code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxSeqaSeqConfigWithPast
from ...utils import logging
A : Tuple = logging.get_logger(__name__)
A : Any = {
"t5-small": "https://huggingface.co/t5-small/resolve/main/config.json",
"t5-base": "https://huggingface.co/t5-base/resolve/main/config.json",
"t5-large": "https://huggingface.co/t5-large/resolve/main/config.json",
"t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json",
"t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "t5"
A__ = ["past_key_values"]
A__ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"}
def __init__( self : Any , __lowerCamelCase : Union[str, Any]=32128 , __lowerCamelCase : Optional[Any]=512 , __lowerCamelCase : Optional[int]=64 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[Any]=6 , __lowerCamelCase : str=None , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : str=32 , __lowerCamelCase : Dict=128 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[Any]=1E-6 , __lowerCamelCase : str=1.0 , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=True , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , **__lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : List[str] = d_model
lowerCamelCase__ : str = d_kv
lowerCamelCase__ : Optional[int] = d_ff
lowerCamelCase__ : Tuple = num_layers
lowerCamelCase__ : int = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCamelCase__ : int = num_heads
lowerCamelCase__ : List[Any] = relative_attention_num_buckets
lowerCamelCase__ : List[str] = relative_attention_max_distance
lowerCamelCase__ : Optional[Any] = dropout_rate
lowerCamelCase__ : int = layer_norm_epsilon
lowerCamelCase__ : int = initializer_factor
lowerCamelCase__ : Optional[Any] = feed_forward_proj
lowerCamelCase__ : Dict = use_cache
lowerCamelCase__ : Any = self.feed_forward_proj.split("-" )
lowerCamelCase__ : Union[str, Any] = act_info[-1]
lowerCamelCase__ : Dict = act_info[0] == "gated"
if len(lowercase_ ) > 1 and act_info[0] != "gated" or len(lowercase_ ) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. "
"'gated-gelu' or 'relu'" )
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
lowerCamelCase__ : Union[str, Any] = "gelu_new"
super().__init__(
pad_token_id=lowercase_ , eos_token_id=lowercase_ , is_encoder_decoder=lowercase_ , **lowercase_ , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = {
"input_ids": {0: "batch", 1: "encoder_sequence"},
"attention_mask": {0: "batch", 1: "encoder_sequence"},
}
if self.use_past:
lowerCamelCase__ : str = "past_encoder_sequence + sequence"
lowerCamelCase__ : Any = {0: "batch"}
lowerCamelCase__ : Union[str, Any] = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Dict = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : Dict = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(lowercase_ , direction="inputs" )
return common_inputs
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return 13
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A : Tuple = {
"configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"],
"tokenization_roberta": ["RobertaTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = ["RobertaTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
"ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"RobertaForCausalLM",
"RobertaForMaskedLM",
"RobertaForMultipleChoice",
"RobertaForQuestionAnswering",
"RobertaForSequenceClassification",
"RobertaForTokenClassification",
"RobertaModel",
"RobertaPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
"TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFRobertaForCausalLM",
"TFRobertaForMaskedLM",
"TFRobertaForMultipleChoice",
"TFRobertaForQuestionAnswering",
"TFRobertaForSequenceClassification",
"TFRobertaForTokenClassification",
"TFRobertaMainLayer",
"TFRobertaModel",
"TFRobertaPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
"FlaxRobertaForCausalLM",
"FlaxRobertaForMaskedLM",
"FlaxRobertaForMultipleChoice",
"FlaxRobertaForQuestionAnswering",
"FlaxRobertaForSequenceClassification",
"FlaxRobertaForTokenClassification",
"FlaxRobertaModel",
"FlaxRobertaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 716 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Dict=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Any=9 , __lowerCamelCase : Dict=True , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Dict=5 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Union[str, Any]=8 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.0_0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Any=0 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : Union[str, Any] = batch_size
lowerCamelCase__ : Any = encoder_seq_length
lowerCamelCase__ : str = decoder_seq_length
# For common tests
lowerCamelCase__ : Optional[int] = self.decoder_seq_length
lowerCamelCase__ : Optional[Any] = is_training
lowerCamelCase__ : List[Any] = use_attention_mask
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[int] = hidden_size
lowerCamelCase__ : List[str] = num_hidden_layers
lowerCamelCase__ : Union[str, Any] = num_attention_heads
lowerCamelCase__ : Any = d_ff
lowerCamelCase__ : Any = relative_attention_num_buckets
lowerCamelCase__ : Optional[Any] = dropout_rate
lowerCamelCase__ : int = initializer_factor
lowerCamelCase__ : Optional[Any] = eos_token_id
lowerCamelCase__ : Dict = pad_token_id
lowerCamelCase__ : Optional[Any] = decoder_start_token_id
lowerCamelCase__ : Union[str, Any] = None
lowerCamelCase__ : List[str] = decoder_layers
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return TaConfig.from_pretrained("google/umt5-base" )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[Any]=None , ):
'''simple docstring'''
if attention_mask is None:
lowerCamelCase__ : Union[str, Any] = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
lowerCamelCase__ : Any = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
lowerCamelCase__ : List[Any] = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase__ )
if decoder_head_mask is None:
lowerCamelCase__ : Tuple = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ )
if cross_attn_head_mask is None:
lowerCamelCase__ : Union[str, Any] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase__ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 )
lowerCamelCase__ : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 )
lowerCamelCase__ : str = self.get_config()
lowerCamelCase__ : Tuple = config.num_attention_heads
lowerCamelCase__ : List[Any] = self.prepare_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ )
return config, input_dict
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.prepare_config_and_inputs()
return config, inputs_dict
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def lowerCAmelCase ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , ):
'''simple docstring'''
lowerCamelCase__ : str = UMTaModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
lowerCamelCase__ : str = model(
input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , )
lowerCamelCase__ : int = model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ )
lowerCamelCase__ : int = result.last_hidden_state
lowerCamelCase__ : Dict = result.past_key_values
lowerCamelCase__ : Dict = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(UpperCAmelCase__ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , ):
'''simple docstring'''
lowerCamelCase__ : int = UMTaModel(config=UpperCAmelCase__ ).get_decoder().to(UpperCAmelCase__ ).eval()
# first forward pass
lowerCamelCase__ : List[Any] = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ )
lowerCamelCase__ : List[Any] = model(UpperCAmelCase__ )
lowerCamelCase__ : Any = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ )
self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) )
self.parent.assertTrue(len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) + 1 )
lowerCamelCase__ : List[str] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
lowerCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
lowerCamelCase__ : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
lowerCamelCase__ : Any = model(UpperCAmelCase__ )['''last_hidden_state''']
lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase__ , past_key_values=UpperCAmelCase__ )['''last_hidden_state''']
# select random slice
lowerCamelCase__ : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item()
lowerCamelCase__ : Union[str, Any] = output_from_no_past[:, -1, random_slice_idx].detach()
lowerCamelCase__ : Tuple = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : int = UMTaModel(config=UpperCAmelCase__ ).to(UpperCAmelCase__ ).half().eval()
lowerCamelCase__ : str = model(**UpperCAmelCase__ )['''last_hidden_state''']
self.parent.assertFalse(torch.isnan(UpperCAmelCase__ ).any().item() )
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A__ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A__ = (
{
'conversational': UMTaForConditionalGeneration,
'feature-extraction': UMTaModel,
'summarization': UMTaForConditionalGeneration,
'text2text-generation': UMTaForConditionalGeneration,
'translation': UMTaForConditionalGeneration,
'question-answering': UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A__ = True
A__ = False
A__ = False
A__ = True
A__ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A__ = [0.8, 0.9]
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self )
@unittest.skip("Test has a segmentation fault on torch 1.8.0" )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
lowerCamelCase__ : Optional[Any] = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
UpperCAmelCase__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f"{tmpdirname}/t5_test.onnx" , export_params=UpperCAmelCase__ , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase__ )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions''']
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
lowerCamelCase__ : int = config_and_inputs[0]
lowerCamelCase__ : Union[str, Any] = UMTaForConditionalGeneration(UpperCAmelCase__ ).eval()
model.to(UpperCAmelCase__ )
lowerCamelCase__ : str = {
'''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase__ ),
'''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ),
'''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ ),
}
for attn_name, (name, mask) in zip(UpperCAmelCase__ , head_masking.items() ):
lowerCamelCase__ : int = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
lowerCamelCase__ : List[str] = torch.ones(
config.num_decoder_layers , config.num_heads , device=UpperCAmelCase__ )
lowerCamelCase__ : Union[str, Any] = model.generate(
config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase__ , return_dict_in_generate=UpperCAmelCase__ , **UpperCAmelCase__ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
lowerCamelCase__ : List[str] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip("Does not work on the tiny model as we keep hitting edge cases." )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
@unittest.skip(
"Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=UpperCAmelCase__ ).to(UpperCAmelCase__ )
lowerCamelCase__ : int = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=UpperCAmelCase__ , legacy=UpperCAmelCase__ )
lowerCamelCase__ : List[str] = [
'''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''',
'''No se como puedo <extra_id_0>.''',
'''This is the reason why we <extra_id_0> them.''',
'''The <extra_id_0> walks in <extra_id_1>, seats''',
'''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''',
]
lowerCamelCase__ : Dict = tokenizer(UpperCAmelCase__ , return_tensors="pt" , padding=UpperCAmelCase__ ).input_ids
# fmt: off
lowerCamelCase__ : Optional[Any] = torch.tensor(
[
[ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(UpperCAmelCase__ , UpperCAmelCase__ )
lowerCamelCase__ : List[Any] = model.generate(input_ids.to(UpperCAmelCase__ ) )
lowerCamelCase__ : int = [
'''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''',
'''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
'''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''',
]
lowerCamelCase__ : Tuple = tokenizer.batch_decode(UpperCAmelCase__ )
self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ )
| 717 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 0 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from transformers import TvltFeatureExtractor, is_datasets_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
if is_datasets_available():
from datasets import load_dataset
A : int = random.Random()
def UpperCamelCase__ ( _A : List[str] , _A : List[str]=1.0 , _A : Union[str, Any]=None , _A : Dict=None ):
"""simple docstring"""
if rng is None:
lowerCamelCase__ : int = global_rng
lowerCamelCase__ : List[str] = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Any=400 , __lowerCamelCase : str=2000 , __lowerCamelCase : List[Any]=2048 , __lowerCamelCase : int=128 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : str=30 , __lowerCamelCase : Optional[int]=44100 , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : Tuple = batch_size
lowerCamelCase__ : int = min_seq_length
lowerCamelCase__ : Union[str, Any] = max_seq_length
lowerCamelCase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
lowerCamelCase__ : str = spectrogram_length
lowerCamelCase__ : Optional[Any] = feature_size
lowerCamelCase__ : Any = num_audio_channels
lowerCamelCase__ : Tuple = hop_length
lowerCamelCase__ : Optional[Any] = chunk_length
lowerCamelCase__ : Union[str, Any] = sampling_rate
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"spectrogram_length": self.spectrogram_length,
"feature_size": self.feature_size,
"num_audio_channels": self.num_audio_channels,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"sampling_rate": self.sampling_rate,
}
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[int]=False ):
'''simple docstring'''
def _flatten(__lowerCamelCase : Optional[int] ):
return list(itertools.chain(*snake_case__ ) )
if equal_length:
lowerCamelCase__ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
lowerCamelCase__ : str = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
lowerCamelCase__ : List[str] = [np.asarray(snake_case__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class _lowercase ( SCREAMING_SNAKE_CASE__ , unittest.TestCase):
"""simple docstring"""
A__ = TvltFeatureExtractor
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TvltFeatureExtractionTester(self )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(snake_case__ , "spectrogram_length" ) )
self.assertTrue(hasattr(snake_case__ , "feature_size" ) )
self.assertTrue(hasattr(snake_case__ , "num_audio_channels" ) )
self.assertTrue(hasattr(snake_case__ , "hop_length" ) )
self.assertTrue(hasattr(snake_case__ , "chunk_length" ) )
self.assertTrue(hasattr(snake_case__ , "sampling_rate" ) )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ : Tuple = feat_extract_first.save_pretrained(snake_case__ )[0]
check_json_file_has_correct_format(snake_case__ )
lowerCamelCase__ : List[Any] = self.feature_extraction_class.from_pretrained(snake_case__ )
lowerCamelCase__ : int = feat_extract_first.to_dict()
lowerCamelCase__ : Optional[Any] = feat_extract_second.to_dict()
lowerCamelCase__ : Optional[int] = dict_first.pop("mel_filters" )
lowerCamelCase__ : List[str] = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(snake_case__ , snake_case__ ) )
self.assertEqual(snake_case__ , snake_case__ )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ : int = os.path.join(snake_case__ , "feat_extract.json" )
feat_extract_first.to_json_file(snake_case__ )
lowerCamelCase__ : List[Any] = self.feature_extraction_class.from_json_file(snake_case__ )
lowerCamelCase__ : int = feat_extract_first.to_dict()
lowerCamelCase__ : List[Any] = feat_extract_second.to_dict()
lowerCamelCase__ : Optional[Any] = dict_first.pop("mel_filters" )
lowerCamelCase__ : str = dict_second.pop("mel_filters" )
self.assertTrue(np.allclose(snake_case__ , snake_case__ ) )
self.assertEqual(snake_case__ , snake_case__ )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.feature_extraction_class(**self.feat_extract_dict )
# create three inputs of length 800, 1000, and 1200
lowerCamelCase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
lowerCamelCase__ : List[Any] = [np.asarray(snake_case__ ) for speech_input in speech_inputs]
# Test not batched input
lowerCamelCase__ : Optional[Any] = feature_extractor(np_speech_inputs[0] , return_tensors="np" , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test batched
lowerCamelCase__ : List[Any] = feature_extractor(snake_case__ , return_tensors="np" , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test audio masking
lowerCamelCase__ : Optional[int] = feature_extractor(
snake_case__ , return_tensors="np" , sampling_rate=44100 , mask_audio=snake_case__ ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
