dict = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : int = src_parent UpperCamelCase__ : str = self.set_counts[src_parent] UpperCamelCase__ : str = max(self.max_set , UpperCAmelCase_) return True def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int): if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase__ : Any = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCAmelCase__ = 'facebook/wmt19-en-de' lowerCAmelCase__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCAmelCase__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCAmelCase__ = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test lowerCAmelCase__ = tokenizer(['Making tiny model'], return_tensors='pt') lowerCAmelCase__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save lowerCAmelCase__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
6
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase (unittest.TestCase ): @slow def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') UpperCamelCase__ : List[str] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip') model.to(UpperCAmelCase_) from datasets import load_dataset UpperCamelCase__ : Optional[Any] = load_dataset('nielsr/rvlcdip-demo') UpperCamelCase__ : int = dataset['train'][0]['image'].convert('RGB') UpperCamelCase__ : Union[str, Any] = image_processor(UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # forward pass with torch.no_grad(): UpperCamelCase__ : Optional[Any] = model(**UpperCAmelCase_) UpperCamelCase__ : Tuple = outputs.logits UpperCamelCase__ : str = torch.Size((1, 16)) self.assertEqual(logits.shape , UpperCAmelCase_) UpperCamelCase__ : Tuple = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=UpperCAmelCase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCAmelCase_ , atol=1e-4))
6
1
'''simple docstring''' import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __UpperCAmelCase ( lowerCamelCase_) -> str: UpperCamelCase__, UpperCamelCase__ : List[str] = image.size UpperCamelCase__, UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 UpperCamelCase__ : Union[str, Any] = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos']) UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_).astype(np.floataa) / 255.0 UpperCamelCase__ : Any = image[None].transpose(0 , 3 , 1 , 2) UpperCamelCase__ : Dict = torch.from_numpy(lowerCamelCase_) return 2.0 * image - 1.0 class __lowercase (__lowerCamelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_) @torch.no_grad() def __call__( self : Optional[Any] , UpperCAmelCase_ : Union[torch.Tensor, PIL.Image.Image] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : Optional[int] = 100 , UpperCAmelCase_ : Optional[float] = 0.0 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , ): if isinstance(UpperCAmelCase_ , PIL.Image.Image): UpperCamelCase__ : List[str] = 1 elif isinstance(UpperCAmelCase_ , torch.Tensor): UpperCamelCase__ : Any = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(UpperCAmelCase_)}') if isinstance(UpperCAmelCase_ , PIL.Image.Image): UpperCamelCase__ : str = preprocess(UpperCAmelCase_) UpperCamelCase__, UpperCamelCase__ : Optional[int] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image UpperCamelCase__ : Optional[int] = (batch_size, self.unet.config.in_channels // 2, height, width) UpperCamelCase__ : int = next(self.unet.parameters()).dtype UpperCamelCase__ : Union[str, Any] = randn_tensor(UpperCAmelCase_ , generator=UpperCAmelCase_ , device=self.device , dtype=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = image.to(device=self.device , dtype=UpperCAmelCase_) # set timesteps and move to the correct device self.scheduler.set_timesteps(UpperCAmelCase_ , device=self.device) UpperCamelCase__ : List[Any] = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ : str = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ : Tuple = 'eta' in set(inspect.signature(self.scheduler.step).parameters.keys()) UpperCamelCase__ : List[Any] = {} if accepts_eta: UpperCamelCase__ : Tuple = eta for t in self.progress_bar(UpperCAmelCase_): # concat latents and low resolution image in the channel dimension. UpperCamelCase__ : Union[str, Any] = torch.cat([latents, image] , dim=1) UpperCamelCase__ : Optional[Any] = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_) # predict the noise residual UpperCamelCase__ : Union[str, Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ : List[str] = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_).prev_sample # decode the image latents with the VQVAE UpperCamelCase__ : Dict = self.vqvae.decode(UpperCAmelCase_).sample UpperCamelCase__ : List[Any] = torch.clamp(UpperCAmelCase_ , -1.0 , 1.0) UpperCamelCase__ : Dict = image / 2 + 0.5 UpperCamelCase__ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": UpperCamelCase__ : Optional[int] = self.numpy_to_pil(UpperCAmelCase_) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_)
6
'''simple docstring''' import argparse import struct import unittest class __lowercase : def __init__( self : Tuple , UpperCAmelCase_ : bytes): UpperCamelCase__ : Dict = data # Initialize hash values UpperCamelCase__ : Any = [ 0X6A_09E_667, 0XBB_67A_E85, 0X3C_6EF_372, 0XA5_4FF_53A, 0X51_0E5_27F, 0X9B_056_88C, 0X1F_83D_9AB, 0X5B_E0C_D19, ] # Initialize round constants UpperCamelCase__ : List[Any] = [ 0X42_8A2_F98, 0X71_374_491, 0XB5_C0F_BCF, 0XE9_B5D_BA5, 0X39_56C_25B, 0X59_F11_1F1, 0X92_3F8_2A4, 0XAB_1C5_ED5, 0XD8_07A_A98, 0X12_835_B01, 0X24_318_5BE, 0X55_0C7_DC3, 0X72_BE5_D74, 0X80_DEB_1FE, 0X9B_DC0_6A7, 0XC1_9BF_174, 0XE4_9B6_9C1, 0XEF_BE4_786, 0X0F_C19_DC6, 0X24_0CA_1CC, 0X2D_E92_C6F, 0X4A_748_4AA, 0X5C_B0A_9DC, 0X76_F98_8DA, 0X98_3E5_152, 0XA8_31C_66D, 0XB0_032_7C8, 0XBF_597_FC7, 0XC6_E00_BF3, 0XD5_A79_147, 0X06_CA6_351, 0X14_292_967, 0X27_B70_A85, 0X2E_1B2_138, 0X4D_2C6_DFC, 0X53_380_D13, 0X65_0A7_354, 0X76_6A0_ABB, 0X81_C2C_92E, 0X92_722_C85, 0XA2_BFE_8A1, 0XA8_1A6_64B, 0XC2_4B8_B70, 0XC7_6C5_1A3, 0XD1_92E_819, 0XD6_990_624, 0XF4_0E3_585, 0X10_6AA_070, 0X19_A4C_116, 0X1E_376_C08, 0X27_487_74C, 0X34_B0B_CB5, 0X39_1C0_CB3, 0X4E_D8A_A4A, 0X5B_9CC_A4F, 0X68_2E6_FF3, 0X74_8F8_2EE, 0X78_A56_36F, 0X84_C87_814, 0X8C_C70_208, 0X90_BEF_FFA, 0XA4_506_CEB, 0XBE_F9A_3F7, 0XC6_717_8F2, ] UpperCamelCase__ : Tuple = self.preprocessing(self.data) self.final_hash() @staticmethod def __UpperCamelCase ( UpperCAmelCase_ : bytes): UpperCamelCase__ : List[Any] = B'\x80' + (B'\x00' * (63 - (len(UpperCAmelCase_) + 8) % 64)) UpperCamelCase__ : List[Any] = struct.pack('>Q' , (len(UpperCAmelCase_) * 8)) return data + padding + big_endian_integer def __UpperCamelCase ( self : Union[str, Any]): # Convert into blocks of 64 bytes UpperCamelCase__ : int = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data) , 64) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCamelCase__ : Tuple = list(struct.unpack('>16L' , UpperCAmelCase_)) # add 48 0-ed integers words += [0] * 48 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = self.hashes for index in range(0 , 64): if index > 15: # modify the zero-ed indexes at the end of the array UpperCamelCase__ : Dict = ( self.ror(words[index - 15] , 7) ^ self.ror(words[index - 15] , 18) ^ (words[index - 15] >> 3) ) UpperCamelCase__ : Tuple = ( self.ror(words[index - 2] , 17) ^ self.ror(words[index - 2] , 19) ^ (words[index - 2] >> 10) ) UpperCamelCase__ : int = ( words[index - 16] + sa + words[index - 7] + sa ) % 0X100_000_000 # Compression UpperCamelCase__ : Optional[Any] = self.ror(UpperCAmelCase_ , 6) ^ self.ror(UpperCAmelCase_ , 11) ^ self.ror(UpperCAmelCase_ , 25) UpperCamelCase__ : List[str] = (e & f) ^ ((~e & 0XFF_FFF_FFF) & g) UpperCamelCase__ : List[Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0X100_000_000 UpperCamelCase__ : List[str] = self.ror(UpperCAmelCase_ , 2) ^ self.ror(UpperCAmelCase_ , 13) ^ self.ror(UpperCAmelCase_ , 22) UpperCamelCase__ : Dict = (a & b) ^ (a & c) ^ (b & c) UpperCamelCase__ : List[str] = (sa + maj) % 0X100_000_000 UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Tuple = ( g, f, e, ((d + tempa) % 0X100_000_000), c, b, a, ((tempa + tempa) % 0X100_000_000), ) UpperCamelCase__ : List[Any] = [a, b, c, d, e, f, g, h] # Modify final values UpperCamelCase__ : Optional[Any] = [ ((element + mutated_hash_values[index]) % 0X100_000_000) for index, element in enumerate(self.hashes) ] UpperCamelCase__ : Any = ''.join([hex(UpperCAmelCase_)[2:].zfill(8) for value in self.hashes]) def __UpperCamelCase ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int): return 0XFF_FFF_FFF & (value << (32 - rotations)) | (value >> rotations) class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : int): import hashlib UpperCamelCase__ : str = bytes('Test String' , 'utf-8') self.assertEqual(SHAaaa(UpperCAmelCase_).hash , hashlib.shaaaa(UpperCAmelCase_).hexdigest()) def __UpperCAmelCase ( ) -> None: import doctest doctest.testmod() UpperCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file') UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : str = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb') as f: UpperCamelCase__ : Any = f.read() else: UpperCamelCase__ : List[Any] = bytes(lowerCamelCase_ , 'utf-8') print(SHAaaa(lowerCamelCase_).hash) if __name__ == "__main__": main()
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> int: UpperCamelCase__ : Optional[Any] = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __UpperCAmelCase ( lowerCamelCase_ = 100) -> int: UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Optional[int] = 2 for i in range(2 , max_n + 1): UpperCamelCase__ : int = pre_numerator UpperCamelCase__ : Dict = 2 * i // 3 if i % 3 == 0 else 1 UpperCamelCase__ : Any = cur_numerator UpperCamelCase__ : Optional[Any] = e_cont * pre_numerator + temp return sum_digits(lowerCamelCase_) if __name__ == "__main__": print(f'''{solution() = }''')
6
'''simple docstring''' from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> float: if donor_conc <= 0: raise ValueError('Donor concentration should be positive') elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive') elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive') elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration') elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration') else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import os def __UpperCAmelCase ( ) -> str: with open(os.path.dirname(lowerCamelCase_) + '/p022_names.txt') as file: UpperCamelCase__ : Optional[int] = str(file.readlines()[0]) UpperCamelCase__ : Optional[int] = names.replace('"' , '').split(',') names.sort() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Any = 0 for i, name in enumerate(lowerCamelCase_): for letter in name: name_score += ord(lowerCamelCase_) - 64 total_score += (i + 1) * name_score UpperCamelCase__ : Any = 0 return total_score if __name__ == "__main__": print(solution())
6
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __UpperCAmelCase ( lowerCamelCase_) -> List[Tuple[int, ...]]: UpperCamelCase__ : int = [] if isinstance(lowerCamelCase_ , lowerCamelCase_): for v in tree.values(): shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , (list, tuple)): for t in tree: shapes.extend(_fetch_dims(lowerCamelCase_)) elif isinstance(lowerCamelCase_ , torch.Tensor): shapes.append(tree.shape) else: raise ValueError('Not supported') return shapes @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple[int, ...]: UpperCamelCase__ : int = [] for d in reversed(lowerCamelCase_): idx.append(flat_idx % d) UpperCamelCase__ : Any = flat_idx // d return tuple(reversed(lowerCamelCase_)) @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(lowerCamelCase_) -> None: UpperCamelCase__ : Tuple = True for i in range(len(lowerCamelCase_)): UpperCamelCase__ : List[Any] = -1 * (i + 1) l[reversed_idx] &= tally UpperCamelCase__ : Optional[Any] = l[reversed_idx] if start_edges is None: UpperCamelCase__ : int = [s == 0 for s in start] reduce_edge_list(lowerCamelCase_) if end_edges is None: UpperCamelCase__ : List[str] = [e == (d - 1) for e, d in zip(lowerCamelCase_ , lowerCamelCase_)] reduce_edge_list(lowerCamelCase_) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(lowerCamelCase_) == 0: return [()] elif len(lowerCamelCase_) == 1: return [(slice(start[0] , end[0] + 1),)] UpperCamelCase__ : List[Tuple[slice, ...]] = [] UpperCamelCase__ : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(lowerCamelCase_ , lowerCamelCase_): if s == e: path_list.append(slice(lowerCamelCase_ , s + 1)) else: break UpperCamelCase__ : Tuple[slice, ...] = tuple(lowerCamelCase_) UpperCamelCase__ : Dict = len(lowerCamelCase_) # start == end, and we're done if divergence_idx == len(lowerCamelCase_): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : str = start[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , sdi + 1),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , )) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCamelCase__ : Optional[int] = end[divergence_idx] return tuple( path + (slice(lowerCamelCase_ , edi + 