# Test 2-D numpy arrays are batched.
lowerCamelCase__ : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)]
lowerCamelCase__ : Optional[int] = np.asarray(snake_case__ )
lowerCamelCase__ : Any = feature_extractor(snake_case__ , return_tensors="np" , sampling_rate=44100 ).audio_values
self.assertTrue(encoded_audios.ndim == 4 )
self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size )
self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length )
self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels )
def lowerCAmelCase ( self : str , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" )
# automatic decoding with librispeech
lowerCamelCase__ : str = ds.sort("id" ).select(range(snake_case__ ) )[:num_samples]["audio"]
return [x["array"] for x in speech_samples]
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Any = self._load_datasamples(1 )
lowerCamelCase__ : List[str] = TvltFeatureExtractor()
lowerCamelCase__ : Optional[int] = feature_extractor(snake_case__ , return_tensors="pt" ).audio_values
self.assertEquals(audio_values.shape , (1, 1, 192, 128) )
lowerCamelCase__ : str = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] )
self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case__ , atol=1E-4 ) )
| 718 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
'''simple docstring'''
def lowercase_ ( _A : str ):
"""simple docstring"""
return credit_card_number.startswith(("34", "35", "37", "4", "5", "6") )
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : str = credit_card_number
lowerCamelCase__ : Tuple = 0
lowerCamelCase__ : Any = len(__a ) - 2
for i in range(__a , -1 , -2 ):
# double the value of every second digit
lowerCamelCase__ : int = int(cc_number[i] )
digit *= 2
# If doubling of a number results in a two digit number
# i.e greater than 9(e.g., 6 × 2 = 12),
# then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6),
# to get a single digit number.
if digit > 9:
digit %= 10
digit += 1
lowerCamelCase__ : int = cc_number[:i] + str(__a ) + cc_number[i + 1 :]
total += digit
# Sum up the remaining digits
for i in range(len(__a ) - 1 , -1 , -2 ):
total += int(cc_number[i] )
return total % 10 == 0
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = F"{credit_card_number} is an invalid credit card number because"
if not credit_card_number.isdigit():
print(F"{error_message} it has nonnumerical characters." )
return False
if not 13 <= len(__a ) <= 16:
print(F"{error_message} of its length." )
return False
if not validate_initial_digits(__a ):
print(F"{error_message} of its first two digits." )
return False
if not luhn_validation(__a ):
print(F"{error_message} it fails the Luhn check." )
return False
print(F"{credit_card_number} is a valid credit card number." )
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
validate_credit_card_number("4111111111111111")
validate_credit_card_number("32323")
| 719 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import torch
def lowercase_ ( ):
"""simple docstring"""
if torch.cuda.is_available():
lowerCamelCase__ : int = torch.cuda.device_count()
else:
lowerCamelCase__ : int = 0
print(F"Successfully ran on {num_gpus} GPUs" )
if __name__ == "__main__":
main()
| 720 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 0 |
import random
from typing import Any
def lowercase_ ( _A : list ):
"""simple docstring"""
for _ in range(len(_A ) ):
lowerCamelCase__ : str = random.randint(0 , len(_A ) - 1 )
lowerCamelCase__ : Optional[int] = random.randint(0 , len(_A ) - 1 )
lowerCamelCase__ : List[str] = data[b], data[a]
return data
if __name__ == "__main__":
A : Optional[Any] = [0, 1, 2, 3, 4, 5, 6, 7]
A : List[str] = ["python", "says", "hello", "!"]
print("Fisher-Yates Shuffle:")
print("List", integers, strings)
print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 721 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 0 |
import os
import re
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
A : str = logging.get_logger(__name__)
A : Union[str, Any] = {
"vocab_file": "vocab.txt",
"merges_file": "bpe.codes",
}
A : Dict = {
"vocab_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
},
"merges_file": {
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
},
}
A : int = {
"vinai/phobert-base": 256,
"vinai/phobert-large": 256,
}
def lowercase_ ( _A : str ):
lowerCamelCase__ : List[str] = set()
lowerCamelCase__ : Optional[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : List[Any] = char
lowerCamelCase__ : str = set(_lowerCAmelCase )
return pairs
class _lowercase ( __UpperCAmelCase):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : int="<s>" , __lowerCamelCase : int="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : List[str]="<mask>" , **__lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , **_lowerCamelCase , )
lowerCamelCase__ : List[Any] = vocab_file
lowerCamelCase__ : List[str] = merges_file
lowerCamelCase__ : int = {}
lowerCamelCase__ : Optional[int] = 0
lowerCamelCase__ : List[str] = 1
lowerCamelCase__ : Any = 2
lowerCamelCase__ : str = 3
self.add_from_file(_lowerCamelCase )
lowerCamelCase__ : Tuple = {v: k for k, v in self.encoder.items()}
with open(_lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : Union[str, Any] = merges_handle.read().split("\n" )[:-1]
lowerCamelCase__ : Dict = [tuple(merge.split()[:-1] ) for merge in merges]
lowerCamelCase__ : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) )
lowerCamelCase__ : List[str] = {}
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : Any = [self.cls_token_id]
lowerCamelCase__ : List[Any] = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCamelCase )) + [1]
return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = [self.sep_token_id]
lowerCamelCase__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : int , __lowerCamelCase : Any ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : int = tuple(_lowerCamelCase )
lowerCamelCase__ : List[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] )
lowerCamelCase__ : List[Any] = get_pairs(_lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : Union[str, Any] = min(_lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(_lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : List[str] = 0
while i < len(_lowerCamelCase ):
try:
lowerCamelCase__ : Tuple = word.index(_lowerCamelCase , _lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : str = j
if word[i] == first and i < len(_lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Tuple = tuple(_lowerCamelCase )
lowerCamelCase__ : Optional[int] = new_word
if len(_lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[Any] = get_pairs(_lowerCamelCase )
lowerCamelCase__ : Dict = "@@ ".join(_lowerCamelCase )
lowerCamelCase__ : Optional[int] = word[:-4]
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : int = []
lowerCamelCase__ : Optional[Any] = re.findall(R"\S+\n?" , _lowerCamelCase )
for token in words:
split_tokens.extend(list(self.bpe(_lowerCamelCase ).split(" " ) ) )
return split_tokens
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
return self.encoder.get(_lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.decoder.get(_lowerCamelCase , self.unk_token )
def lowerCAmelCase ( self : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = " ".join(_lowerCamelCase ).replace("@@ " , "" ).strip()
return out_string
def lowerCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(_lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : Optional[int] = os.path.join(
_lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : List[str] = os.path.join(
_lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.vocab_file , _lowerCamelCase )
if os.path.abspath(self.merges_file ) != os.path.abspath(_lowerCamelCase ):
copyfile(self.merges_file , _lowerCamelCase )
return out_vocab_file, out_merge_file
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if isinstance(_lowerCamelCase , _lowerCamelCase ):
try:
with open(_lowerCamelCase , "r" , encoding="utf-8" ) as fd:
self.add_from_file(_lowerCamelCase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset" )
return
lowerCamelCase__ : str = f.readlines()
for lineTmp in lines:
lowerCamelCase__ : Any = lineTmp.strip()
lowerCamelCase__ : List[Any] = line.rfind(" " )
if idx == -1:
raise ValueError("Incorrect dictionary format, expected \'<token> <cnt>\'" )
lowerCamelCase__ : Optional[Any] = line[:idx]
lowerCamelCase__ : Any = len(self.encoder )
| 700 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
from __future__ import annotations
def lowercase_ ( _A : list[int] , _A : list[int] , _A : list[int] , _A : list[list[str]] , _A : int , ):
"""simple docstring"""
lowerCamelCase__ : str = len(lowerCamelCase_ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([". " * i + "Q " + ". " * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(lowerCamelCase_ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , lowerCamelCase_ , lowerCamelCase_ , )
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : list[list[str]] = []
depth_first_search([] , [] , [] , lowerCamelCase_ , lowerCamelCase_ )
# Print all the boards
for board in boards:
for column in board:
print(lowerCamelCase_ )
print("" )
print(len(lowerCamelCase_ ) , "solutions were found." )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 701 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
A : List[Any] = {
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
"mask_downscaling.0": "mask_embed.conv1",
"mask_downscaling.1": "mask_embed.layer_norm1",
"mask_downscaling.3": "mask_embed.conv2",
"mask_downscaling.4": "mask_embed.layer_norm2",
"mask_downscaling.6": "mask_embed.conv3",
"point_embeddings": "point_embed",
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
"image_encoder": "vision_encoder",
"neck.0": "neck.conv1",
"neck.1": "neck.layer_norm1",
"neck.2": "neck.conv2",
"neck.3": "neck.layer_norm2",
"patch_embed.proj": "patch_embed.projection",
".norm": ".layer_norm",
"blocks": "layers",
}
def lowercase_ ( _A : Union[str, Any] ):
"""simple docstring"""
lowerCamelCase__ : str = {}
state_dict.pop("pixel_mean" , UpperCamelCase__ )
state_dict.pop("pixel_std" , UpperCamelCase__ )
lowerCamelCase__ : Optional[Any] = r".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowerCamelCase__ : str = key.replace(UpperCamelCase__ , UpperCamelCase__ )
if re.match(UpperCamelCase__ , UpperCamelCase__ ):
lowerCamelCase__ : Union[str, Any] = int(re.match(UpperCamelCase__ , UpperCamelCase__ ).group(2 ) )
if layer_nb == 0:
lowerCamelCase__ : int = key.replace("layers.0" , "proj_in" )
elif layer_nb == 1:
lowerCamelCase__ : Any = key.replace("layers.1" , "layers.0" )
elif layer_nb == 2:
lowerCamelCase__ : Optional[Any] = key.replace("layers.2" , "proj_out" )
lowerCamelCase__ : Optional[int] = value
lowerCamelCase__ : List[str] = model_state_dict[
"prompt_encoder.shared_embedding.positional_embedding"
]
return model_state_dict
def lowercase_ ( _A : Tuple , _A : Any , _A : Optional[int] , _A : str="ybelkada/segment-anything" ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = hf_hub_download(UpperCamelCase__ , F"checkpoints/{model_name}.pth" )
if "sam_vit_b" in model_name:
lowerCamelCase__ : Union[str, Any] = SamConfig()
elif "sam_vit_l" in model_name:
lowerCamelCase__ : str = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
lowerCamelCase__ : str = SamConfig(
vision_config=UpperCamelCase__ , )
elif "sam_vit_h" in model_name:
lowerCamelCase__ : Optional[int] = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
lowerCamelCase__ : Union[str, Any] = SamConfig(
vision_config=UpperCamelCase__ , )
lowerCamelCase__ : int = torch.load(UpperCamelCase__ , map_location="cpu" )
lowerCamelCase__ : Any = replace_keys(UpperCamelCase__ )
lowerCamelCase__ : Tuple = SamImageProcessor()
lowerCamelCase__ : Dict = SamProcessor(image_processor=UpperCamelCase__ )
lowerCamelCase__ : Tuple = SamModel(UpperCamelCase__ )
hf_model.load_state_dict(UpperCamelCase__ )
lowerCamelCase__ : Union[str, Any] = hf_model.to("cuda" )
lowerCamelCase__ : Union[str, Any] = "https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"
lowerCamelCase__ : List[str] = Image.open(requests.get(UpperCamelCase__ , stream=UpperCamelCase__ ).raw ).convert("RGB" )
lowerCamelCase__ : Dict = [[[400, 650]]]
lowerCamelCase__ : Tuple = [[1]]
lowerCamelCase__ : Optional[int] = processor(images=np.array(UpperCamelCase__ ) , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCamelCase__ : List[str] = hf_model(**UpperCamelCase__ )
lowerCamelCase__ : List[str] = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.579_890_251_159_668
lowerCamelCase__ : int = processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCamelCase__ : Optional[int] = hf_model(**UpperCamelCase__ )
lowerCamelCase__ : int = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_712_603_092_193_604
lowerCamelCase__ : str = ((75, 275, 1725, 850),)
lowerCamelCase__ : Tuple = processor(images=np.array(UpperCamelCase__ ) , input_boxes=UpperCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCamelCase__ : Dict = hf_model(**UpperCamelCase__ )
lowerCamelCase__ : Optional[int] = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_686_015_605_926_514
# Test with 2 points and 1 image.
lowerCamelCase__ : Union[str, Any] = [[[400, 650], [800, 650]]]
lowerCamelCase__ : Union[str, Any] = [[1, 1]]
lowerCamelCase__ : List[str] = processor(
images=np.array(UpperCamelCase__ ) , input_points=UpperCamelCase__ , input_labels=UpperCamelCase__ , return_tensors="pt" ).to("cuda" )
with torch.no_grad():
lowerCamelCase__ : Optional[Any] = hf_model(**UpperCamelCase__ )
lowerCamelCase__ : Any = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_936_047_792_434_692
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
A : Optional[int] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"]
parser.add_argument(
"--model_name",
default="sam_vit_h_4b8939",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
parser.add_argument(
"--model_hub_id",
default="ybelkada/segment-anything",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
A : Optional[int] = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 702 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 0 |
def lowercase_ ( _A : Optional[int] ):
"""simple docstring"""
return "".join(chr(ord(__SCREAMING_SNAKE_CASE ) - 32 ) if "a" <= char <= "z" else char for char in word )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 703 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 0 |
import sys
A : Any = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def lowercase_ ( _A : Union[str, Any] = N ):
"""simple docstring"""
lowerCamelCase__ : str = -sys.maxsize - 1
for i in range(len(_A ) - 12 ):
lowerCamelCase__ : Optional[int] = 1
for j in range(13 ):
product *= int(n[i + j] )
if product > largest_product:
lowerCamelCase__ : Tuple = product
return largest_product
if __name__ == "__main__":
print(f'{solution() = }')
| 704 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
A : Any = ''
A : List[Any] = ''
A : Dict = ''
A : Tuple = 1 # (0 is vertical, 1 is horizontal)
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Tuple = get_dataset(_lowerCamelCase , _lowerCamelCase )
print("Processing..." )
lowerCamelCase__ : Union[str, Any] = update_image_and_anno(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
for index, image in enumerate(_lowerCamelCase ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
lowerCamelCase__ : Optional[Any] = random_chars(32 )
lowerCamelCase__ : List[str] = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0]
lowerCamelCase__ : Tuple = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , _lowerCamelCase , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(_lowerCamelCase )} with {file_name}" )
lowerCamelCase__ : List[Any] = []
for anno in new_annos[index]:
lowerCamelCase__ : Union[str, Any] = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(_lowerCamelCase )
with open(F"/{file_root}.txt" , "w" ) as outfile:
outfile.write("\n".join(line for line in annos_list ) )
def lowercase_ ( _A : str , _A : str ):
"""simple docstring"""
lowerCamelCase__ : Any = []
lowerCamelCase__ : Optional[Any] = []
for label_file in glob.glob(os.path.join(_lowerCamelCase , "*.txt" ) ):
lowerCamelCase__ : List[str] = label_file.split(os.sep )[-1].rsplit("." , 1 )[0]
with open(_lowerCamelCase ) as in_file:
lowerCamelCase__ : Optional[int] = in_file.readlines()
lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , F"{label_name}.jpg" )
lowerCamelCase__ : Any = []
for obj_list in obj_lists:
lowerCamelCase__ : Optional[Any] = obj_list.rstrip("\n" ).split(" " )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_lowerCamelCase )
labels.append(_lowerCamelCase )
return img_paths, labels
def lowercase_ ( _A : list , _A : list , _A : int = 1 ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = []
lowerCamelCase__ : Any = []
lowerCamelCase__ : List[Any] = []
for idx in range(len(_lowerCamelCase ) ):
lowerCamelCase__ : Union[str, Any] = []
lowerCamelCase__ : Optional[int] = img_list[idx]
path_list.append(_lowerCamelCase )
lowerCamelCase__ : Tuple = anno_list[idx]
lowerCamelCase__ : Union[str, Any] = cva.imread(_lowerCamelCase )
if flip_type == 1:
lowerCamelCase__ : Union[str, Any] = cva.flip(_lowerCamelCase , _lowerCamelCase )
for bbox in img_annos:
lowerCamelCase__ : List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
lowerCamelCase__ : Optional[int] = cva.flip(_lowerCamelCase , _lowerCamelCase )
for bbox in img_annos:
lowerCamelCase__ : Any = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_lowerCamelCase )
new_imgs_list.append(_lowerCamelCase )
return new_imgs_list, new_annos_lists, path_list
def lowercase_ ( _A : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
lowerCamelCase__ : Optional[Any] = ascii_lowercase + digits
return "".join(random.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 705 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["image_processor", "tokenizer"]
A__ = "OwlViTImageProcessor"
A__ = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self : str , __lowerCamelCase : Any=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead." , __UpperCamelCase , )
lowerCamelCase__ : Optional[Any] = kwargs.pop("feature_extractor" )
lowerCamelCase__ : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`." )
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`." )
super().__init__(__UpperCamelCase , __UpperCamelCase )
def __call__( self : Tuple , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]="max_length" , __lowerCamelCase : List[Any]="np" , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
"You have to specify at least one text or query image or image. All three cannot be none." )
if text is not None:
if isinstance(__UpperCamelCase , __UpperCamelCase ) or (isinstance(__UpperCamelCase , __UpperCamelCase ) and not isinstance(text[0] , __UpperCamelCase )):
lowerCamelCase__ : Optional[Any] = [self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )]
elif isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(text[0] , __UpperCamelCase ):
lowerCamelCase__ : Union[str, Any] = []
# Maximum number of queries across batch
lowerCamelCase__ : Optional[int] = max([len(__UpperCamelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCamelCase ) != max_num_queries:
lowerCamelCase__ : int = t + [" "] * (max_num_queries - len(__UpperCamelCase ))
lowerCamelCase__ : Union[str, Any] = self.tokenizer(__UpperCamelCase , padding=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
encodings.append(__UpperCamelCase )
else:
raise TypeError("Input text should be a string, a list of strings or a nested list of strings" )
if return_tensors == "np":
lowerCamelCase__ : Optional[int] = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
lowerCamelCase__ : Optional[Any] = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
lowerCamelCase__ : Union[str, Any] = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 )
lowerCamelCase__ : List[Any] = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
lowerCamelCase__ : Optional[Any] = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 )
lowerCamelCase__ : List[str] = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
lowerCamelCase__ : List[Any] = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 )
lowerCamelCase__ : Tuple = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 )
else:
raise ValueError("Target return tensor type could not be returned" )
lowerCamelCase__ : List[str] = BatchEncoding()
lowerCamelCase__ : Dict = input_ids
lowerCamelCase__ : Optional[Any] = attention_mask
if query_images is not None:
lowerCamelCase__ : Union[str, Any] = BatchEncoding()
lowerCamelCase__ : Dict = self.image_processor(
__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase ).pixel_values
lowerCamelCase__ : Union[str, Any] = query_pixel_values
if images is not None:
lowerCamelCase__ : Optional[int] = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase )
if text is not None and images is not None:
lowerCamelCase__ : Optional[int] = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
lowerCamelCase__ : Union[str, Any] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase )
def lowerCAmelCase ( self : List[str] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.image_processor.post_process(*__UpperCamelCase , **__UpperCamelCase )
def lowerCAmelCase ( self : List[str] , *__lowerCamelCase : List[str] , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*__UpperCamelCase , **__UpperCamelCase )
def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Dict ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*__UpperCamelCase , **__UpperCamelCase )
def lowerCAmelCase ( self : str , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase )
def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : int , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase )
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCamelCase , )
return self.image_processor_class
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCamelCase , )
return self.image_processor
| 706 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 0 |
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
A : str = logging.get_logger(__name__)
@add_end_docstrings(A_)
class _lowercase ( A_):
"""simple docstring"""
def __init__( self : Tuple , **__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
requires_backends(self , "vision" )
requires_backends(self , "torch" )
if self.framework != "pt":
raise ValueError(f"The {self.__class__} is only available in PyTorch." )
self.check_model_type(__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = {}
lowerCamelCase__ : Tuple = {}
lowerCamelCase__ : Dict = {}
# preprocess args
if "points_per_batch" in kwargs:
lowerCamelCase__ : str = kwargs["""points_per_batch"""]
if "points_per_crop" in kwargs:
lowerCamelCase__ : int = kwargs["""points_per_crop"""]
if "crops_n_layers" in kwargs:
lowerCamelCase__ : Optional[Any] = kwargs["""crops_n_layers"""]
if "crop_overlap_ratio" in kwargs:
lowerCamelCase__ : Dict = kwargs["""crop_overlap_ratio"""]