1),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , )) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1),)) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx]),)) slices.extend(lower()) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper()) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1),)) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper()) UpperCamelCase__ : Dict = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx]),)) slices.extend(lower()) return slices @torch.jit.ignore def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> torch.Tensor: UpperCamelCase__ : List[Any] = t.shape[:no_batch_dims] UpperCamelCase__ : Optional[int] = list(_flat_idx_to_idx(lowerCamelCase_ , lowerCamelCase_)) # _get_minimal_slice_set is inclusive UpperCamelCase__ : Dict = list(_flat_idx_to_idx(flat_end - 1 , lowerCamelCase_)) # Get an ordered list of slices to perform UpperCamelCase__ : int = _get_minimal_slice_set( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) UpperCamelCase__ : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:]) for s in sliced_tensors]) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = False , lowerCamelCase_ = None , lowerCamelCase_ = False , ) -> Any: if not (len(lowerCamelCase_) > 0): raise ValueError('Must provide at least one input') UpperCamelCase__ : int = [shape[:no_batch_dims] for shape in _fetch_dims(lowerCamelCase_)] UpperCamelCase__ : int = tuple([max(lowerCamelCase_) for s in zip(*lowerCamelCase_)]) def _prep_inputs(lowerCamelCase_) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims]) == no_batch_dims: UpperCamelCase__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) UpperCamelCase__ : Optional[int] = t.reshape(-1 , *t.shape[no_batch_dims:]) else: UpperCamelCase__ : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:]) return t UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(_prep_inputs , lowerCamelCase_) UpperCamelCase__ : int = None if _out is not None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.view([-1] + list(t.shape[no_batch_dims:])) , _out) UpperCamelCase__ : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCamelCase__ : int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(lowerCamelCase_) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[Any] = prepped_outputs for _ in range(lowerCamelCase_): # Chunk the input if not low_mem: UpperCamelCase__ : str = _select_chunk else: UpperCamelCase__ : List[Any] = partial( _chunk_slice , flat_start=lowerCamelCase_ , flat_end=min(lowerCamelCase_ , i + chunk_size) , no_batch_dims=len(lowerCamelCase_) , ) UpperCamelCase__ : Dict[str, Any] = tensor_tree_map(lowerCamelCase_ , lowerCamelCase_) # Run the layer on the chunk UpperCamelCase__ : List[Any] = layer(**lowerCamelCase_) # Allocate space for the output if out is None: UpperCamelCase__ : Optional[int] = tensor_tree_map(lambda lowerCamelCase_: t.new_zeros((flat_batch_dim,) + t.shape[1:]) , lowerCamelCase_) # Put the chunk in its pre-allocated space if isinstance(lowerCamelCase_ , lowerCamelCase_): def assign(lowerCamelCase_ , lowerCamelCase_) -> None: for k, v in da.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_): assign(lowerCamelCase_ , da[k]) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCamelCase__ : List[str] = da[k] assign(lowerCamelCase_ , lowerCamelCase_) elif isinstance(lowerCamelCase_ , lowerCamelCase_): for xa, xa in zip(lowerCamelCase_ , lowerCamelCase_): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCamelCase__ : int = xa elif isinstance(lowerCamelCase_ , torch.Tensor): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCamelCase__ : Dict = output_chunk else: raise ValueError('Not supported') i += chunk_size UpperCamelCase__ : int = tensor_tree_map(lambda lowerCamelCase_: t.view(orig_batch_dims + t.shape[1:]) , lowerCamelCase_) return out class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : int = 512 , ): UpperCamelCase__ : str = max_chunk_size UpperCamelCase__ : Optional[int] = None UpperCamelCase__ : Optional[tuple] = None def __UpperCamelCase ( self : str , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int): logging.info('Tuning chunk size...') if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCamelCase__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2)) + 1)] UpperCamelCase__ : List[Any] = [c for c in candidates if c > min_chunk_size] UpperCamelCase__ : List[Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase_ : int) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase_ , chunk_size=UpperCAmelCase_) return True except RuntimeError: return False UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : Dict = len(UpperCAmelCase_) - 1 while i > min_viable_chunk_size_index: UpperCamelCase__ : Optional[int] = test_chunk_size(candidates[i]) if not viable: UpperCamelCase__ : Tuple = (min_viable_chunk_size_index + i) // 2 else: UpperCamelCase__ : Optional[int] = i UpperCamelCase__ : Dict = (i + len(UpperCAmelCase_) - 1) // 2 return candidates[min_viable_chunk_size_index] def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Iterable , UpperCAmelCase_ : Iterable): UpperCamelCase__ : List[str] = True for aa, aa in zip(UpperCAmelCase_ , UpperCAmelCase_): assert type(UpperCAmelCase_) == type(UpperCAmelCase_) if isinstance(UpperCAmelCase_ , (list, tuple)): consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): UpperCamelCase__ : Union[str, Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] UpperCamelCase__ : str = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase_: x[0])] consistent &= self._compare_arg_caches(UpperCAmelCase_ , UpperCAmelCase_) else: consistent &= aa == aa return consistent def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Callable , UpperCAmelCase_ : tuple , UpperCAmelCase_ : int , ): UpperCamelCase__ : List[Any] = True UpperCamelCase__ : tuple = tree_map(lambda UpperCAmelCase_: a.shape if isinstance(UpperCAmelCase_ , torch.Tensor) else a , UpperCAmelCase_ , UpperCAmelCase_) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data) == len(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase_) else: # Otherwise, we can reuse the precomputed value UpperCamelCase__ : Optional[int] = False if not consistent: UpperCamelCase__ : Tuple = self._determine_favorable_chunk_size( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
6
1
'''simple docstring''' from pathlib import Path import fire def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : List[str] = Path(lowerCamelCase_) UpperCamelCase__ : Any = Path(lowerCamelCase_) dest_dir.mkdir(exist_ok=lowerCamelCase_) for path in src_dir.iterdir(): UpperCamelCase__ : List[str] = [x.rstrip() for x in list(path.open().readlines())][:n] UpperCamelCase__ : Optional[Any] = dest_dir.joinpath(path.name) print(lowerCamelCase_) dest_path.open('w').write('\n'.join(lowerCamelCase_)) if __name__ == "__main__": fire.Fire(minify)
6
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : int = tempfile.mkdtemp() # fmt: off UpperCamelCase__ : Union[str, Any] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on UpperCamelCase__ : Dict = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Optional[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] UpperCamelCase__ : Union[str, Any] = {'unk_token': '<unk>'} UpperCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(UpperCAmelCase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(UpperCAmelCase_)) UpperCamelCase__ : Dict = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73], 'image_std': [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11], } UpperCamelCase__ : Any = os.path.join(self.tmpdirname , UpperCAmelCase_) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Dict , **UpperCAmelCase_ : Union[str, Any]): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , **UpperCAmelCase_ : str): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : Optional[Any] , **UpperCAmelCase_ : Union[str, Any]): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase_) def __UpperCamelCase ( self : str): shutil.rmtree(self.tmpdirname) def __UpperCamelCase ( self : Tuple): UpperCamelCase__ : List[str] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] UpperCamelCase__ : List[str] = [Image.fromarray(np.moveaxis(UpperCAmelCase_ , 0 , -1)) for x in image_inputs] return image_inputs def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Union[str, Any] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = self.get_rust_tokenizer() UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_slow.save_pretrained(self.tmpdirname) UpperCamelCase__ : Any = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase_) UpperCamelCase__ : str = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) processor_fast.save_pretrained(self.tmpdirname) UpperCamelCase__ : Optional[int] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase_) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase_) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase_) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : List[str]): UpperCamelCase__ : Union[str, Any] = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) UpperCamelCase__ : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') UpperCamelCase__ : Tuple = self.get_image_processor(do_normalize=UpperCAmelCase_ , padding_value=1.0) UpperCamelCase__ : Dict = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCAmelCase_ , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , UpperCAmelCase_) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , UpperCAmelCase_) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : int = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : int = self.prepare_image_inputs() UpperCamelCase__ : int = image_processor(UpperCAmelCase_ , return_tensors='np') UpperCamelCase__ : Optional[int] = processor(images=UpperCAmelCase_ , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Optional[Any] = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Any = 'lower newer' UpperCamelCase__ : Union[str, Any] = processor(text=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = tokenizer(UpperCAmelCase_) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def __UpperCamelCase ( self : int): UpperCamelCase__ : Optional[int] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : List[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'lower newer' UpperCamelCase__ : List[Any] = self.prepare_image_inputs() UpperCamelCase__ : str = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase_): processor() def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Any = self.get_image_processor() UpperCamelCase__ : Dict = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ : List[Any] = processor.batch_decode(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = tokenizer.batch_decode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : Union[str, Any] = self.get_image_processor() UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : Optional[Any] = CLIPProcessor(tokenizer=UpperCAmelCase_ , image_processor=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'lower newer' UpperCamelCase__ : Optional[int] = self.prepare_image_inputs() UpperCamelCase__ : List[str] = processor(text=UpperCAmelCase_ , images=UpperCAmelCase_) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ = { 'configuration_vision_text_dual_encoder': ['VisionTextDualEncoderConfig'], 'processing_vision_text_dual_encoder': ['VisionTextDualEncoderProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['VisionTextDualEncoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxVisionTextDualEncoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['TFVisionTextDualEncoderModel'] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
6
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
1
'''simple docstring''' lowerCAmelCase__ = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase__ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
6
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (__lowerCamelCase ): _lowerCamelCase = '''segformer''' def __init__( self : Tuple , UpperCAmelCase_ : Optional[Any]=3 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : Tuple=[2, 2, 2, 2] , UpperCAmelCase_ : List[str]=[8, 4, 2, 1] , UpperCAmelCase_ : Union[str, Any]=[32, 64, 160, 256] , UpperCAmelCase_ : Any=[7, 3, 3, 3] , UpperCAmelCase_ : Any=[4, 2, 2, 2] , UpperCAmelCase_ : Union[str, Any]=[1, 2, 5, 8] , UpperCAmelCase_ : Tuple=[4, 4, 4, 4] , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[Any]=0.0 , UpperCAmelCase_ : int=0.0 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=1e-6 , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[int]=255 , **UpperCAmelCase_ : Tuple , ): super().__init__(**UpperCAmelCase_) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , UpperCAmelCase_ , ) UpperCamelCase__ : List[Any] = num_channels UpperCamelCase__ : Any = num_encoder_blocks UpperCamelCase__ : Dict = depths UpperCamelCase__ : int = sr_ratios UpperCamelCase__ : str = hidden_sizes UpperCamelCase__ : List[str] = patch_sizes UpperCamelCase__ : Optional[int] = strides UpperCamelCase__ : Dict = mlp_ratios UpperCamelCase__ : List[str] = num_attention_heads UpperCamelCase__ : int = hidden_act UpperCamelCase__ : Any = hidden_dropout_prob UpperCamelCase__ : str = attention_probs_dropout_prob UpperCamelCase__ : List[str] = classifier_dropout_prob UpperCamelCase__ : List[Any] = initializer_range UpperCamelCase__ : Union[str, Any] = drop_path_rate UpperCamelCase__ : int = layer_norm_eps UpperCamelCase__ : Dict = decoder_hidden_size UpperCamelCase__ : List[Any] = kwargs.get('reshape_last_stage' , UpperCAmelCase_) UpperCamelCase__ : List[str] = semantic_loss_ignore_index class __lowercase (__lowerCamelCase ): _lowerCamelCase = version.parse('''1.11''' ) @property def __UpperCamelCase ( self : Optional[Any]): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ]) @property def __UpperCamelCase ( self : Optional[Any]): return 1e-4 @property def __UpperCamelCase ( self : Any): return 12