if "crop_n_points_downscale_factor" in kwargs:
lowerCamelCase__ : Dict = kwargs["""crop_n_points_downscale_factor"""]
# postprocess args
if "pred_iou_thresh" in kwargs:
lowerCamelCase__ : List[Any] = kwargs["""pred_iou_thresh"""]
if "stability_score_offset" in kwargs:
lowerCamelCase__ : Optional[int] = kwargs["""stability_score_offset"""]
if "mask_threshold" in kwargs:
lowerCamelCase__ : Optional[int] = kwargs["""mask_threshold"""]
if "stability_score_thresh" in kwargs:
lowerCamelCase__ : List[str] = kwargs["""stability_score_thresh"""]
if "crops_nms_thresh" in kwargs:
lowerCamelCase__ : List[Any] = kwargs["""crops_nms_thresh"""]
if "output_rle_mask" in kwargs:
lowerCamelCase__ : int = kwargs["""output_rle_mask"""]
if "output_bboxes_mask" in kwargs:
lowerCamelCase__ : Tuple = kwargs["""output_bboxes_mask"""]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self : List[Any] , __lowerCamelCase : Any , *__lowerCamelCase : Any , __lowerCamelCase : int=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
return super().__call__(__lowerCamelCase , *__lowerCamelCase , num_workers=__lowerCamelCase , batch_size=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=64 , __lowerCamelCase : Any = 0 , __lowerCamelCase : List[str] = 512 / 1500 , __lowerCamelCase : List[str] = 32 , __lowerCamelCase : Dict = 1 , ):
'''simple docstring'''
lowerCamelCase__ : str = load_image(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = self.image_processor.size["""longest_edge"""]
lowerCamelCase__ : List[str] = self.image_processor.generate_crop_boxes(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.image_processor(images=__lowerCamelCase , return_tensors="pt" )
with self.device_placement():
if self.framework == "pt":
lowerCamelCase__ : str = self.get_inference_context()
with inference_context():
lowerCamelCase__ : int = self._ensure_tensor_on_device(__lowerCamelCase , device=self.device )
lowerCamelCase__ : List[str] = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) )
lowerCamelCase__ : int = image_embeddings
lowerCamelCase__ : str = grid_points.shape[1]
lowerCamelCase__ : Optional[int] = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None" )
for i in range(0 , __lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Any = grid_points[:, i : i + points_per_batch, :, :]
lowerCamelCase__ : List[str] = input_labels[:, i : i + points_per_batch]
lowerCamelCase__ : Any = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=0.8_8 , __lowerCamelCase : Tuple=0.9_5 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Any=1 , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = model_inputs.pop("input_boxes" )
lowerCamelCase__ : List[str] = model_inputs.pop("is_last" )
lowerCamelCase__ : Union[str, Any] = model_inputs.pop("original_sizes" ).tolist()
lowerCamelCase__ : List[str] = model_inputs.pop("reshaped_input_sizes" ).tolist()
lowerCamelCase__ : Any = self.model(**__lowerCamelCase )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
lowerCamelCase__ : Optional[int] = model_outputs["""pred_masks"""]
lowerCamelCase__ : int = self.image_processor.post_process_masks(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , binarize=__lowerCamelCase )
lowerCamelCase__ : Dict = model_outputs["""iou_scores"""]
lowerCamelCase__ : List[str] = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=False , __lowerCamelCase : List[Any]=0.7 , ):
'''simple docstring'''
lowerCamelCase__ : int = []
lowerCamelCase__ : Optional[int] = []
lowerCamelCase__ : List[Any] = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores" ) )
all_masks.extend(model_output.pop("masks" ) )
all_boxes.append(model_output.pop("boxes" ) )
lowerCamelCase__ : Union[str, Any] = torch.cat(__lowerCamelCase )
lowerCamelCase__ : Any = torch.cat(__lowerCamelCase )
lowerCamelCase__ : Dict = self.image_processor.post_process_for_mask_generation(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = defaultdict(__lowerCamelCase )
for output in model_outputs:
for k, v in output.items():
extra[k].append(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {}
if output_rle_mask:
lowerCamelCase__ : Dict = rle_mask
if output_bboxes_mask:
lowerCamelCase__ : str = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 707 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
from __future__ import annotations
from math import gcd
def lowercase_ ( _A : int , _A : int = 2 , _A : int = 1 , _A : int = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("The input value cannot be less than 2" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(_A : int , _A : int , _A : int ) -> int:
return (pow(lowerCAmelCase__ , 2 ) + step) % modulus
for _ in range(lowerCAmelCase__ ):
# These track the position within the cycle detection logic.
lowerCamelCase__ : Any = seed
lowerCamelCase__ : Optional[int] = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCamelCase__ : str = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowerCamelCase__ : Dict = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowerCamelCase__ : List[str] = rand_fn(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCamelCase__ : int = gcd(hare - tortoise , lowerCAmelCase__ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCamelCase__ : Union[str, Any] = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
A : Tuple = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
A : Optional[Any] = parser.parse_args()
A : Optional[Any] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f'{args.num} is probably prime')
else:
A : List[Any] = args.num // divisor
print(f'{args.num} = {divisor} * {quotient}')
| 708 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 0 |
import argparse
import os
from pathlib import Path
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import PegasusConfig, PegasusForConditionalGeneration, PegasusTokenizer
from transformers.models.pegasus.configuration_pegasus import DEFAULTS, task_specific_params
A : Union[str, Any] = [
# replace left string with right string to get the relevant state_dict key (identical state dict to bart)
["memory_attention", "encoder_attn"],
["attention", "attn"],
["/", "."],
[".LayerNorm.gamma", "_layer_norm.weight"],
[".LayerNorm.beta", "_layer_norm.bias"],
["r.layer_", "r.layers."],
["output_proj", "out_proj"],
["ffn.dense_1.", "fc2."],
["ffn.dense.", "fc1."],
["ffn_layer_norm", "final_layer_norm"],
["kernel", "weight"],
["encoder_layer_norm.", "encoder.layer_norm."],
["decoder_layer_norm.", "decoder.layer_norm."],
["embeddings.weights", "shared.weight"],
]
def lowercase_ ( _A : str ):
"""simple docstring"""
for pegasus_name, hf_name in PATTERNS:
lowerCamelCase__ : int = k.replace(_A , _A )
return k
def lowercase_ ( _A : Dict , _A : str ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = DEFAULTS.copy()
cfg_kwargs.update(_A )
lowerCamelCase__ : int = PegasusConfig(**_A )
lowerCamelCase__ : Union[str, Any] = PegasusForConditionalGeneration(_A )
lowerCamelCase__ : Tuple = torch_model.model.state_dict()
lowerCamelCase__ : Tuple = {}
for k, v in tf_weights.items():
lowerCamelCase__ : Optional[int] = rename_state_dict_key(_A )
if new_k not in sd:
raise ValueError(F"could not find new key {new_k} in state dict. (converted from {k})" )
if "dense" in k or "proj" in new_k:
lowerCamelCase__ : str = v.T
lowerCamelCase__ : Dict = torch.tensor(_A , dtype=sd[new_k].dtype )
assert v.shape == sd[new_k].shape, F"{new_k}, {k}, {v.shape}, {sd[new_k].shape}"
# make sure embedding.padding_idx is respected
lowerCamelCase__ : List[Any] = torch.zeros_like(mapping["shared.weight"][cfg.pad_token_id + 1] )
lowerCamelCase__ : List[Any] = mapping["shared.weight"]
lowerCamelCase__ : List[Any] = mapping["shared.weight"]
lowerCamelCase__ : Any = {k: torch.zeros_like(_A ) for k, v in sd.items() if k.endswith("bias" ) and k not in mapping}
mapping.update(**_A )
lowerCamelCase__ , lowerCamelCase__ : Tuple = torch_model.model.load_state_dict(_A , strict=_A )
lowerCamelCase__ : str = [
k for k in missing if k not in ["encoder.embed_positions.weight", "decoder.embed_positions.weight"]
]
assert unexpected_missing == [], F"no matches found for the following torch keys {unexpected_missing}"
assert extra == [], F"no matches found for the following tf keys {extra}"
return torch_model
def lowercase_ ( _A : str="./ckpt/aeslc/model.ckpt-32000" ):
"""simple docstring"""
lowerCamelCase__ : Tuple = tf.train.list_variables(_A )
lowerCamelCase__ : Tuple = {}
lowerCamelCase__ : Optional[int] = ["Adafactor", "global_step"]
for name, shape in tqdm(_A , desc="converting tf checkpoint to dict" ):
lowerCamelCase__ : Union[str, Any] = any(pat in name for pat in ignore_name )
if skip_key:
continue
lowerCamelCase__ : Tuple = tf.train.load_variable(_A , _A )
lowerCamelCase__ : Tuple = array
return tf_weights
def lowercase_ ( _A : Union[str, Any] , _A : str ):
"""simple docstring"""
lowerCamelCase__ : Tuple = Path(_A ).parent.name
lowerCamelCase__ : Optional[int] = task_specific_params[F"summarization_{dataset}"]["max_position_embeddings"]
lowerCamelCase__ : int = PegasusTokenizer.from_pretrained("sshleifer/pegasus" , model_max_length=_A )
assert tok.model_max_length == desired_max_model_length
tok.save_pretrained(_A )
# convert model
lowerCamelCase__ : List[str] = get_tf_weights_as_numpy(_A )
lowerCamelCase__ : Dict = task_specific_params[F"summarization_{dataset}"]
if dataset == "large":
lowerCamelCase__ : str = task_specific_params
lowerCamelCase__ : Union[str, Any] = convert_pegasus(_A , _A )
torch_model.save_pretrained(_A )
lowerCamelCase__ : List[Any] = torch_model.state_dict()
sd.pop("model.decoder.embed_positions.weight" )
sd.pop("model.encoder.embed_positions.weight" )
torch.save(_A , Path(_A ) / "pytorch_model.bin" )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument("tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("save_dir", default=None, type=str, help="Path to the output PyTorch model.")