6
1
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_) -> list: if any(not isinstance(lowerCamelCase_ , lowerCamelCase_) or x < 0 for x in sequence): raise TypeError('Sequence must be list of non-negative integers') for _ in range(len(lowerCamelCase_)): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCamelCase_ , sequence[1:])): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
6
'''simple docstring''' def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCamelCase_) - ngram_size + 1)] if __name__ == "__main__": from doctest import testmod testmod()
6
1
'''simple docstring''' import math def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(lowerCamelCase_) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen') if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowerCAmelCase__ = 'Enter the base and the power separated by a comma: ' lowerCAmelCase__ , lowerCAmelCase__ = map(int, input(prompt).split(',')) lowerCAmelCase__ , lowerCAmelCase__ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowerCAmelCase__ = res(xa, ya) lowerCAmelCase__ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
6
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def __UpperCAmelCase ( lowerCamelCase_) -> float: return np.dot(lowerCamelCase_ , lowerCamelCase_) class __lowercase : def __init__( self : Tuple , *, UpperCAmelCase_ : float = np.inf , UpperCAmelCase_ : str = "linear" , UpperCAmelCase_ : float = 0.0 , ): UpperCamelCase__ : Union[str, Any] = regularization UpperCamelCase__ : Optional[int] = gamma if kernel == "linear": UpperCamelCase__ : List[str] = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('rbf kernel requires gamma') if not isinstance(self.gamma , (float, int)): raise ValueError('gamma must be float or int') if not self.gamma > 0: raise ValueError('gamma must be > 0') UpperCamelCase__ : Union[str, Any] = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ : Optional[int] = F'Unknown kernel: {kernel}' raise ValueError(UpperCAmelCase_) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.dot(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : ndarray , UpperCAmelCase_ : ndarray): return np.exp(-(self.gamma * norm_squared(vectora - vectora))) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : list[ndarray] , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Any = observations UpperCamelCase__ : Tuple = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__), ) : Optional[Any] = np.shape(UpperCAmelCase_) def to_minimize(UpperCAmelCase_ : ndarray) -> float: UpperCamelCase__ : Union[str, Any] = 0 ((UpperCamelCase__), ) : int = np.shape(UpperCAmelCase_) for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j]) ) return 1 / 2 * s - sum(UpperCAmelCase_) UpperCamelCase__ : List[str] = LinearConstraint(UpperCAmelCase_ , 0 , 0) UpperCamelCase__ : Dict = Bounds(0 , self.regularization) UpperCamelCase__ : Any = minimize( UpperCAmelCase_ , np.ones(UpperCAmelCase_) , bounds=UpperCAmelCase_ , constraints=[ly_contraint]).x UpperCamelCase__ : str = l_star # calculating mean offset of separation plane to points UpperCamelCase__ : Any = 0 for i in range(UpperCAmelCase_): for j in range(UpperCAmelCase_): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j]) UpperCamelCase__ : List[str] = s / n def __UpperCamelCase ( self : str , UpperCAmelCase_ : ndarray): UpperCamelCase__ : Optional[int] = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , UpperCAmelCase_) for n in range(len(self.classes))) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Optional[Any] = filter(lambda lowerCamelCase_: p.requires_grad , model.parameters()) UpperCamelCase__ : Optional[int] = sum([np.prod(p.size()) for p in model_parameters]) return params lowerCAmelCase__ = logging.getLogger(__name__) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> str: if metric == "rouge2": UpperCamelCase__ : int = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": UpperCamelCase__ : Any = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": UpperCamelCase__ : Union[str, Any] = '{val_avg_em:.4f}-{step_count}' else: raise NotImplementedError( f'seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this' ' function.') UpperCamelCase__ : Optional[int] = ModelCheckpoint( dirpath=lowerCamelCase_ , filename=lowerCamelCase_ , monitor=f'val_{metric}' , mode='max' , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: return EarlyStopping( monitor=f'val_{metric}' , mode='min' if 'loss' in metric else 'max' , patience=lowerCamelCase_ , verbose=lowerCamelCase_ , ) class __lowercase (pl.Callback ): def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any): UpperCamelCase__ : List[str] = {F'lr_group_{i}': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups)} pl_module.logger.log_metrics(UpperCAmelCase_) @rank_zero_only def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : pl.LightningModule , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any]=True): logger.info(F'***** {type_path} results at step {trainer.global_step:05d} *****') UpperCamelCase__ : List[str] = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']}) # Log results UpperCamelCase__ : Tuple = Path(pl_module.hparams.output_dir) if type_path == "test": UpperCamelCase__ : List[Any] = od / 'test_results.txt' UpperCamelCase__ : Any = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. UpperCamelCase__ : List[Any] = od / F'{type_path}_results/{trainer.global_step:05d}.txt' UpperCamelCase__ : int = od / F'{type_path}_generations/{trainer.global_step:05d}.txt' results_file.parent.mkdir(exist_ok=UpperCAmelCase_) generations_file.parent.mkdir(exist_ok=UpperCAmelCase_) with open(UpperCAmelCase_ , 'a+') as writer: for key in sorted(UpperCAmelCase_): if key in ["log", "progress_bar", "preds"]: continue UpperCamelCase__ : str = metrics[key] if isinstance(UpperCAmelCase_ , torch.Tensor): UpperCamelCase__ : Optional[int] = val.item() UpperCamelCase__ : int = F'{key}: {val:.6f}\n' writer.write(UpperCAmelCase_) if not save_generations: return if "preds" in metrics: UpperCamelCase__ : Tuple = '\n'.join(metrics['preds']) generations_file.open('w+').write(UpperCAmelCase_) @rank_zero_only def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]): try: UpperCamelCase__ : Optional[Any] = pl_module.model.model.num_parameters() except AttributeError: UpperCamelCase__ : List[str] = pl_module.model.num_parameters() UpperCamelCase__ : int = count_trainable_parameters(UpperCAmelCase_) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1e6, 'grad_mp': n_trainable_pars / 1e6}) @rank_zero_only def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : pl.LightningModule): save_json(pl_module.metrics , pl_module.metrics_save_path) return self._write_logs(UpperCAmelCase_ , UpperCAmelCase_ , 'test') @rank_zero_only def __UpperCamelCase ( self : str , UpperCAmelCase_ : pl.Trainer , UpperCAmelCase_ : Optional[int]): save_json(pl_module.metrics , pl_module.metrics_save_path) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
6
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) def __UpperCAmelCase ( lowerCamelCase_) -> Any: UpperCamelCase__ : Dict = DPTConfig() if "large" in checkpoint_url: UpperCamelCase__ : List[str] = 1_024 UpperCamelCase__ : List[str] = 4_096 UpperCamelCase__ : Optional[int] = 24 UpperCamelCase__ : List[str] = 16 UpperCamelCase__ : List[str] = [5, 11, 17, 23] UpperCamelCase__ : str = [256, 512, 1_024, 1_024] UpperCamelCase__ : Union[str, Any] = (1, 384, 384) if "ade" in checkpoint_url: UpperCamelCase__ : int = True UpperCamelCase__ : Optional[Any] = 150 UpperCamelCase__ : int = 'huggingface/label-files' UpperCamelCase__ : List[Any] = 'ade20k-id2label.json' UpperCamelCase__ : List[Any] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : int = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Union[str, Any] = idalabel UpperCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : Any = [1, 150, 480, 480] return config, expected_shape def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Tuple = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.model' , 'dpt.encoder') if "pretrained.model" in name: UpperCamelCase__ : Dict = name.replace('pretrained.model' , 'dpt.embeddings') if "patch_embed" in name: UpperCamelCase__ : Tuple = name.replace('patch_embed' , 'patch_embeddings') if "pos_embed" in name: UpperCamelCase__ : Optional[Any] = name.replace('pos_embed' , 'position_embeddings') if "attn.proj" in name: UpperCamelCase__ : List[Any] = name.replace('attn.proj' , 'attention.output.dense') if "proj" in name and "project" not in name: UpperCamelCase__ : Optional[Any] = name.replace('proj' , 'projection') if "blocks" in name: UpperCamelCase__ : int = name.replace('blocks' , 'layer') if "mlp.fc1" in name: UpperCamelCase__ : int = name.replace('mlp.fc1' , 'intermediate.dense') if "mlp.fc2" in name: UpperCamelCase__ : Tuple = name.replace('mlp.fc2' , 'output.dense') if "norm1" in name: UpperCamelCase__ : List[Any] = name.replace('norm1' , 'layernorm_before') if "norm2" in name: UpperCamelCase__ : int = name.replace('norm2' , 'layernorm_after') if "scratch.output_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('scratch.output_conv' , 'head') if "scratch" in name: UpperCamelCase__ : int = name.replace('scratch' , 'neck') if "layer1_rn" in name: UpperCamelCase__ : Optional[Any] = name.replace('layer1_rn' , 'convs.0') if "layer2_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer2_rn' , 'convs.1') if "layer3_rn" in name: UpperCamelCase__ : List[Any] = name.replace('layer3_rn' , 'convs.2') if "layer4_rn" in name: UpperCamelCase__ : List[str] = name.replace('layer4_rn' , 'convs.3') if "refinenet" in name: UpperCamelCase__ : int = int(name[len('neck.refinenet') : len('neck.refinenet') + 1]) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 UpperCamelCase__ : Any = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4)}') if "out_conv" in name: UpperCamelCase__ : Union[str, Any] = name.replace('out_conv' , 'projection') if "resConfUnit1" in name: UpperCamelCase__ : int = name.replace('resConfUnit1' , 'residual_layer1') if "resConfUnit2" in name: UpperCamelCase__ : Optional[Any] = name.replace('resConfUnit2' , 'residual_layer2') if "conv1" in name: UpperCamelCase__ : Optional[Any] = name.replace('conv1' , 'convolution1') if "conv2" in name: UpperCamelCase__ : int = name.replace('conv2' , 'convolution2') # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0') if "pretrained.act_postprocess2.0.project.0" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0') if "pretrained.act_postprocess3.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0') if "pretrained.act_postprocess4.0.project.0" in name: UpperCamelCase__ : int = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0') # resize blocks if "pretrained.act_postprocess1.3" in name: UpperCamelCase__ : Tuple = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection') if "pretrained.act_postprocess1.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize') if "pretrained.act_postprocess2.3" in name: UpperCamelCase__ : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection') if "pretrained.act_postprocess2.4" in name: UpperCamelCase__ : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize') if "pretrained.act_postprocess3.3" in name: UpperCamelCase__ : Any = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection') if "pretrained.act_postprocess4.3" in name: UpperCamelCase__ : List[Any] = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection') if "pretrained.act_postprocess4.4" in name: UpperCamelCase__ : Optional[Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize') if "pretrained" in name: UpperCamelCase__ : List[str] = name.replace('pretrained' , 'dpt') if "bn" in name: UpperCamelCase__ : Tuple = name.replace('bn' , 'batch_norm') if "head" in name: UpperCamelCase__ : Union[str, Any] = name.replace('head' , 'head.head') if "encoder.norm" in name: UpperCamelCase__ : int = name.replace('encoder.norm' , 'layernorm') if "auxlayer" in name: UpperCamelCase__ : Union[str, Any] = name.replace('auxlayer' , 'auxiliary_head.head') return name def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Any: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ : Optional[int] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight') UpperCamelCase__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ : List[str] = in_proj_weight[: config.hidden_size, :] UpperCamelCase__ : List[Any] = in_proj_bias[: config.hidden_size] UpperCamelCase__ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ : int = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase__ : List[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_).raw) return im @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Dict: UpperCamelCase__, UpperCamelCase__ : Any = get_dpt_config(lowerCamelCase_) # load original state_dict from URL UpperCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu') # remove certain keys remove_ignore_keys_(lowerCamelCase_) # rename keys for key in state_dict.copy().keys(): UpperCamelCase__ : str = state_dict.pop(lowerCamelCase_) UpperCamelCase__ : List[str] = val # read in qkv matrices read_in_q_k_v(lowerCamelCase_ , lowerCamelCase_) # load HuggingFace model UpperCamelCase__ : str = DPTForSemanticSegmentation(lowerCamelCase_) if 'ade' in checkpoint_url else DPTForDepthEstimation(lowerCamelCase_) model.load_state_dict(lowerCamelCase_) model.eval() # Check outputs on an image UpperCamelCase__ : Any = 480 if 'ade' in checkpoint_url else 384 UpperCamelCase__ : List[Any] = DPTImageProcessor(size=lowerCamelCase_) UpperCamelCase__ : int = prepare_img() UpperCamelCase__ : Optional[Any] = image_processor(lowerCamelCase_ , return_tensors='pt') # forward pass UpperCamelCase__ : Any = model(**lowerCamelCase_).logits if 'ade' in checkpoint_url else model(**lowerCamelCase_).predicted_depth # Assert logits UpperCamelCase__ : Tuple = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]]) if "ade" in checkpoint_url: UpperCamelCase__ : List[str] = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]]) assert outputs.shape == torch.Size(lowerCamelCase_) assert ( torch.allclose(outputs[0, 0, :3, :3] , lowerCamelCase_ , atol=1e-4) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , lowerCamelCase_) ) Path(lowerCamelCase_).mkdir(exist_ok=lowerCamelCase_) print(f'Saving model to {pytorch_dump_folder_path}') model.save_pretrained(lowerCamelCase_) print(f'Saving image processor to {pytorch_dump_folder_path}') image_processor.save_pretrained(lowerCamelCase_) if push_to_hub: print('Pushing model to hub...') model.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCamelCase_ , lowerCamelCase_) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) lowerCAmelCase__ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
6
1
'''simple docstring''' lowerCAmelCase__ = '\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell\'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase__ = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase__ = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
6
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]=13 , UpperCAmelCase_ : Tuple=30 , UpperCAmelCase_ : Dict=2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str=True , UpperCAmelCase_ : Tuple=32 , UpperCAmelCase_ : List[str]=5 , UpperCAmelCase_ : str=4 , UpperCAmelCase_ : Optional[int]=37 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Dict=10 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Union[str, Any]=3 , UpperCAmelCase_ : Any=0.6 , UpperCAmelCase_ : Dict=None , ): UpperCamelCase__ : Tuple = parent UpperCamelCase__ : List[str] = batch_size UpperCamelCase__ : Optional[Any] = image_size UpperCamelCase__ : Optional[Any] = patch_size UpperCamelCase__ : List[str] = num_channels UpperCamelCase__ : Union[str, Any] = is_training UpperCamelCase__ : int = use_labels UpperCamelCase__ : Optional[int] = hidden_size UpperCamelCase__ : Any = num_hidden_layers UpperCamelCase__ : str = num_attention_heads UpperCamelCase__ : str = intermediate_size UpperCamelCase__ : Union[str, Any] = hidden_act UpperCamelCase__ : Optional[int] = hidden_dropout_prob UpperCamelCase__ : Tuple = attention_probs_dropout_prob UpperCamelCase__ : Any = type_sequence_label_size UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Optional[int] = mask_ratio UpperCamelCase__ : int = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase__ : str = (image_size // patch_size) ** 2 UpperCamelCase__ : Dict = int(math.ceil((1 - mask_ratio) * (num_patches + 1))) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) UpperCamelCase__ : List[str] = None if self.use_labels: UpperCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size) UpperCamelCase__ : Any = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self : List[Any]): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCAmelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int]): UpperCamelCase__ : Dict = ViTMAEModel(config=UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Optional[int] = model(UpperCAmelCase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple): UpperCamelCase__ : List[Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : Dict = model(UpperCAmelCase_) UpperCamelCase__ : List[str] = (self.image_size // self.patch_size) ** 2 UpperCamelCase__ : Optional[int] = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) # test greyscale images UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() UpperCamelCase__ : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) UpperCamelCase__ : Union[str, Any] = model(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels)) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[str] = self.prepare_config_and_inputs() UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[str] = config_and_inputs UpperCamelCase__ : Any = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowercase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): _lowerCamelCase = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () _lowerCamelCase = {'''feature-extraction''': ViTMAEModel} if is_torch_available() else {} _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : List[str] = ViTMAEModelTester(self) UpperCamelCase__ : Any = ConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ , hidden_size=37) def __UpperCamelCase ( self : Any): self.config_tester.run_common_tests() @unittest.skip(reason='ViTMAE does not use inputs_embeds') def __UpperCamelCase ( self : Tuple): pass def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : List[str] = model_class(UpperCAmelCase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) UpperCamelCase__ : Optional[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCAmelCase_ , nn.Linear)) def __UpperCamelCase ( self : List[str]): UpperCamelCase__, UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Tuple = model_class(UpperCAmelCase_) UpperCamelCase__ : int = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase__ : Any = [*signature.parameters.keys()] UpperCamelCase__ : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_) def __UpperCamelCase ( self : str): UpperCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any]): # make masks reproducible np.random.seed(2) UpperCamelCase__ : str = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2) UpperCamelCase__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches)) UpperCamelCase__ : Optional[Any] = torch.from_numpy(UpperCAmelCase_) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase__ : List[str] = pt_noise super().check_pt_tf_models(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__, UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase__ : Optional[Any] = model_class(UpperCAmelCase_) model.to(UpperCAmelCase_) model.eval() # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : Tuple = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) UpperCamelCase__ : Dict = outputs[0].cpu().numpy() UpperCamelCase__ : Optional[int] = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : str = model_class.from_pretrained(UpperCAmelCase_) model.to(UpperCAmelCase_) # make random mask reproducible torch.manual_seed(2) with torch.no_grad(): UpperCamelCase__ : List[str] = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_)) # Make sure we don't have nans UpperCamelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCamelCase__ : Any = 0 UpperCamelCase__ : Union[str, Any] = np.amax(np.abs(out_a - out_a)) self.assertLessEqual(UpperCAmelCase_ , 1e-5) @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Optional[int]): pass @unittest.skip( reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results.') def __UpperCamelCase ( self : Tuple): pass @unittest.skip(reason='ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load') def __UpperCamelCase ( self : Tuple): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __UpperCamelCase ( self : Optional[int]): pass @slow def __UpperCamelCase ( self : Optional[Any]): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase__ : Tuple = ViTMAEModel.from_pretrained(UpperCAmelCase_) self.assertIsNotNone(UpperCAmelCase_) def __UpperCAmelCase ( ) -> Optional[Any]: UpperCamelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_torch @require_vision class __lowercase (unittest.TestCase ): @cached_property def __UpperCamelCase ( self : int): return ViTImageProcessor.from_pretrained('facebook/vit-mae-base') if is_vision_available() else None @slow def __UpperCamelCase ( self : str): # make random mask reproducible across the PT and TF model np.random.seed(2) UpperCamelCase__ : Union[str, Any] = ViTMAEForPreTraining.from_pretrained('facebook/vit-mae-base').to(UpperCAmelCase_) UpperCamelCase__ : Tuple = self.default_image_processor UpperCamelCase__ : Dict = prepare_img() UpperCamelCase__ : Optional[int] = image_processor(images=UpperCAmelCase_ , return_tensors='pt').to(UpperCAmelCase_) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase__ : Union[str, Any] = ViTMAEConfig() UpperCamelCase__ : int = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2) UpperCamelCase__ : Any = np.random.uniform(size=(1, num_patches)) # forward pass with torch.no_grad(): UpperCamelCase__ : Dict = model(**UpperCAmelCase_ , noise=torch.from_numpy(UpperCAmelCase_).to(device=UpperCAmelCase_)) # verify the logits UpperCamelCase__ : Tuple = torch.Size((1, 196, 768)) self.assertEqual(outputs.logits.shape , UpperCAmelCase_) UpperCamelCase__ : Any = torch.tensor( [[-0.05_48, -1.70_23, -0.93_25], [0.37_21, -0.56_70, -0.22_33], [0.82_35, -1.38_78, -0.35_24]]) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(UpperCAmelCase_) , atol=1e-4))
6
1
'''simple docstring''' import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowerCAmelCase__ = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> List[str]: inspect_dataset(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : str = path + '.py' assert script_name in os.listdir(lowerCamelCase_) assert "__pycache__" not in os.listdir(lowerCamelCase_) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning') @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning') @pytest.mark.parametrize('path' , ['accuracy']) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: inspect_metric(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : int = path + '.py' assert script_name in os.listdir(lowerCamelCase_) assert "__pycache__" not in os.listdir(lowerCamelCase_) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_) assert info.config_name == config_name assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[int]: with pytest.raises(lowerCamelCase_): get_dataset_config_info(lowerCamelCase_ , config_name=lowerCamelCase_) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = get_dataset_config_names(lowerCamelCase_) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : Union[str, Any] = get_dataset_infos(lowerCamelCase_) assert list(infos.keys()) == expected_configs UpperCamelCase__ : Tuple = expected_configs[0] assert expected_config in infos UpperCamelCase__ : List[Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Optional[Any]: UpperCamelCase__ : str = get_dataset_infos(lowerCamelCase_) assert expected_config in infos UpperCamelCase__ : Union[str, Any] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys()) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: with pytest.raises(lowerCamelCase_): get_dataset_split_names(lowerCamelCase_ , config_name=lowerCamelCase_)
6
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
1