A : Optional[int] = parser.parse_args()
if args.save_dir is None:
A : Dict = Path(args.tf_ckpt_path).parent.name
A : Tuple = os.path.join("pegasus", dataset)
convert_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir)
| 709 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SwiftFormerConfig,
SwiftFormerForImageClassification,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
A : int = logging.get_logger(__name__)
A : Union[str, Any] = torch.device("cpu")
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCamelCase__ : List[Any] = Image.open(requests.get(_A , stream=_A ).raw )
return im
def lowercase_ ( _A : Tuple ):
"""simple docstring"""
if swiftformer_name == "swiftformer_xs":
return torch.tensor([-2.1703E00, 2.1107E00, -2.0811E00, 8.8685E-01, 2.4360E-01] )
elif swiftformer_name == "swiftformer_s":
return torch.tensor([3.9636E-01, 2.3478E-01, -1.6963E00, -1.7381E00, -8.6337E-01] )
elif swiftformer_name == "swiftformer_l1":
return torch.tensor([-4.2768E-01, -4.7429E-01, -1.0897E00, -1.0248E00, 3.5523E-02] )
elif swiftformer_name == "swiftformer_l3":
return torch.tensor([-2.5330E-01, 2.4211E-01, -6.0185E-01, -8.2789E-01, -6.0446E-02] )
def lowercase_ ( _A : Union[str, Any] , _A : Optional[Any] , _A : Union[str, Any] ):
"""simple docstring"""
lowerCamelCase__ : int = dct.pop(_A )
lowerCamelCase__ : Union[str, Any] = val
def lowercase_ ( _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = []
for k in state_dict.keys():
lowerCamelCase__ : str = k
if ".pwconv" in k:
lowerCamelCase__ : Any = k_new.replace(".pwconv" , ".point_wise_conv" )
if ".dwconv" in k:
lowerCamelCase__ : int = k_new.replace(".dwconv" , ".depth_wise_conv" )
if ".Proj." in k:
lowerCamelCase__ : Dict = k_new.replace(".Proj." , ".proj." )
if "patch_embed" in k_new:
lowerCamelCase__ : Dict = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" )
if "network" in k_new:
lowerCamelCase__ : Dict = k_new.split("." )
if ls[2].isdigit():
lowerCamelCase__ : List[str] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] )
else:
lowerCamelCase__ : List[Any] = k_new.replace("network" , "swiftformer.encoder.network" )
rename_keys.append((k, k_new) )
return rename_keys
@torch.no_grad()
def lowercase_ ( _A : Optional[int] , _A : int , _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : Dict = SwiftFormerConfig()
# dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size
lowerCamelCase__ : Optional[Any] = 1000
lowerCamelCase__ : Dict = "huggingface/label-files"
lowerCamelCase__ : Dict = "imagenet-1k-id2label.json"
lowerCamelCase__ : List[str] = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) )
lowerCamelCase__ : Any = {int(_A ): v for k, v in idalabel.items()}
lowerCamelCase__ : List[str] = idalabel
lowerCamelCase__ : str = {v: k for k, v in idalabel.items()}
# size of the architecture
if swiftformer_name == "swiftformer_xs":
lowerCamelCase__ : Optional[int] = [3, 3, 6, 4]
lowerCamelCase__ : str = [48, 56, 112, 220]
elif swiftformer_name == "swiftformer_s":
lowerCamelCase__ : Optional[int] = [3, 3, 9, 6]
lowerCamelCase__ : Tuple = [48, 64, 168, 224]
elif swiftformer_name == "swiftformer_l1":
lowerCamelCase__ : str = [4, 3, 10, 5]
lowerCamelCase__ : str = [48, 96, 192, 384]
elif swiftformer_name == "swiftformer_l3":
lowerCamelCase__ : Any = [4, 4, 12, 6]
lowerCamelCase__ : str = [64, 128, 320, 512]
# load state_dict of original model, remove and rename some keys
if original_ckpt:
if original_ckpt.startswith("https" ):
lowerCamelCase__ : List[str] = torch.hub.load_state_dict_from_url(_A , map_location="cpu" , check_hash=_A )
else:
lowerCamelCase__ : Tuple = torch.load(_A , map_location="cpu" )
lowerCamelCase__ : Tuple = checkpoint
lowerCamelCase__ : Dict = create_rename_keys(_A )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(_A , _A , _A )
# load HuggingFace model
lowerCamelCase__ : str = SwiftFormerForImageClassification(_A ).eval()
hf_model.load_state_dict(_A )
# prepare test inputs
lowerCamelCase__ : Optional[Any] = prepare_img()
lowerCamelCase__ : Any = ViTImageProcessor.from_pretrained("preprocessor_config" )
lowerCamelCase__ : int = processor(images=_A , return_tensors="pt" )
# compare outputs from both models
lowerCamelCase__ : str = get_expected_output(_A )
lowerCamelCase__ : Dict = hf_model(inputs["pixel_values"] ).logits
assert hf_logits.shape == torch.Size([1, 1000] )
assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1E-3 )
Path(_A ).mkdir(exist_ok=_A )
print(F"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" )
hf_model.save_pretrained(_A )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--swiftformer_name",
default="swiftformer_xs",
choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"],
type=str,
help="Name of the SwiftFormer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="./converted_outputs/",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.")
A : Any = parser.parse_args()
convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
| 710 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 0 |
def lowercase_ ( _A : Optional[Any] ):
"""simple docstring"""
if num <= 0:
raise ValueError("Input must be a positive integer" )
lowerCamelCase__ : str = [True] * (num + 1)
lowerCamelCase__ : Any = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , __lowerCAmelCase ):
lowerCamelCase__ : List[str] = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Optional[int] = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 711 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 0 |
import numpy as np
def lowercase_ ( _A : np.ndarray , _A : float ):
return np.where(vector > 0 , a_ , (alpha * (np.exp(a_ ) - 1)) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 0 |
import os
import tempfile
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from torch import nn
from transformers import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_inverse_sqrt_schedule,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
def lowercase_ ( _A : Optional[Any] , _A : Any=10 ):
"""simple docstring"""
lowerCamelCase__ : Dict = []
for _ in range(UpperCAmelCase__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
return lrs
def lowercase_ ( _A : Tuple , _A : Tuple=10 ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = []
for step in range(UpperCAmelCase__ ):
lrs.append(scheduler.get_lr()[0] )
scheduler.step()
if step == num_steps // 2:
with tempfile.TemporaryDirectory() as tmpdirname:
lowerCamelCase__ : Optional[Any] = os.path.join(UpperCAmelCase__ , "schedule.bin" )
torch.save(scheduler.state_dict() , UpperCAmelCase__ )
lowerCamelCase__ : str = torch.load(UpperCAmelCase__ )
scheduler.load_state_dict(UpperCAmelCase__ )
return lrs
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Any , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : int ):
'''simple docstring'''
self.assertEqual(len(_A ) , len(_A ) )
for a, b in zip(_A , _A ):
self.assertAlmostEqual(_A , _A , delta=_A )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_A )
lowerCamelCase__ : Dict = torch.tensor([0.4, 0.2, -0.5] )
lowerCamelCase__ : Tuple = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowerCamelCase__ : List[str] = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 )
for _ in range(100 ):
lowerCamelCase__ : Union[str, Any] = criterion(_A , _A )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = torch.tensor([0.1, -0.2, -0.1] , requires_grad=_A )
lowerCamelCase__ : List[Any] = torch.tensor([0.4, 0.2, -0.5] )
lowerCamelCase__ : Any = nn.MSELoss()
# No warmup, constant schedule, no gradient clipping
lowerCamelCase__ : Any = Adafactor(
params=[w] , lr=1E-2 , eps=(1E-3_0, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=_A , weight_decay=0.0 , relative_step=_A , scale_parameter=_A , warmup_init=_A , )
for _ in range(1000 ):
lowerCamelCase__ : Union[str, Any] = criterion(_A , _A )
loss.backward()
optimizer.step()
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves.
w.grad.zero_()
self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
A__ = nn.Linear(50 , 50) if is_torch_available() else None
A__ = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None
A__ = 10
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=None ):
'''simple docstring'''
self.assertEqual(len(_A ) , len(_A ) )
for a, b in zip(_A , _A ):
self.assertAlmostEqual(_A , _A , delta=_A , msg=_A )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = {"num_warmup_steps": 2, "num_training_steps": 10}
# schedulers doct format
# function: (sched_args_dict, expected_learning_rates)
lowerCamelCase__ : int = {
get_constant_schedule: ({}, [1_0.0] * self.num_steps),
get_constant_schedule_with_warmup: (
{"num_warmup_steps": 4},
[0.0, 2.5, 5.0, 7.5, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0, 1_0.0],
),
get_linear_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 8.7_5, 7.5, 6.2_5, 5.0, 3.7_5, 2.5, 1.2_5],
),
get_cosine_schedule_with_warmup: (
{**common_kwargs},
[0.0, 5.0, 1_0.0, 9.6_1, 8.5_3, 6.9_1, 5.0, 3.0_8, 1.4_6, 0.3_8],
),
get_cosine_with_hard_restarts_schedule_with_warmup: (
{**common_kwargs, "num_cycles": 2},
[0.0, 5.0, 1_0.0, 8.5_3, 5.0, 1.4_6, 1_0.0, 8.5_3, 5.0, 1.4_6],
),
get_polynomial_decay_schedule_with_warmup: (
{**common_kwargs, "power": 2.0, "lr_end": 1E-7},
[0.0, 5.0, 1_0.0, 7.6_5_6, 5.6_2_5, 3.9_0_6, 2.5, 1.4_0_6, 0.6_2_5, 0.1_5_6],
),
get_inverse_sqrt_schedule: (
{"num_warmup_steps": 2},
[0.0, 5.0, 1_0.0, 8.1_6_5, 7.0_7_1, 6.3_2_5, 5.7_7_4, 5.3_4_5, 5.0, 4.7_1_4],
),
}
for scheduler_func, data in scheds.items():
lowerCamelCase__ , lowerCamelCase__ : Tuple = data
lowerCamelCase__ : Union[str, Any] = scheduler_func(self.optimizer , **_A )
self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 )
lowerCamelCase__ : Optional[int] = unwrap_schedule(_A , self.num_steps )
self.assertListAlmostEqual(
_A , _A , tol=1E-2 , msg=f"failed for {scheduler_func} in normal scheduler" , )
lowerCamelCase__ : str = scheduler_func(self.optimizer , **_A )
if scheduler_func.__name__ != "get_constant_schedule":
LambdaScheduleWrapper.wrap_scheduler(_A ) # wrap to test picklability of the schedule
lowerCamelCase__ : List[Any] = unwrap_and_save_reload_schedule(_A , self.num_steps )
self.assertListEqual(_A , _A , msg=f"failed for {scheduler_func} in save and reload" )
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = fn
def __call__( self : Tuple , *__lowerCamelCase : str , **__lowerCamelCase : Dict ):
'''simple docstring'''
return self.fn(*_A , **_A )
@classmethod
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = list(map(self , scheduler.lr_lambdas ) )
| 713 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 0 |
A : Tuple = [
"DownloadConfig",
"DownloadManager",
"DownloadMode",
"StreamingDownloadManager",
]
from .download_config import DownloadConfig
from .download_manager import DownloadManager, DownloadMode
from .streaming_download_manager import StreamingDownloadManager
| 714 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 0 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _lowercase :
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : int=13 , __lowerCamelCase : Union[str, Any]=30 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=32 , __lowerCamelCase : Dict=2 , __lowerCamelCase : str=4 , __lowerCamelCase : Tuple=37 , __lowerCamelCase : Union[str, Any]="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=10 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : Any=3 , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=2 , ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : Any = image_size
lowerCamelCase__ : List[str] = patch_size
lowerCamelCase__ : Tuple = num_channels
lowerCamelCase__ : Optional[Any] = is_training
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : Optional[int] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : Any = num_attention_heads
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob
lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Dict = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : int = scope
lowerCamelCase__ : List[str] = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCamelCase__ : List[Any] = (image_size // patch_size) ** 2
lowerCamelCase__ : Tuple = num_patches + 2
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : Any = None
if self.use_labels:
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTModel(config=__lowerCamelCase )
lowerCamelCase__ : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTForMaskedImageModeling(config=__lowerCamelCase )
lowerCamelCase__ : List[str] = model(__lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCamelCase__ : Optional[Any] = 1
lowerCamelCase__ : Union[str, Any] = TFDeiTForMaskedImageModeling(__lowerCamelCase )
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.type_sequence_label_size
lowerCamelCase__ : int = TFDeiTForImageClassification(__lowerCamelCase )
lowerCamelCase__ : int = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase__ : Optional[Any] = 1
lowerCamelCase__ : Tuple = TFDeiTForImageClassification(__lowerCamelCase )
lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase__ : str = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs
lowerCamelCase__ : List[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_tf
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
A__ = (
{
"""feature-extraction""": TFDeiTModel,
"""image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = TFDeiTModelTester(self )
lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="DeiT does not use inputs_embeds" )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Tuple = model_class(__lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
lowerCamelCase__ : Optional[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , tf.keras.layers.Dense ) )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Optional[int] = model_class(__lowerCamelCase )
lowerCamelCase__ : List[str] = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : int = [*signature.parameters.keys()]
lowerCamelCase__ : Dict = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__lowerCamelCase )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : int = TFDeiTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_tf