'''simple docstring''' import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase (__lowerCamelCase ): _lowerCamelCase = ['''image_processor''', '''tokenizer'''] _lowerCamelCase = '''FlavaImageProcessor''' _lowerCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[Any] , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Dict=None , **UpperCAmelCase_ : Union[str, Any]): UpperCamelCase__ : int = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , UpperCAmelCase_ , ) UpperCamelCase__ : Any = kwargs.pop('feature_extractor') UpperCamelCase__ : Dict = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : Dict = self.image_processor def __call__( self : Dict , UpperCAmelCase_ : Optional[ImageInput] = None , UpperCAmelCase_ : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : Tuple , ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: UpperCamelCase__ : Dict = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if images is not None: UpperCamelCase__ : Optional[int] = self.image_processor( UpperCAmelCase_ , return_image_mask=UpperCAmelCase_ , return_codebook_pixels=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) if text is not None and images is not None: encoding.update(UpperCAmelCase_) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCAmelCase_) , tensor_type=UpperCAmelCase_) def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Tuple): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_) def __UpperCamelCase ( self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_) @property def __UpperCamelCase ( self : int): UpperCamelCase__ : Any = self.tokenizer.model_input_names UpperCamelCase__ : List[str] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def __UpperCamelCase ( self : List[Any]): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , UpperCAmelCase_ , ) return self.image_processor_class @property def __UpperCamelCase ( self : List[Any]): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , UpperCAmelCase_ , ) return self.image_processor
6
'''simple docstring''' class __lowercase : def __init__( self : List[str] , UpperCAmelCase_ : str = "" , UpperCAmelCase_ : bool = False): # Mapping from the first character of the prefix of the node UpperCamelCase__ : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word UpperCamelCase__ : List[Any] = is_leaf UpperCamelCase__ : Optional[Any] = prefix def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = 0 for q, w in zip(self.prefix , UpperCAmelCase_): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self : str , UpperCAmelCase_ : list[str]): for word in words: self.insert(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : str): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: UpperCamelCase__ : Optional[Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: UpperCamelCase__ : Optional[Any] = RadixNode(prefix=UpperCAmelCase_ , is_leaf=UpperCAmelCase_) else: UpperCamelCase__ : int = self.nodes[word[0]] UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : List[Any] = incoming_node.match( UpperCAmelCase_) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase_) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: UpperCamelCase__ : Tuple = remaining_prefix UpperCamelCase__ : str = self.nodes[matching_string[0]] UpperCamelCase__ : Optional[Any] = RadixNode(UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : str = aux_node if remaining_word == "": UpperCamelCase__ : int = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase_) def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[Any] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase_) def __UpperCamelCase ( self : str , UpperCAmelCase_ : str): UpperCamelCase__ : Optional[int] = self.nodes.get(word[0] , UpperCAmelCase_) if not incoming_node: return False else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = incoming_node.match( UpperCAmelCase_) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase_) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: UpperCamelCase__ : List[str] = list(self.nodes.values())[0] UpperCamelCase__ : Tuple = merging_node.is_leaf self.prefix += merging_node.prefix UpperCamelCase__ : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: UpperCamelCase__ : str = False # If there is 1 edge, we merge it with its child else: UpperCamelCase__ : List[Any] = list(incoming_node.nodes.values())[0] UpperCamelCase__ : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix UpperCamelCase__ : Union[str, Any] = merging_node.nodes return True def __UpperCamelCase ( self : str , UpperCAmelCase_ : int = 0): if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def __UpperCAmelCase ( ) -> bool: UpperCamelCase__ : Union[str, Any] = 'banana bananas bandana band apple all beast'.split() UpperCamelCase__ : List[Any] = RadixNode() root.insert_many(lowerCamelCase_) assert all(root.find(lowerCamelCase_) for word in words) assert not root.find('bandanas') assert not root.find('apps') root.delete('all') assert not root.find('all') root.delete('banana') assert not root.find('banana') assert root.find('bananas') return True def __UpperCAmelCase ( ) -> None: assert test_trie() def __UpperCAmelCase ( ) -> None: UpperCamelCase__ : List[Any] = RadixNode() UpperCamelCase__ : List[str] = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(lowerCamelCase_) print('Words:' , lowerCamelCase_) print('Tree:') root.print_tree() if __name__ == "__main__": main()
6
1
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu lowerCAmelCase__ = False class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[Any]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : int): return 12 @property def __UpperCamelCase ( self : Tuple): return 12 @property def __UpperCamelCase ( self : Dict): return 32 @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') return tokenizer @property def __UpperCamelCase ( self : List[str]): torch.manual_seed(0) UpperCamelCase__ : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[int]): torch.manual_seed(0) UpperCamelCase__ : List[Any] = 12 UpperCamelCase__ : Dict = 12 UpperCamelCase__ : Union[str, Any] = { 'attention_bias': True, 'cross_attention_dim': 32, 'attention_head_dim': height * width, 'num_attention_heads': 1, 'num_vector_embeds': self.num_embed, 'num_embeds_ada_norm': self.num_embeds_ada_norm, 'norm_num_groups': 32, 'sample_size': width, 'activation_fn': 'geglu-approximate', } UpperCamelCase__ : Tuple = TransformeraDModel(**UpperCAmelCase_) return model def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = 'cpu' UpperCamelCase__ : List[str] = self.dummy_vqvae UpperCamelCase__ : List[str] = self.dummy_text_encoder UpperCamelCase__ : Optional[int] = self.dummy_tokenizer UpperCamelCase__ : List[str] = self.dummy_transformer UpperCamelCase__ : Dict = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : List[Any] = LearnedClassifierFreeSamplingEmbeddings(learnable=UpperCAmelCase_) UpperCamelCase__ : int = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : Optional[Any] = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : int = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : Any = np.array([0.65_51, 0.61_68, 0.50_08, 0.56_76, 0.56_59, 0.42_95, 0.60_73, 0.55_99, 0.49_92]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Optional[int] = 'cpu' UpperCamelCase__ : str = self.dummy_vqvae UpperCamelCase__ : Any = self.dummy_text_encoder UpperCamelCase__ : List[Any] = self.dummy_tokenizer UpperCamelCase__ : Dict = self.dummy_transformer UpperCamelCase__ : Optional[Any] = VQDiffusionScheduler(self.num_embed) UpperCamelCase__ : Optional[Any] = LearnedClassifierFreeSamplingEmbeddings( learnable=UpperCAmelCase_ , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length) UpperCamelCase__ : str = VQDiffusionPipeline( vqvae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , transformer=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , learned_classifier_free_sampling_embeddings=UpperCAmelCase_ , ) UpperCamelCase__ : str = pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = 'teddy bear playing in the pool' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Any = pipe([prompt] , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type='np') UpperCamelCase__ : int = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = pipe( [prompt] , generator=UpperCAmelCase_ , output_type='np' , return_dict=UpperCAmelCase_ , num_inference_steps=2)[0] UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) UpperCamelCase__ : str = np.array([0.66_93, 0.60_75, 0.49_59, 0.57_01, 0.55_83, 0.43_33, 0.61_71, 0.56_84, 0.49_88]) assert np.abs(image_slice.flatten() - expected_slice).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Any): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy') UpperCamelCase__ : List[Any] = VQDiffusionPipeline.from_pretrained('microsoft/vq-diffusion-ithq') UpperCamelCase__ : Any = pipeline.to(UpperCAmelCase_) pipeline.set_progress_bar_config(disable=UpperCAmelCase_) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though UpperCamelCase__ : Optional[int] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : int = pipeline( 'teddy bear playing in the pool' , num_images_per_prompt=1 , generator=UpperCAmelCase_ , output_type='np' , ) UpperCamelCase__ : int = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image).max() < 2.0
6
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase__ = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class __lowercase (unittest.TestCase ): def __init__( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]=7 , UpperCAmelCase_ : int=3 , UpperCAmelCase_ : Optional[Any]=18 , UpperCAmelCase_ : Union[str, Any]=30 , UpperCAmelCase_ : List[str]=400 , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : Dict=True , UpperCAmelCase_ : Tuple=None , ): UpperCamelCase__ : Dict = size if size is not None else {'height': 20, 'width': 20} UpperCamelCase__ : int = parent UpperCamelCase__ : Tuple = batch_size UpperCamelCase__ : Dict = num_channels UpperCamelCase__ : Optional[int] = image_size UpperCamelCase__ : Optional[int] = min_resolution UpperCamelCase__ : Union[str, Any] = max_resolution UpperCamelCase__ : str = size UpperCamelCase__ : List[Any] = do_normalize UpperCamelCase__ : Union[str, Any] = do_convert_rgb UpperCamelCase__ : int = [512, 1_024, 2_048, 4_096] UpperCamelCase__ : Optional[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} def __UpperCamelCase ( self : int): return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __UpperCamelCase ( self : Any): UpperCamelCase__ : Any = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' UpperCamelCase__ : List[str] = Image.open(requests.get(UpperCAmelCase_ , stream=UpperCAmelCase_).raw).convert('RGB') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : str = PixaStructImageProcessingTester(self) @property def __UpperCamelCase ( self : Any): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize')) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_convert_rgb')) def __UpperCamelCase ( self : int): UpperCamelCase__ : Tuple = self.image_processor_tester.prepare_dummy_image() UpperCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict) UpperCamelCase__ : Any = 2_048 UpperCamelCase__ : List[Any] = image_processor(UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06) , atol=1e-3 , rtol=1e-3)) def __UpperCamelCase ( self : Any): # Initialize image_processor UpperCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input UpperCamelCase__ : str = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ : Any = image_processor( UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : Optional[int]): # Initialize image_processor UpperCamelCase__ : int = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input UpperCamelCase__ : List[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 UpperCamelCase__ : Any = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(UpperCAmelCase_): UpperCamelCase__ : Any = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches UpperCamelCase__ : Any = 'Hello' UpperCamelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ : List[str] = image_processor( UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_ , header_text=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : List[Any]): # Initialize image_processor UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray) UpperCamelCase__ : Optional[int] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ : Tuple = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ : Dict = image_processor( UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __UpperCamelCase ( self : Optional[int]): # Initialize image_processor UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor) # Test not batched input UpperCamelCase__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ : Optional[int] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ : Dict = image_processor( UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class __lowercase (__lowerCamelCase , unittest.TestCase ): _lowerCamelCase = PixaStructImageProcessor if is_vision_available() else None def __UpperCamelCase ( self : Union[str, Any]): UpperCamelCase__ : List[Any] = PixaStructImageProcessingTester(self , num_channels=4) UpperCamelCase__ : str = 3 @property def __UpperCamelCase ( self : List[str]): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self : int): UpperCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_normalize')) self.assertTrue(hasattr(UpperCAmelCase_ , 'do_convert_rgb')) def __UpperCamelCase ( self : str): # Initialize image_processor UpperCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image) # Test not batched input UpperCamelCase__ : Optional[Any] = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input UpperCamelCase__ : List[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched UpperCamelCase__ : Union[str, Any] = image_processor( UpperCAmelCase_ , return_tensors='pt' , max_patches=UpperCAmelCase_).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
6
'''simple docstring''' import numpy as np from PIL import Image def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : List[Any] = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Tuple = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : str = 0 # compute the shape of the output matrix UpperCamelCase__ : int = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape UpperCamelCase__ : Dict = np.zeros((maxpool_shape, maxpool_shape)) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix UpperCamelCase__ : Dict = np.max(arr[i : i + size, j : j + size]) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : List[Any] = 0 UpperCamelCase__ : Optional[int] = 0 return updated_arr def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.ndarray: UpperCamelCase__ : Tuple = np.array(lowerCamelCase_) if arr.shape[0] != arr.shape[1]: raise ValueError('The input array is not a square matrix') UpperCamelCase__ : Optional[int] = 0 UpperCamelCase__ : int = 0 UpperCamelCase__ : List[str] = 0 UpperCamelCase__ : List[Any] = 0 # compute the shape of the output matrix UpperCamelCase__ : str = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape UpperCamelCase__ : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape)) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix UpperCamelCase__ : List[Any] = int(np.average(arr[i : i + size, j : j + size])) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 UpperCamelCase__ : Union[str, Any] = 0 UpperCamelCase__ : Optional[Any] = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image lowerCAmelCase__ = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
6
1
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_337 , num_examples=42 , dataset_name='my_dataset')}), SplitDict({'train': SplitInfo(name='train' , num_bytes=1_337 , num_examples=42)}), SplitDict({'train': SplitInfo()}), ] , ) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Any = split_dict._to_yaml_list() assert len(lowerCamelCase_) == len(lowerCamelCase_) UpperCamelCase__ : Union[str, Any] = SplitDict._from_yaml_list(lowerCamelCase_) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCamelCase__ : Dict = None # the split name of split_dict takes over the name of the split info object UpperCamelCase__ : List[str] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=lowerCamelCase_), SplitInfo(dataset_name='my_dataset')]) def __UpperCAmelCase ( lowerCamelCase_) -> Any: # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCamelCase__ : List[str] = asdict(SplitDict({'train': split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
6
'''simple docstring''' from __future__ import annotations class __lowercase : def __init__( self : Union[str, Any] , UpperCAmelCase_ : list[list[int]]): UpperCamelCase__ : int = TypeError( 'Matrices must be formed from a list of zero or more lists containing at ' 'least one and the same number of values, each of which must be of type ' 'int or float.') if len(UpperCAmelCase_) != 0: UpperCamelCase__ : str = len(rows[0]) if cols == 0: raise error for row in rows: if len(UpperCAmelCase_) != cols: raise error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise error UpperCamelCase__ : Optional[int] = rows else: UpperCamelCase__ : Optional[Any] = [] def __UpperCamelCase ( self : Union[str, Any]): return [[row[i] for row in self.rows] for i in range(len(self.rows[0]))] @property def __UpperCamelCase ( self : Dict): return len(self.rows) @property def __UpperCamelCase ( self : Tuple): return len(self.rows[0]) @property def __UpperCamelCase ( self : List[Any]): return (self.num_rows, self.num_columns) @property def __UpperCamelCase ( self : Any): return self.order[0] == self.order[1] def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[int] = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows)] for row_num in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : Dict): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0]) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0])) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns)) def __UpperCamelCase ( self : str): return bool(self.determinant()) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : int): UpperCamelCase__ : Optional[Any] = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns) if other_column != column ] for other_row in range(self.num_rows) if other_row != row ] return Matrix(UpperCAmelCase_).determinant() def __UpperCamelCase ( self : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : int): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) return -1 * self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) def __UpperCamelCase ( self : List[Any]): return Matrix( [ [self.get_minor(UpperCAmelCase_ , UpperCAmelCase_) for column in range(self.num_columns)] for row in range(self.num_rows) ]) def __UpperCamelCase ( self : Optional[int]): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns) ] for row in range(self.minors().num_rows) ]) def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = [ [self.cofactors().rows[column][row] for column in range(self.num_columns)] for row in range(self.num_rows) ] return Matrix(UpperCAmelCase_) def __UpperCamelCase ( self : int): UpperCamelCase__ : List[Any] = self.determinant() if not determinant: raise TypeError('Only matrices with a non-zero determinant have an inverse') return self.adjugate() * (1 / determinant) def __repr__( self : Any): return str(self.rows) def __str__( self : List[Any]): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0])) + "]]" return ( "[" + "\n ".join( [ '[' + '. '.join([str(UpperCAmelCase_) for value in row]) + '.]' for row in self.rows ]) + "]" ) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : List[str] = TypeError('Row must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in row: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_columns: raise ValueError( 'Row must be equal in length to the other rows in the matrix') if position is None: self.rows.append(UpperCAmelCase_) else: UpperCamelCase__ : Tuple = self.rows[0:position] + [row] + self.rows[position:] def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : int | None = None): UpperCamelCase__ : int = TypeError( 'Column must be a list containing all ints and/or floats') if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise type_error for value in column: if not isinstance(UpperCAmelCase_ , (int, float)): raise type_error if len(UpperCAmelCase_) != self.num_rows: raise ValueError( 'Column must be equal in length to the other columns in the matrix') if position is None: UpperCamelCase__ : Optional[int] = [self.rows[i] + [column[i]] for i in range(self.num_rows)] else: UpperCamelCase__ : str = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows) ] def __eq__( self : List[Any] , UpperCAmelCase_ : object): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): return NotImplemented return self.rows == other.rows def __ne__( self : Any , UpperCAmelCase_ : object): return not self == other def __neg__( self : Union[str, Any]): return self * -1 def __add__( self : Optional[int] , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Addition requires matrices of the same order') return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __sub__( self : Tuple , UpperCAmelCase_ : Matrix): if self.order != other.order: raise ValueError('Subtraction requires matrices of the same order') return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns)] for i in range(self.num_rows) ]) def __mul__( self : Any , UpperCAmelCase_ : Matrix | int | float): if isinstance(UpperCAmelCase_ , (int, float)): return Matrix( [[int(element * other) for element in row] for row in self.rows]) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_): if self.num_columns != other.num_rows: raise ValueError( 'The number of columns in the first matrix must ' 'be equal to the number of rows in the second') return Matrix( [ [Matrix.dot_product(UpperCAmelCase_ , UpperCAmelCase_) for column in other.columns()] for row in self.rows ]) else: raise TypeError( 'A Matrix can only be multiplied by an int, float, or another matrix') def __pow__( self : Dict , UpperCAmelCase_ : int): if not isinstance(UpperCAmelCase_ , UpperCAmelCase_): raise TypeError('A Matrix can only be raised to the power of an int') if not self.is_square: raise ValueError('Only square matrices can be raised to a power') if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( 'Only invertable matrices can be raised to a negative power') UpperCamelCase__ : str = self for _ in range(other - 1): result *= self return result @classmethod def __UpperCamelCase ( cls : Optional[int] , UpperCAmelCase_ : list[int] , UpperCAmelCase_ : list[int]): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase_))) if __name__ == "__main__": import doctest doctest.testmod()
6
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class __lowercase (metaclass=__lowerCamelCase ): _lowerCamelCase = ['''torch''', '''scipy'''] def __init__( self : List[Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int): requires_backends(self , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any]): requires_backends(cls , ['torch', 'scipy']) @classmethod def __UpperCamelCase ( cls : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Any): requires_backends(cls , ['torch', 'scipy'])
6
'''simple docstring''' import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class __lowercase : def __UpperCamelCase ( self : Union[str, Any]): torch.manual_seed(0) UpperCamelCase__ : Dict = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : List[str] = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Dict): torch.manual_seed(0) UpperCamelCase__ : List[Any] = TaEncoderModel.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-t5') torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ 'ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D', ] , mid_block_type='UNetMidBlock2DSimpleCrossAttn' , up_block_types=['SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type='text' , addition_embed_type_num_heads=2 , cross_attention_norm='group_norm' , resnet_time_scale_shift='scale_shift' , act_fn='gelu' , class_embed_type='timestep' , mid_block_scale_factor=1.4_14 , time_embedding_act_fn='gelu' , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests torch.manual_seed(0) UpperCamelCase__ : str = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , thresholding=UpperCAmelCase_ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type='epsilon' , variance_type='learned_range' , ) torch.manual_seed(0) UpperCamelCase__ : List[str] = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule='squaredcos_cap_v2' , beta_start=0.00_01 , beta_end=0.02 , ) torch.manual_seed(0) UpperCamelCase__ : Optional[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def __UpperCamelCase ( self : Any): UpperCamelCase__ : Dict = self.get_dummy_components() UpperCamelCase__ : List[Any] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Tuple = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = inputs['prompt'] UpperCamelCase__ : List[Any] = inputs['generator'] UpperCamelCase__ : Tuple = inputs['num_inference_steps'] UpperCamelCase__ : List[Any] = inputs['output_type'] if "image" in inputs: UpperCamelCase__ : Tuple = inputs['image'] else: UpperCamelCase__ : Union[str, Any] = None if "mask_image" in inputs: UpperCamelCase__ : Optional[int] = inputs['mask_image'] else: UpperCamelCase__ : int = None if "original_image" in inputs: UpperCamelCase__ : List[Any] = inputs['original_image'] else: UpperCamelCase__ : Optional[Any] = None UpperCamelCase__, UpperCamelCase__ : Any = pipe.encode_prompt(UpperCAmelCase_) # inputs with prompt converted to embeddings UpperCamelCase__ : List[Any] = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Dict = image if mask_image is not None: UpperCamelCase__ : Optional[int] = mask_image if original_image is not None: UpperCamelCase__ : Union[str, Any] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_) UpperCamelCase__ : int = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(UpperCAmelCase_ , UpperCAmelCase_) is None , F'`{optional_component}` did not stay set to None after loading.' , ) UpperCamelCase__ : Optional[int] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = inputs['generator'] UpperCamelCase__ : List[Any] = inputs['num_inference_steps'] UpperCamelCase__ : Optional[int] = inputs['output_type'] # inputs with prompt converted to embeddings UpperCamelCase__ : Any = { 'prompt_embeds': prompt_embeds, 'negative_prompt_embeds': negative_prompt_embeds, 'generator': generator, 'num_inference_steps': num_inference_steps, 'output_type': output_type, } if image is not None: UpperCamelCase__ : Tuple = image if mask_image is not None: UpperCamelCase__ : Union[str, Any] = mask_image if original_image is not None: UpperCamelCase__ : str = original_image UpperCamelCase__ : Union[str, Any] = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Dict = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4) def __UpperCamelCase ( self : Optional[int]): UpperCamelCase__ : Any = self.get_dummy_components() UpperCamelCase__ : List[str] = self.pipeline_class(**UpperCAmelCase_) pipe.to(UpperCAmelCase_) pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Any = pipe(**UpperCAmelCase_)[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = self.pipeline_class.from_pretrained(UpperCAmelCase_) pipe_loaded.to(UpperCAmelCase_) pipe_loaded.set_progress_bar_config(disable=UpperCAmelCase_) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests UpperCamelCase__ : Any = self.get_dummy_inputs(UpperCAmelCase_) UpperCamelCase__ : Tuple = pipe_loaded(**UpperCAmelCase_)[0] UpperCamelCase__ : Optional[int] = np.abs(to_np(UpperCAmelCase_) - to_np(UpperCAmelCase_)).max() self.assertLess(UpperCAmelCase_ , 1e-4)