@require_vision
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" )
if is_vision_available()
else None
)
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" )
lowerCamelCase__ : Optional[int] = self.default_image_processor
lowerCamelCase__ : int = prepare_img()
lowerCamelCase__ : str = image_processor(images=__lowerCamelCase , return_tensors="tf" )
# forward pass
lowerCamelCase__ : List[str] = model(**__lowerCamelCase )
# verify the logits
lowerCamelCase__ : List[str] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] )
self.assertTrue(np.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = "| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
lowerCamelCase__ : List[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : Optional[int] = {
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
lowerCamelCase__ : List[Any] = {
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 16000,
"return_attention_mask": False,
"do_normalize": True,
}
lowerCamelCase__ : Tuple = tempfile.mkdtemp()
lowerCamelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : List[str] = os.path.join(self.tmpdirname , __lowerCamelCase )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(__lowerCamelCase ) + "\n" )
# load decoder from hub
lowerCamelCase__ : Dict = "hf-internal-testing/ngram-beam-search-decoder"
def lowerCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = self.add_kwargs_tokens_map.copy()
kwargs.update(__lowerCamelCase )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowerCAmelCase ( self : int , **__lowerCamelCase : str ):
'''simple docstring'''
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowerCAmelCase ( self : int , **__lowerCamelCase : Dict ):
'''simple docstring'''
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.get_tokenizer()
lowerCamelCase__ : str = self.get_feature_extractor()
lowerCamelCase__ : Any = self.get_decoder()
lowerCamelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , __lowerCamelCase )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , __lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
lowerCamelCase__ : str = WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["xx"] )
with self.assertRaisesRegex(__lowerCamelCase , "include" ):
WavaVecaProcessorWithLM(
tokenizer=__lowerCamelCase , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.get_feature_extractor()
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ : Union[str, Any] = self.get_decoder()
lowerCamelCase__ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = floats_list((3, 1000) )
lowerCamelCase__ : Tuple = feature_extractor(__lowerCamelCase , return_tensors="np" )
lowerCamelCase__ : List[str] = processor(__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.get_feature_extractor()
lowerCamelCase__ : Tuple = self.get_tokenizer()
lowerCamelCase__ : Union[str, Any] = self.get_decoder()
lowerCamelCase__ : Any = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Any = "This is a test string"
lowerCamelCase__ : Union[str, Any] = processor(text=__lowerCamelCase )
lowerCamelCase__ : List[str] = tokenizer(__lowerCamelCase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[Any]=(2, 10, 16) , __lowerCamelCase : Any=77 ):
'''simple docstring'''
np.random.seed(__lowerCamelCase )
return np.random.rand(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.get_feature_extractor()
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : List[str] = self.get_decoder()
lowerCamelCase__ : int = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self._get_dummy_logits(shape=(10, 16) , seed=13 )
lowerCamelCase__ : Optional[Any] = processor.decode(__lowerCamelCase )
lowerCamelCase__ : Tuple = decoder.decode_beams(__lowerCamelCase )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("</s> <s> </s>" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["fork"], ["spawn"]] )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.get_feature_extractor()
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Dict = self.get_decoder()
lowerCamelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Tuple = self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
lowerCamelCase__ : Dict = processor.batch_decode(__lowerCamelCase )
else:
with get_context(__lowerCamelCase ).Pool() as pool:
lowerCamelCase__ : str = processor.batch_decode(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = list(__lowerCamelCase )
with get_context("fork" ).Pool() as p:
lowerCamelCase__ : Any = decoder.decode_beams_batch(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(__lowerCamelCase , decoded_processor.text )
self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text )
self.assertListEqual(__lowerCamelCase , decoded_processor.logit_score )
self.assertListEqual(__lowerCamelCase , decoded_processor.lm_score )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.get_feature_extractor()
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Any = self.get_decoder()
lowerCamelCase__ : Tuple = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Dict = self._get_dummy_logits()
lowerCamelCase__ : List[Any] = 15
lowerCamelCase__ : List[str] = -2_0.0
lowerCamelCase__ : Optional[Any] = -4.0
lowerCamelCase__ : str = processor.batch_decode(
__lowerCamelCase , beam_width=__lowerCamelCase , beam_prune_logp=__lowerCamelCase , token_min_logp=__lowerCamelCase , )
lowerCamelCase__ : Dict = decoded_processor_out.text
lowerCamelCase__ : Optional[Any] = list(__lowerCamelCase )
with get_context("fork" ).Pool() as pool:
lowerCamelCase__ : List[Any] = decoder.decode_beams_batch(
__lowerCamelCase , __lowerCamelCase , beam_width=__lowerCamelCase , beam_prune_logp=__lowerCamelCase , token_min_logp=__lowerCamelCase , )
lowerCamelCase__ : str = [d[0][0] for d in decoded_decoder_out]
lowerCamelCase__ : Tuple = [d[0][2] for d in decoded_decoder_out]
lowerCamelCase__ : List[str] = [d[0][3] for d in decoded_decoder_out]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , __lowerCamelCase )
self.assertTrue(np.array_equal(__lowerCamelCase , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , __lowerCamelCase , atol=1E-3 ) )
self.assertTrue(np.array_equal(__lowerCamelCase , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , __lowerCamelCase , atol=1E-3 ) )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Any = self.get_feature_extractor()
lowerCamelCase__ : Union[str, Any] = self.get_tokenizer()
lowerCamelCase__ : Optional[int] = self.get_decoder()
lowerCamelCase__ : List[Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
lowerCamelCase__ : Any = self._get_dummy_logits()
lowerCamelCase__ : List[str] = 2.0
lowerCamelCase__ : Any = 5.0
lowerCamelCase__ : List[Any] = -2_0.0
lowerCamelCase__ : Tuple = True
lowerCamelCase__ : Tuple = processor.batch_decode(
__lowerCamelCase , alpha=__lowerCamelCase , beta=__lowerCamelCase , unk_score_offset=__lowerCamelCase , lm_score_boundary=__lowerCamelCase , )
lowerCamelCase__ : Optional[Any] = decoded_processor_out.text
lowerCamelCase__ : Dict = list(__lowerCamelCase )
decoder.reset_params(
alpha=__lowerCamelCase , beta=__lowerCamelCase , unk_score_offset=__lowerCamelCase , lm_score_boundary=__lowerCamelCase , )
with get_context("fork" ).Pool() as pool:
lowerCamelCase__ : str = decoder.decode_beams_batch(
__lowerCamelCase , __lowerCamelCase , )
lowerCamelCase__ : Tuple = [d[0][0] for d in decoded_decoder_out]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -2_0.0 )
self.assertEqual(lm_model.score_boundary , __lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Any = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : List[str] = processor.decoder.model_container[processor.decoder._model_key]
lowerCamelCase__ : int = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
lowerCamelCase__ : int = os.listdir(__lowerCamelCase )
lowerCamelCase__ : List[Any] = ["alphabet.json", "language_model"]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Tuple = snapshot_download("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : Dict = WavaVecaProcessorWithLM.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Any = processor.decoder.model_container[processor.decoder._model_key]
lowerCamelCase__ : List[Any] = Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
lowerCamelCase__ : Union[str, Any] = os.listdir(__lowerCamelCase )
lowerCamelCase__ : List[str] = os.listdir(__lowerCamelCase )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[str] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : Optional[Any] = AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : Dict = floats_list((3, 1000) )
lowerCamelCase__ : Union[str, Any] = processor_wavaveca(__lowerCamelCase , return_tensors="np" )
lowerCamelCase__ : Union[str, Any] = processor_auto(__lowerCamelCase , return_tensors="np" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
lowerCamelCase__ : List[str] = self._get_dummy_logits()
lowerCamelCase__ : str = processor_wavaveca.batch_decode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = processor_auto.batch_decode(__lowerCamelCase )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : str = self.get_feature_extractor()
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : int = self.get_decoder()
lowerCamelCase__ : Union[str, Any] = WavaVecaProcessorWithLM(tokenizer=__lowerCamelCase , feature_extractor=__lowerCamelCase , decoder=__lowerCamelCase )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any ):
'''simple docstring'''
lowerCamelCase__ : str = [d[key] for d in offsets]
return retrieved_list
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : List[str] = self._get_dummy_logits()[0]
lowerCamelCase__ : List[str] = processor.decode(__lowerCamelCase , output_word_offsets=__lowerCamelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase__ : Any = self._get_dummy_logits()
lowerCamelCase__ : Union[str, Any] = processor.batch_decode(__lowerCamelCase , output_word_offsets=__lowerCamelCase )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(__lowerCamelCase , __lowerCamelCase ) )
self.assertListEqual(
[" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) for o in outputs["word_offsets"]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
import torch
lowerCamelCase__ : str = load_dataset("common_voice" , "en" , split="train" , streaming=__lowerCamelCase )
lowerCamelCase__ : str = ds.cast_column("audio" , datasets.Audio(sampling_rate=16000 ) )
lowerCamelCase__ : Dict = iter(__lowerCamelCase )
lowerCamelCase__ : int = next(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
lowerCamelCase__ : str = WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
lowerCamelCase__ : Dict = processor(sample["audio"]["array"] , return_tensors="pt" ).input_values
with torch.no_grad():
lowerCamelCase__ : Dict = model(__lowerCamelCase ).logits.cpu().numpy()
lowerCamelCase__ : Optional[int] = processor.decode(logits[0] , output_word_offsets=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
lowerCamelCase__ : List[Any] = [
{
"start_time": d["start_offset"] * time_offset,
"end_time": d["end_offset"] * time_offset,
"word": d["word"],
}
for d in output["word_offsets"]
]
lowerCamelCase__ : Tuple = "WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"
# output words
self.assertEqual(" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) , __lowerCamelCase )
self.assertEqual(" ".join(self.get_from_offsets(__lowerCamelCase , "word" ) ) , output.text )
# output times
lowerCamelCase__ : Tuple = torch.tensor(self.get_from_offsets(__lowerCamelCase , "start_time" ) )
lowerCamelCase__ : List[str] = torch.tensor(self.get_from_offsets(__lowerCamelCase , "end_time" ) )
# fmt: off
lowerCamelCase__ : Any = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] )
lowerCamelCase__ : Optional[int] = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] )
# fmt: on
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=0.0_1 ) )
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=0.0_1 ) )
| 716 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
A : Optional[Any] = {"configuration_van": ["VAN_PRETRAINED_CONFIG_ARCHIVE_MAP", "VanConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = [
"VAN_PRETRAINED_MODEL_ARCHIVE_LIST",
"VanForImageClassification",
"VanModel",
"VanPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_van import (
VAN_PRETRAINED_MODEL_ARCHIVE_LIST,
VanForImageClassification,
VanModel,
VanPreTrainedModel,
)
else:
import sys
A : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 717 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 0 |
import argparse
import datetime
def UpperCamelCase__ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
lowerCamelCase__ : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(snake_case_ ) < 11:
raise ValueError("Must be 10 characters long" )
# Get month
lowerCamelCase__ : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("Month must be between 1 - 12" )
lowerCamelCase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be \'-\' or \'/\'" )
# Get day
lowerCamelCase__ : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("Date must be between 1 - 31" )
# Get second separator
lowerCamelCase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("Date separator must be \'-\' or \'/\'" )
# Get year
lowerCamelCase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"Year out of range. There has to be some sort of limit...right?" )
# Get datetime obj for validation
lowerCamelCase__ : List[str] = datetime.date(int(snake_case_ ) , int(snake_case_ ) , int(snake_case_ ) )
# Start math
if m <= 2:
lowerCamelCase__ : int = y - 1
lowerCamelCase__ : Dict = m + 12
# maths var
lowerCamelCase__ : int = int(str(snake_case_ )[:2] )
lowerCamelCase__ : int = int(str(snake_case_ )[2:] )
lowerCamelCase__ : int = int(2.6 * m - 5.39 )
lowerCamelCase__ : int = int(c / 4 )
lowerCamelCase__ : int = int(k / 4 )
lowerCamelCase__ : int = int(d + k )
lowerCamelCase__ : int = int(t + u + v + x )
lowerCamelCase__ : int = int(z - (2 * c) )
lowerCamelCase__ : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("The date was evaluated incorrectly. Contact developer." )
# Response
lowerCamelCase__ : str = F"Your date {date_input}, is a {days[str(snake_case_ )]}!"
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
A : List[str] = argparse.ArgumentParser(
description=(
"Find out what day of the week nearly any date is or was. Enter "
"date as a string in the mm-dd-yyyy or mm/dd/yyyy format"
)
)
parser.add_argument(
"date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)"
)
A : Any = parser.parse_args()
zeller(args.date_input)
| 718 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Any=3 , __lowerCamelCase : Union[str, Any]=18 , __lowerCamelCase : Optional[int]=30 , __lowerCamelCase : Dict=400 , __lowerCamelCase : Dict=True , __lowerCamelCase : Tuple=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : Optional[Any]=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = size if size is not None else {"shortest_edge": 18}
lowerCamelCase__ : Union[str, Any] = crop_size if crop_size is not None else {"height": 18, "width": 18}
lowerCamelCase__ : int = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Optional[int] = num_channels
lowerCamelCase__ : Union[str, Any] = image_size
lowerCamelCase__ : Optional[int] = min_resolution
lowerCamelCase__ : List[str] = max_resolution
lowerCamelCase__ : str = do_resize
lowerCamelCase__ : Tuple = size
lowerCamelCase__ : Dict = do_center_crop
lowerCamelCase__ : Tuple = crop_size
lowerCamelCase__ : Any = do_normalize
lowerCamelCase__ : str = image_mean
lowerCamelCase__ : Union[str, Any] = image_std
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"do_center_crop": self.do_center_crop,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class _lowercase ( lowercase_ , unittest.TestCase):
"""simple docstring"""
A__ = LevitImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = LevitImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_center_crop" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 18} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
lowerCamelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
lowerCamelCase__ : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__ : Dict = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
lowerCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
lowerCamelCase__ : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCamelCase__ : Dict = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 719 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
from math import pi
def lowercase_ ( _A : Optional[Any] , _A : Tuple ):
"""simple docstring"""
return 2 * pi * radius * (angle / 360)
if __name__ == "__main__":
print(arc_length(90, 10))
| 720 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 0 |
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def lowercase_ ( _A : Union[str, Any] , _A : Any=None ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = None
if token is not None:
lowerCamelCase__ : Dict = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"}
lowerCamelCase__ : List[str] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
lowerCamelCase__ : Tuple = requests.get(_A , headers=_A ).json()
lowerCamelCase__ : Any = {}
try:
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
lowerCamelCase__ : Any = math.ceil((result["total_count"] - 100) / 100 )
for i in range(_A ):
lowerCamelCase__ : Union[str, Any] = requests.get(url + F"&page={i + 2}" , headers=_A ).json()
job_links.update({job["name"]: job["html_url"] for job in result["jobs"]} )
return job_links
except Exception:
print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def lowercase_ ( _A : int , _A : int=None ):
"""simple docstring"""
lowerCamelCase__ : Dict = None
if token is not None:
lowerCamelCase__ : Optional[Any] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"}
lowerCamelCase__ : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"
lowerCamelCase__ : Any = requests.get(_A , headers=_A ).json()
lowerCamelCase__ : Tuple = {}
try:
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
lowerCamelCase__ : Tuple = math.ceil((result["total_count"] - 100) / 100 )
for i in range(_A ):
lowerCamelCase__ : List[str] = requests.get(url + F"&page={i + 2}" , headers=_A ).json()
artifacts.update({artifact["name"]: artifact["archive_download_url"] for artifact in result["artifacts"]} )
return artifacts
except Exception:
print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
def lowercase_ ( _A : Any , _A : Union[str, Any] , _A : int , _A : int ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = None
if token is not None:
lowerCamelCase__ : Optional[int] = {"Accept": "application/vnd.github+json", "Authorization": F"Bearer {token}"}
lowerCamelCase__ : Tuple = requests.get(_A , headers=_A , allow_redirects=_A )
lowerCamelCase__ : Dict = result.headers["Location"]
lowerCamelCase__ : Tuple = requests.get(_A , allow_redirects=_A )
lowerCamelCase__ : Tuple = os.path.join(_A , F"{artifact_name}.zip" )
with open(_A , "wb" ) as fp:
fp.write(response.content )
def lowercase_ ( _A : str , _A : Union[str, Any]=None ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = []
lowerCamelCase__ : Any = []
lowerCamelCase__ : Tuple = None
with zipfile.ZipFile(_A ) as z:
for filename in z.namelist():
if not os.path.isdir(_A ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(_A ) as f:
for line in f:
lowerCamelCase__ : Optional[int] = line.decode("UTF-8" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCamelCase__ : Any = line[: line.index(": " )]
lowerCamelCase__ : Union[str, Any] = line[line.index(": " ) + len(": " ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("FAILED " ):
# `test` is the test method that failed
lowerCamelCase__ : Union[str, Any] = line[len("FAILED " ) :]
failed_tests.append(_A )
elif filename == "job_name.txt":
lowerCamelCase__ : Union[str, Any] = line
if len(_A ) != len(_A ):
raise ValueError(
F"`errors` and `failed_tests` should have the same number of elements. Got {len(_A )} for `errors` "
F"and {len(_A )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"
" problem." )
lowerCamelCase__ : List[Any] = None
if job_name and job_links:
lowerCamelCase__ : List[Any] = job_links.get(_A , _A )
# A list with elements of the form (line of error, error, failed test)
lowerCamelCase__ : Optional[Any] = [x + [y] + [job_link] for x, y in zip(_A , _A )]
return result
def lowercase_ ( _A : str , _A : str=None ):
"""simple docstring"""
lowerCamelCase__ : str = []
lowerCamelCase__ : List[Any] = [os.path.join(_A , _A ) for p in os.listdir(_A ) if p.endswith(".zip" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(_A , job_links=_A ) )
return errors
def lowercase_ ( _A : Tuple , _A : Optional[Any]=None ):
"""simple docstring"""
lowerCamelCase__ : List[str] = Counter()
counter.update([x[1] for x in logs] )
lowerCamelCase__ : Union[str, Any] = counter.most_common()
lowerCamelCase__ : int = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCamelCase__ : Optional[int] = {"count": count, "failed_tests": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCamelCase__ : str = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Any = test.split("::" )[0]
if test.startswith("tests/models/" ):
lowerCamelCase__ : List[Any] = test.split("/" )[2]
else:
lowerCamelCase__ : int = None
return test
def lowercase_ ( _A : Optional[int] , _A : Union[str, Any]=None ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCamelCase__ : Optional[Any] = [x for x in logs if x[2] is not None]
lowerCamelCase__ : Optional[Any] = {x[2] for x in logs}
lowerCamelCase__ : Tuple = {}
for test in tests:
lowerCamelCase__ : Any = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCamelCase__ : Optional[Any] = counter.most_common()
lowerCamelCase__ : Union[str, Any] = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCamelCase__ : Any = sum(error_counts.values() )
if n_errors > 0:
lowerCamelCase__ : int = {"count": n_errors, "errors": error_counts}
lowerCamelCase__ : Dict = dict(sorted(r.items() , key=lambda _A : item[1]["count"] , reverse=_A ) )
return r
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Any = "| no. | error | status |"
lowerCamelCase__ : Optional[Any] = "|-:|:-|:-|"
lowerCamelCase__ : Union[str, Any] = [header, sep]
for error in reduced_by_error:
lowerCamelCase__ : Optional[Any] = reduced_by_error[error]["count"]
lowerCamelCase__ : Union[str, Any] = F"| {count} | {error[:100]} | |"
lines.append(_A )
return "\n".join(_A )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Any = "| model | no. of errors | major error | count |"
lowerCamelCase__ : Union[str, Any] = "|-:|-:|-:|-:|"
lowerCamelCase__ : Union[str, Any] = [header, sep]
for model in reduced_by_model:
lowerCamelCase__ : int = reduced_by_model[model]["count"]
lowerCamelCase__ , lowerCamelCase__ : Dict = list(reduced_by_model[model]["errors"].items() )[0]
lowerCamelCase__ : Union[str, Any] = F"| {model} | {count} | {error[:60]} | {_count} |"
lines.append(_A )
return "\n".join(_A )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.")
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Where to store the downloaded artifacts and other result files.",
)
parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.")