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase__ = { 'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST', 'FalconForCausalLM', 'FalconModel', 'FalconPreTrainedModel', 'FalconForSequenceClassification', 'FalconForTokenClassification', 'FalconForQuestionAnswering', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCAmelCase__ = 3 def __UpperCAmelCase ( lowerCamelCase_) -> int: print('Generating primitive root of p') while True: UpperCamelCase__ : Any = random.randrange(3 , lowerCamelCase_) if pow(lowerCamelCase_ , 2 , lowerCamelCase_) == 1: continue if pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) == 1: continue return g def __UpperCAmelCase ( lowerCamelCase_) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('Generating prime p...') UpperCamelCase__ : List[str] = rabin_miller.generate_large_prime(lowerCamelCase_) # select large prime number. UpperCamelCase__ : Any = primitive_root(lowerCamelCase_) # one primitive root on modulo p. UpperCamelCase__ : Union[str, Any] = random.randrange(3 , lowerCamelCase_) # private_key -> have to be greater than 2 for safety. UpperCamelCase__ : Dict = cryptomath.find_mod_inverse(pow(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) , lowerCamelCase_) UpperCamelCase__ : List[Any] = (key_size, e_a, e_a, p) UpperCamelCase__ : Optional[Any] = (key_size, d) return public_key, private_key def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_) -> None: if os.path.exists(f'{name}_pubkey.txt') or os.path.exists(f'{name}_privkey.txt'): print('\nWARNING:') print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.') sys.exit() UpperCamelCase__, UpperCamelCase__ : Union[str, Any] = generate_key(lowerCamelCase_) print(f'\nWriting public key to file {name}_pubkey.txt...') with open(f'{name}_pubkey.txt' , 'w') as fo: fo.write(f'{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}') print(f'Writing private key to file {name}_privkey.txt...') with open(f'{name}_privkey.txt' , 'w') as fo: fo.write(f'{private_key[0]},{private_key[1]}') def __UpperCAmelCase ( ) -> None: print('Making key files...') make_key_files('elgamal' , 2_048) print('Key files generation successful') if __name__ == "__main__": main()
6
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase__ = Lock() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Any: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(lowerCamelCase_) process_lock.release() # receive your right neighbor's value process_lock.acquire() UpperCamelCase__ : int = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left UpperCamelCase__ : List[Any] = min(lowerCamelCase_ , lowerCamelCase_) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(lowerCamelCase_) process_lock.release() # receive your left neighbor's value process_lock.acquire() UpperCamelCase__ : int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right UpperCamelCase__ : List[Any] = max(lowerCamelCase_ , lowerCamelCase_) # after all swaps are performed, send the values back to main result_pipe[1].send(lowerCamelCase_) def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: UpperCamelCase__ : Tuple = [] UpperCamelCase__ : Optional[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe()) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop UpperCamelCase__ : Optional[int] = Pipe() UpperCamelCase__ : List[Any] = Pipe() process_array_.append( Process( target=lowerCamelCase_ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , )) UpperCamelCase__ : Tuple = temp_rs UpperCamelCase__ : Tuple = temp_rr for i in range(1 , len(lowerCamelCase_) - 1): UpperCamelCase__ : int = Pipe() UpperCamelCase__ : Any = Pipe() process_array_.append( Process( target=lowerCamelCase_ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , )) UpperCamelCase__ : List[Any] = temp_rs UpperCamelCase__ : int = temp_rr process_array_.append( Process( target=lowerCamelCase_ , args=( len(lowerCamelCase_) - 1, arr[len(lowerCamelCase_) - 1], temp_ls, None, temp_lr, None, result_pipe[len(lowerCamelCase_) - 1], ) , )) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(lowerCamelCase_)): UpperCamelCase__ : Union[str, Any] = result_pipe[p][0].recv() process_array_[p].join() return arr def __UpperCAmelCase ( ) -> List[str]: UpperCamelCase__ : Union[str, Any] = list(range(10 , 0 , -1)) print('Initial List') print(*lowerCamelCase_) UpperCamelCase__ : Optional[int] = odd_even_transposition(lowerCamelCase_) print('Sorted List\n') print(*lowerCamelCase_) if __name__ == "__main__": main()
6
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'ctc_proj', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase__ = [ 'ctc_proj', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: for attribute in key.split('.'): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models UpperCamelCase__ : str = 'lm_head' UpperCamelCase__ : Optional[Any] = getattr(lowerCamelCase_ , lowerCamelCase_) if weight_type is not None: UpperCamelCase__ : List[Any] = getattr(lowerCamelCase_ , lowerCamelCase_).shape else: UpperCamelCase__ : List[str] = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": UpperCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": UpperCamelCase__ : Union[str, Any] = value elif weight_type == "weight_v": UpperCamelCase__ : List[Any] = value elif weight_type == "bias": UpperCamelCase__ : Any = value else: UpperCamelCase__ : Optional[int] = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> List[Any]: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : int = fairseq_model.state_dict() UpperCamelCase__ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase__ : Union[str, Any] = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase__ : List[Any] = 'unispeech.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.')[-1] == name.split('.')[0]: UpperCamelCase__ : Any = True if "*" in mapped_key: UpperCamelCase__ : Any = name.split(lowerCamelCase_)[0].split('.')[-2] UpperCamelCase__ : Union[str, Any] = mapped_key.replace('*' , lowerCamelCase_) if "weight_g" in name: UpperCamelCase__ : int = 'weight_g' elif "weight_v" in name: UpperCamelCase__ : Any = 'weight_v' elif "bias" in name: UpperCamelCase__ : Union[str, Any] = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase__ : Any = 'weight' else: UpperCamelCase__ : Tuple = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) continue if not is_used: unused_weights.append(lowerCamelCase_) logger.warning(f'Unused weights: {unused_weights}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Tuple: UpperCamelCase__ : Dict = full_name.split('conv_layers.')[-1] UpperCamelCase__ : List[Any] = name.split('.') UpperCamelCase__ : Any = int(items[0]) UpperCamelCase__ : int = int(items[1]) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) UpperCamelCase__ : Tuple = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) UpperCamelCase__ : int = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) UpperCamelCase__ : Optional[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) UpperCamelCase__ : List[Any] = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(lowerCamelCase_) @torch.no_grad() def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=True) -> Tuple: if config_path is not None: UpperCamelCase__ : Optional[Any] = UniSpeechConfig.from_pretrained(lowerCamelCase_) else: UpperCamelCase__ : int = UniSpeechConfig() if is_finetuned: if dict_path: UpperCamelCase__ : Union[str, Any] = Dictionary.load_from_json(lowerCamelCase_) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase__ : List[Any] = target_dict.pad_index UpperCamelCase__ : Dict = target_dict.bos_index UpperCamelCase__ : Union[str, Any] = target_dict.eos_index UpperCamelCase__ : Tuple = len(target_dict.symbols) UpperCamelCase__ : Dict = os.path.join(lowerCamelCase_ , 'vocab.json') if not os.path.isdir(lowerCamelCase_): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowerCamelCase_)) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_) UpperCamelCase__ : Optional[int] = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase__ : Any = 42 UpperCamelCase__ : List[str] = 43 with open(lowerCamelCase_ , 'w' , encoding='utf-8') as vocab_handle: json.dump(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowerCamelCase_ , ) UpperCamelCase__ : Optional[Any] = True if config.feat_extract_norm == 'layer' else False UpperCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_) processor.save_pretrained(lowerCamelCase_) UpperCamelCase__ : Dict = UniSpeechForCTC(lowerCamelCase_) else: UpperCamelCase__ : List[Any] = UniSpeechForPreTraining(lowerCamelCase_) if is_finetuned: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/')[:-1]), 'w2v_path': checkpoint_path}) else: UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path]) UpperCamelCase__ : int = model[0].eval() recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) hf_unispeech.save_pretrained(lowerCamelCase_) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) lowerCAmelCase__ = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
6
1
'''simple docstring''' import warnings warnings.warn( 'memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: ' '`from accelerate import find_executable_batch_size` to avoid this warning.', FutureWarning, )
6
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : List[str]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Union[str, Any] = 1 UpperCamelCase__ : Union[str, Any] = 3 UpperCamelCase__ : Dict = (32, 32) UpperCamelCase__ : int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0)).to(UpperCAmelCase_) return image @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) return model @property def __UpperCamelCase ( self : Any): torch.manual_seed(0) UpperCamelCase__ : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) return model @property def __UpperCamelCase ( self : str): torch.manual_seed(0) UpperCamelCase__ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModel(UpperCAmelCase_) @property def __UpperCamelCase ( self : Optional[Any]): def extract(*UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict): class __lowercase : def __init__( self : List[Any]): UpperCamelCase__ : Optional[Any] = torch.ones([0]) def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : int): self.pixel_values.to(UpperCAmelCase_) return self return Out() return extract def __UpperCamelCase ( self : str): UpperCamelCase__ : Optional[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : Any = self.dummy_cond_unet UpperCamelCase__ : Any = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) UpperCamelCase__ : List[str] = self.dummy_vae UpperCamelCase__ : str = self.dummy_text_encoder UpperCamelCase__ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Dict = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : List[Any] = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Tuple = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.57_56, 0.61_18, 0.50_05, 0.50_41, 0.54_71, 0.47_26, 0.49_76, 0.48_65, 0.48_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase__ : int = self.dummy_cond_unet UpperCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Optional[int] = self.dummy_vae UpperCamelCase__ : Optional[int] = self.dummy_text_encoder UpperCamelCase__ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # make sure here that pndm scheduler skips prk UpperCamelCase__ : Dict = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Tuple = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[str] = 'A painting of a squirrel eating a burger' UpperCamelCase__ : Union[str, Any] = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : str = sd_pipe([prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np') UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = torch.Generator(device=UpperCAmelCase_).manual_seed(0) UpperCamelCase__ : Optional[Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=6.0 , num_inference_steps=2 , output_type='np' , return_dict=UpperCAmelCase_ , )[0] UpperCamelCase__ : Tuple = image[0, -3:, -3:, -1] UpperCamelCase__ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCamelCase__ : List[Any] = np.array([0.51_25, 0.57_16, 0.48_28, 0.50_60, 0.56_50, 0.47_68, 0.51_85, 0.48_95, 0.49_93]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Dict): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-lms-pipe' , safety_checker=UpperCAmelCase_) assert isinstance(UpperCAmelCase_ , UpperCAmelCase_) assert isinstance(pipe.scheduler , UpperCAmelCase_) assert pipe.safety_checker is None UpperCamelCase__ : List[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCAmelCase_) UpperCamelCase__ : List[str] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_) # sanity check that the pipeline still works assert pipe.safety_checker is None UpperCamelCase__ : Optional[Any] = pipe('example prompt' , num_inference_steps=2).images[0] assert image is not None @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU') def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Dict = self.dummy_cond_unet UpperCamelCase__ : str = PNDMScheduler(skip_prk_steps=UpperCAmelCase_) UpperCamelCase__ : Any = self.dummy_vae UpperCamelCase__ : Optional[Any] = self.dummy_text_encoder UpperCamelCase__ : str = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip') # put models in fp16 UpperCamelCase__ : Any = unet.half() UpperCamelCase__ : Tuple = vae.half() UpperCamelCase__ : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk UpperCamelCase__ : Optional[int] = StableDiffusionPipeline( unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=self.dummy_extractor , ) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : Any = 'A painting of a squirrel eating a burger' UpperCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type='np').images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __lowercase (unittest.TestCase ): def __UpperCamelCase ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self : List[Any]): UpperCamelCase__ : Optional[int] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : List[Any] = ( 'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle' ' coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with' ' anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and' ' children from bahnhof zoo, detailed ' ) UpperCamelCase__ : Any = 4_003_660_346 UpperCamelCase__ : Any = 7 # without safety guidance (sld_guidance_scale = 0) UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Optional[int] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : str = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.22_78, 0.22_31, 0.22_49, 0.23_33, 0.23_03, 0.18_85, 0.22_73, 0.21_44, 0.21_76] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 # without safety guidance (strong configuration) UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Dict = output.images UpperCamelCase__ : str = image[0, -3:, -3:, -1] UpperCamelCase__ : Tuple = [0.23_83, 0.22_76, 0.2_36, 0.21_92, 0.21_86, 0.20_53, 0.19_71, 0.19_01, 0.17_19] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Optional[Any]): UpperCamelCase__ : Dict = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5' , safety_checker=UpperCAmelCase_) UpperCamelCase__ : str = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config) UpperCamelCase__ : Dict = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : str = 'padme amidala taking a bath artwork, safe for work, no nudity' UpperCamelCase__ : Tuple = 2_734_971_755 UpperCamelCase__ : Tuple = 7 UpperCamelCase__ : Tuple = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : int = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : int = output.images UpperCamelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : Any = [0.35_02, 0.36_22, 0.33_96, 0.36_42, 0.34_78, 0.33_18, 0.35, 0.33_48, 0.32_97] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 UpperCamelCase__ : List[str] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : Union[str, Any] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Tuple = output.images UpperCamelCase__ : List[str] = image[0, -3:, -3:, -1] UpperCamelCase__ : Union[str, Any] = [0.55_31, 0.52_06, 0.48_95, 0.51_56, 0.51_82, 0.47_51, 0.48_02, 0.48_03, 0.44_43] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCamelCase ( self : Any): UpperCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained('runwayml/stable-diffusion-v1-5') UpperCamelCase__ : Optional[Any] = sd_pipe.to(UpperCAmelCase_) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_) UpperCamelCase__ : int = ( 'the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.' ' leyendecker' ) UpperCamelCase__ : Any = 1_044_355_234 UpperCamelCase__ : Optional[int] = 12 UpperCamelCase__ : Optional[int] = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : str = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=0 , ) UpperCamelCase__ : List[str] = output.images UpperCamelCase__ : Any = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7 UpperCamelCase__ : int = torch.manual_seed(UpperCAmelCase_) UpperCamelCase__ : List[str] = sd_pipe( [prompt] , generator=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , num_inference_steps=50 , output_type='np' , width=512 , height=512 , sld_guidance_scale=2_000 , sld_warmup_steps=7 , sld_threshold=0.0_25 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) UpperCamelCase__ : Optional[Any] = output.images UpperCamelCase__ : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase__ : str = np.array([0.58_18, 0.62_85, 0.68_35, 0.60_19, 0.6_25, 0.67_54, 0.60_96, 0.63_34, 0.65_61]) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
6
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available lowerCAmelCase__ = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
'''simple docstring''' import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } lowerCAmelCase__ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } lowerCAmelCase__ = {'facebook/blenderbot-3B': 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCAmelCase ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = ( list(range(ord('!') , ord('~') + 1)) + list(range(ord('¡') , ord('¬') + 1)) + list(range(ord('®') , ord('ÿ') + 1)) ) UpperCamelCase__ : List[Any] = bs[:] UpperCamelCase__ : Optional[int] = 0 for b in range(2**8): if b not in bs: bs.append(lowerCamelCase_) cs.append(2**8 + n) n += 1 UpperCamelCase__ : Union[str, Any] = [chr(lowerCamelCase_) for n in cs] return dict(zip(lowerCamelCase_ , lowerCamelCase_)) def __UpperCAmelCase ( lowerCamelCase_) -> Tuple: UpperCamelCase__ : Any = set() UpperCamelCase__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char)) UpperCamelCase__ : str = char return pairs class __lowercase (__lowerCamelCase ): _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict="replace" , UpperCAmelCase_ : int="<s>" , UpperCAmelCase_ : Tuple="</s>" , UpperCAmelCase_ : Any="</s>" , UpperCAmelCase_ : List[Any]="<s>" , UpperCAmelCase_ : List[str]="<unk>" , UpperCAmelCase_ : Any="<pad>" , UpperCAmelCase_ : Optional[Any]="<mask>" , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : List[Any] , ): UpperCamelCase__ : Union[str, Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else bos_token UpperCamelCase__ : List[str] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else eos_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else sep_token UpperCamelCase__ : int = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else cls_token UpperCamelCase__ : Tuple = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else unk_token UpperCamelCase__ : Optional[Any] = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ : Any = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_) if isinstance(UpperCAmelCase_ , UpperCAmelCase_) else mask_token super().__init__( errors=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) with open(UpperCAmelCase_ , encoding='utf-8') as vocab_handle: UpperCamelCase__ : Any = json.load(UpperCAmelCase_) UpperCamelCase__ : Dict = {v: k for k, v in self.encoder.items()} UpperCamelCase__ : Any = errors # how to handle errors in decoding UpperCamelCase__ : Tuple = bytes_to_unicode() UpperCamelCase__ : Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(UpperCAmelCase_ , encoding='utf-8') as merges_handle: UpperCamelCase__ : List[Any] = merges_handle.read().split('\n')[1:-1] UpperCamelCase__ : List[Any] = [tuple(merge.split()) for merge in bpe_merges] UpperCamelCase__ : Any = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_)))) UpperCamelCase__ : Dict = {} UpperCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ : Any = re.compile(R'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+') @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCamelCase ( self : Tuple): return len(self.encoder) def __UpperCamelCase ( self : Tuple): return dict(self.encoder , **self.added_tokens_encoder) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Union[str, Any]): if token in self.cache: return self.cache[token] UpperCamelCase__ : Optional[int] = tuple(UpperCAmelCase_) UpperCamelCase__ : int = get_pairs(UpperCAmelCase_) if not pairs: return token while True: UpperCamelCase__ : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_: self.bpe_ranks.get(UpperCAmelCase_ , float('inf'))) if bigram not in self.bpe_ranks: break UpperCamelCase__, UpperCamelCase__ : Tuple = bigram UpperCamelCase__ : Dict = [] UpperCamelCase__ : Optional[int] = 0 while i < len(UpperCAmelCase_): try: UpperCamelCase__ : Tuple = word.index(UpperCAmelCase_ , UpperCAmelCase_) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) UpperCamelCase__ : Any = j if word[i] == first and i < len(UpperCAmelCase_) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 UpperCamelCase__ : List[str] = tuple(UpperCAmelCase_) UpperCamelCase__ : Dict = new_word if len(UpperCAmelCase_) == 1: break else: UpperCamelCase__ : Optional[int] = get_pairs(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : List[Any] = word return word def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : Any): UpperCamelCase__ : Optional[Any] = [] for token in re.findall(self.pat , UpperCAmelCase_): UpperCamelCase__ : Optional[int] = ''.join( self.byte_encoder[b] for b in token.encode('utf-8')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCAmelCase_).split(' ')) return bpe_tokens def __UpperCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]): return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token)) def __UpperCamelCase ( self : Any , UpperCAmelCase_ : Optional[int]): return self.decoder.get(UpperCAmelCase_) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : int): UpperCamelCase__ : int = ''.join(UpperCAmelCase_) UpperCamelCase__ : Any = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8' , errors=self.errors) return text def __UpperCamelCase ( self : str , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None): if not os.path.isdir(UpperCAmelCase_): logger.error(F'Vocabulary path ({save_directory}) should be a directory') return UpperCamelCase__ : str = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) UpperCamelCase__ : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file']) with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) + '\n') UpperCamelCase__ : str = 0 with open(UpperCAmelCase_ , 'w' , encoding='utf-8') as writer: writer.write('#version: 0.2\n') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_: kv[1]): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ' Please check that the tokenizer is not corrupted!') UpperCamelCase__ : List[Any] = token_index writer.write(' '.join(UpperCAmelCase_) + '\n') index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : bool = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase_ , token_ids_a=UpperCAmelCase_ , already_has_special_tokens=UpperCAmelCase_) if token_ids_a is None: return [1] + ([0] * len(UpperCAmelCase_)) + [1] return [1] + ([0] * len(UpperCAmelCase_)) + [1, 1] + ([0] * len(UpperCAmelCase_)) + [1] def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): UpperCamelCase__ : Any = [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def __UpperCamelCase ( self : str , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str=False , **UpperCAmelCase_ : Optional[Any]): UpperCamelCase__ : Tuple = kwargs.pop('add_prefix_space' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(UpperCAmelCase_) > 0 and not text[0].isspace()): UpperCamelCase__ : str = ' ' + text return (text, kwargs) def __UpperCamelCase ( self : List[str] , UpperCAmelCase_ : List[int] , UpperCAmelCase_ : Optional[List[int]] = None): return token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self : Dict , UpperCAmelCase_ : "Conversation"): UpperCamelCase__ : List[str] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text) else: # Generated responses should contain them already. inputs.append(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = ' '.join(UpperCAmelCase_) UpperCamelCase__ : int = self.encode(UpperCAmelCase_) if len(UpperCAmelCase_) > self.model_max_length: UpperCamelCase__ : Optional[Any] = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.') return input_ids
6
1
'''simple docstring''' from torch import nn def __UpperCAmelCase ( lowerCamelCase_) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}')
6
'''simple docstring''' import requests from bsa import BeautifulSoup def __UpperCAmelCase ( lowerCamelCase_ = "AAPL") -> str: UpperCamelCase__ : str = f'https://in.finance.yahoo.com/quote/{symbol}?s={symbol}' UpperCamelCase__ : Optional[Any] = BeautifulSoup(requests.get(lowerCamelCase_).text , 'html.parser') UpperCamelCase__ : Union[str, Any] = 'My(6px) Pos(r) smartphone_Mt(6px)' return soup.find('div' , class_=class_).find('span').text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
6
1