A : Tuple = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
A : Optional[int] = get_job_links(args.workflow_run_id, token=args.token)
A : Union[str, Any] = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
A : Optional[Any] = k.find(" / ")
A : Any = k[index + len(" / ") :]
A : Optional[Any] = v
with open(os.path.join(args.output_dir, "job_links.json"), "w", encoding="UTF-8") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
A : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
A : Any = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
A : Tuple = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
A : str = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, "errors.json"), "w", encoding="UTF-8") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
A : str = reduce_by_error(errors)
A : Tuple = reduce_by_model(errors)
A : Union[str, Any] = make_github_table(reduced_by_error)
A : List[str] = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, "reduced_by_error.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, "reduced_by_model.txt"), "w", encoding="UTF-8") as fp:
fp.write(sa)
| 721 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 0 |
def lowercase_ ( _A : str ):
lowerCamelCase__ : int = len(_A )
while cur > 1:
# Find the maximum number in arr
lowerCamelCase__ : Any = arr.index(max(arr[0:cur] ) )
# Reverse from 0 to mi
lowerCamelCase__ : Dict = arr[mi::-1] + arr[mi + 1 : len(_A )]
# Reverse whole list
lowerCamelCase__ : List[Any] = arr[cur - 1 :: -1] + arr[cur : len(_A )]
cur -= 1
return arr
if __name__ == "__main__":
A : str = input("Enter numbers separated by a comma:\n").strip()
A : Any = [int(item) for item in user_input.split(",")]
print(pancake_sort(unsorted))
| 700 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 701 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A : List[str] = {
"configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
"RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"ResNetForImageClassification",
"ResNetModel",
"ResNetPreTrainedModel",
"ResNetBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
"TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFResNetForImageClassification",
"TFResNetModel",
"TFResNetPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[int] = [
"FlaxResNetForImageClassification",
"FlaxResNetModel",
"FlaxResNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_resnet import (
RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
ResNetBackbone,
ResNetForImageClassification,
ResNetModel,
ResNetPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_resnet import (
TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFResNetForImageClassification,
TFResNetModel,
TFResNetPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 702 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A : List[str] = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 703 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 0 |
def lowercase_ ( _A : int = 2000000 ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = [0 for i in range(n + 1 )]
lowerCamelCase__ : Union[str, Any] = 1
lowerCamelCase__ : Dict = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , _A ):
lowerCamelCase__ : Dict = 1
lowerCamelCase__ : Dict = 0
for i in range(_A ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(f'{solution() = }')
| 704 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 0 |
from manim import *
class _lowercase ( lowercase__):
"""simple docstring"""
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[str] = Rectangle(height=0.5 , width=0.5 )
lowerCamelCase__ : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 )
lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )]
lowerCamelCase__ : Dict = [mem.copy() for i in range(6 )]
lowerCamelCase__ : Union[str, Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : Optional[Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : Optional[Any] = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : Optional[Any] = Text("CPU" , font_size=24 )
lowerCamelCase__ : int = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(4 )]
lowerCamelCase__ : List[Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : Optional[Any] = Text("GPU" , font_size=24 )
lowerCamelCase__ : int = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )]
lowerCamelCase__ : int = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : Any = Text("Model" , font_size=24 )
lowerCamelCase__ : List[str] = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = []
for i, rect in enumerate(__lowerCamelCase ):
rect.set_stroke(__lowerCamelCase )
# target = fill.copy().set_fill(YELLOW, opacity=0.7)
# target.move_to(rect)
# self.add(target)
lowerCamelCase__ : Union[str, Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 )
if i == 0:
cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCamelCase )
cpu_target.set_x(cpu_target.get_x() + 0.1 )
elif i == 3:
cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 )
else:
cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 )
self.add(__lowerCamelCase )
cpu_targs.append(__lowerCamelCase )
lowerCamelCase__ : Dict = [mem.copy() for i in range(6 )]
lowerCamelCase__ : str = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 )
lowerCamelCase__ : List[Any] = Text("Loaded Checkpoint" , font_size=24 )
lowerCamelCase__ : Any = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 )
checkpoint.move_to([3, 0.5, 0] )
lowerCamelCase__ : str = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
lowerCamelCase__ : Union[str, Any] = MarkupText(
f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Any = MarkupText(
f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , )
blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
lowerCamelCase__ : Optional[int] = MarkupText(
f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) )
self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) )
lowerCamelCase__ : str = []
lowerCamelCase__ : Tuple = []
for i, rect in enumerate(__lowerCamelCase ):
lowerCamelCase__ : int = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 )
target.move_to(__lowerCamelCase )
first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) )
lowerCamelCase__ : Optional[int] = target.copy()
cpu_target.generate_target()
if i < 5:
cpu_target.target.move_to(cpu_left_col_base[i + 1] )
else:
cpu_target.target.move_to(cpu_right_col_base[i - 5] )
second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) )
self.play(*__lowerCamelCase )
self.play(*__lowerCamelCase )
self.wait()
| 705 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 706 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 0 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
(lowerCamelCase__) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 707 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 708 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 0 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : Tuple = r"\w+[.]\d+"
lowerCamelCase__ : Optional[Any] = re.findall(_A , _A )
for pat in pats:
lowerCamelCase__ : Tuple = key.replace(_A , "_".join(pat.split("." ) ) )
return key
def lowercase_ ( _A : Any , _A : int , _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Tuple = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ : Tuple = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ : str = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ : Optional[int] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowercase_ ( _A : Any , _A : str , _A : str=42 ):
"""simple docstring"""
lowerCamelCase__ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ : List[Any] = flax_model.init_weights(PRNGKey(_A ) )
lowerCamelCase__ : int = flatten_dict(_A )
lowerCamelCase__ : Union[str, Any] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ : Any = rename_key(_A )
lowerCamelCase__ : List[str] = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
lowerCamelCase__ : List[str] = rename_key_and_reshape_tensor(_A , _A , _A )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ : Optional[Any] = jnp.asarray(_A )
return unflatten_dict(_A )
| 709 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 0 |
import unittest
from transformers import EsmConfig, is_torch_available
from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel
from transformers.models.esm.modeling_esm import (
ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
EsmEmbeddings,
create_position_ids_from_input_ids,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple=13 , __lowerCamelCase : int=7 , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : List[Any]=33 , __lowerCamelCase : Any=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=512 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : str=2 , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : List[Any]=3 , __lowerCamelCase : Optional[int]=4 , __lowerCamelCase : List[str]=None , ):
'''simple docstring'''
lowerCamelCase__ : str = parent
lowerCamelCase__ : List[str] = batch_size
lowerCamelCase__ : Union[str, Any] = seq_length
lowerCamelCase__ : Tuple = is_training
lowerCamelCase__ : Any = use_input_mask
lowerCamelCase__ : Union[str, Any] = use_token_type_ids
lowerCamelCase__ : Any = use_labels
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : List[str] = hidden_size
lowerCamelCase__ : Dict = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : int = attention_probs_dropout_prob
lowerCamelCase__ : Dict = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : int = type_sequence_label_size
lowerCamelCase__ : List[Any] = initializer_range
lowerCamelCase__ : Any = num_labels
lowerCamelCase__ : int = num_choices
lowerCamelCase__ : int = scope
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Dict = None
if self.use_input_mask:
lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = EsmModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : str = EsmForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_labels
lowerCamelCase__ : Optional[int] = EsmForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.prepare_config_and_inputs()
(
lowerCamelCase__
) : Any = config_and_inputs
lowerCamelCase__ : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = False
A__ = (
(
EsmForMaskedLM,
EsmModel,
EsmForSequenceClassification,
EsmForTokenClassification,
)
if is_torch_available()
else ()
)
A__ = ()
A__ = (
{
"feature-extraction": EsmModel,
"fill-mask": EsmForMaskedLM,
"text-classification": EsmForSequenceClassification,
"token-classification": EsmForTokenClassification,
"zero-shot": EsmForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = EsmModelTester(self )
lowerCamelCase__ : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : List[Any] = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Optional[Any] = EsmModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase__ : List[str] = EsmEmbeddings(config=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = torch.as_tensor([[12, 31, 13, model.padding_idx]] )
lowerCamelCase__ : Dict = torch.as_tensor(
[
[
0 + model.padding_idx + 1,
1 + model.padding_idx + 1,
2 + model.padding_idx + 1,
model.padding_idx,
]
] )
lowerCamelCase__ : Any = create_position_ids_from_input_ids(__lowerCamelCase , model.padding_idx )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()[0]
lowerCamelCase__ : Any = EsmEmbeddings(config=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = torch.empty(2 , 4 , 30 )
lowerCamelCase__ : Union[str, Any] = [
0 + embeddings.padding_idx + 1,
1 + embeddings.padding_idx + 1,
2 + embeddings.padding_idx + 1,
3 + embeddings.padding_idx + 1,
]
lowerCamelCase__ : Optional[int] = torch.as_tensor([expected_single_positions, expected_single_positions] )
lowerCamelCase__ : Union[str, Any] = embeddings.create_position_ids_from_inputs_embeds(__lowerCamelCase )
self.assertEqual(position_ids.shape , expected_positions.shape )
self.assertTrue(torch.all(torch.eq(__lowerCamelCase , __lowerCamelCase ) ) )
@unittest.skip("Esm does not support embedding resizing" )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("Esm does not support embedding resizing" )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
pass
@require_torch
class _lowercase ( lowercase__):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
with torch.no_grad():
lowerCamelCase__ : Optional[Any] = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" )
model.eval()
lowerCamelCase__ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] )
lowerCamelCase__ : int = model(__lowerCamelCase )[0]
lowerCamelCase__ : Dict = 33
lowerCamelCase__ : int = torch.Size((1, 6, vocab_size) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Any = torch.tensor(
[[[8.9_2_1_5, -10.5898, -6.4_6_7_1], [-6.3_9_6_7, -13.9114, -1.1_2_1_2], [-7.7_8_1_2, -13.9516, -3.7_4_0_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
with torch.no_grad():
lowerCamelCase__ : int = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" )
model.eval()
lowerCamelCase__ : Optional[int] = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )[0]
# compare the actual values for a slice.
lowerCamelCase__ : Optional[Any] = torch.tensor(
[[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
| 710 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 0 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaControlnetImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image", "hint"]
A__ = ["image_embeds", "negative_image_embeds", "image", "hint"]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Any = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : str = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Any = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.dummy_unet
lowerCamelCase__ : Union[str, Any] = self.dummy_movq
lowerCamelCase__ : Optional[Any] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Dict = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
# create hint
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : List[str] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : str = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Any = "cpu"
lowerCamelCase__ : Any = self.get_dummy_components()
lowerCamelCase__ : Union[str, Any] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : str = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : str = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : int = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
lowerCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : Any = np.array(
[0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : List[str] = init_image.resize((512, 512) )
lowerCamelCase__ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png" )
lowerCamelCase__ : Optional[Any] = torch.from_numpy(np.array(__lowerCamelCase ) ).float() / 255.0
lowerCamelCase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCamelCase__ : Optional[Any] = "A robot, 4k photo"
lowerCamelCase__ : str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa )
lowerCamelCase__ : List[Any] = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : str = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , image=__lowerCamelCase , strength=0.8_5 , generator=__lowerCamelCase , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Dict = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , )
lowerCamelCase__ : List[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 711 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 0 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_xlnet import XLNetTokenizer
else:
A : int = None
A : Optional[int] = logging.get_logger(__name__)
A : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
A : Tuple = {
"vocab_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model",
},
"tokenizer_file": {
"xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json",
"xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json",
},
}
A : Dict = {
"xlnet-base-cased": None,
"xlnet-large-cased": None,
}
A : List[Any] = "▁"
# Segments (not really needed)
A : Tuple = 0
A : int = 1
A : Dict = 2
A : List[str] = 3
A : Optional[Any] = 4
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = "left"
A__ = XLNetTokenizer
def __init__( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : Optional[int]="<sep>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Tuple="<cls>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : int=["<eop>", "<eod>"] , **__lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
lowerCamelCase__ : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , )
lowerCamelCase__ : Optional[int] = 3
lowerCamelCase__ : List[str] = do_lower_case
lowerCamelCase__ : List[str] = remove_space
lowerCamelCase__ : Any = keep_accents
lowerCamelCase__ : int = vocab_file
lowerCamelCase__ : str = False if not self.vocab_file else True
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : List[str] = [self.sep_token_id]
lowerCamelCase__ : List[Any] = [2]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0] + cls_segment_id
return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ):
copyfile(self.vocab_file , __lowerCamelCase )
return (out_vocab_file,)
| 712 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 0 |
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : int , __lowerCamelCase : Any ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ):
lowerCamelCase__ : List[Any] = model_result["result"][batch_size][sequence_length]
self.assertIsNotNone(__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Optional[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : List[Any] = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : int = "sgugger/tiny-distilbert-classification"
lowerCamelCase__ : List[Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , )
lowerCamelCase__ : Optional[Any] = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == "cpu" , "Cant do half precision" )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : str = "sshleifer/tiny-gpt2"
lowerCamelCase__ : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Optional[int] = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Any = AutoConfig.from_pretrained(__lowerCamelCase )
# set architectures equal to `None`
lowerCamelCase__ : Any = None
lowerCamelCase__ : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Optional[int] = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
lowerCamelCase__ : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : str = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Union[str, Any] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Optional[Any] = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == "cpu" , "Can't do half precision" )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Optional[int] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Any = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = "sshleifer/tiny-gpt2"
lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : List[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
lowerCamelCase__ : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = "sshleifer/tinier_bart"
lowerCamelCase__ : Dict = AutoConfig.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : int = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
lowerCamelCase__ : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = "sshleifer/tiny-gpt2"
lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Dict = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Any = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
lowerCamelCase__ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "sshleifer/tinier_bart"
lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config] )
lowerCamelCase__ : int = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = "sshleifer/tiny-gpt2"
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv" ) ).exists() )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "sshleifer/tiny-gpt2"
def _check_summary_is_not_empty(__lowerCamelCase : str ):
self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) )
self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) )
self.assertTrue(hasattr(__lowerCamelCase , "current" ) )
self.assertTrue(hasattr(__lowerCamelCase , "total" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCamelCase__ : Tuple = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , )
lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() )
| 713 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 0 |
import os
def lowercase_ ( ) -> Union[str, Any]:
"""simple docstring"""
with open(os.path.dirname(_A ) + "/p022_names.txt" ) as file:
lowerCamelCase__ : List[Any] = str(file.readlines()[0] )
lowerCamelCase__ : List[Any] = names.replace("\"" , "" ).split("," )
names.sort()
lowerCamelCase__ : Optional[Any] = 0
lowerCamelCase__ : Dict = 0
for i, name in enumerate(_A ):
for letter in name:
name_score += ord(_A ) - 64
total_score += (i + 1) * name_score
lowerCamelCase__ : Optional[int] = 0
return total_score
if __name__ == "__main__":
print(solution())
| 714 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
A : Union[str, Any] = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DonutImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
import pytest
A : Tuple = "__dummy_dataset1__"
A : str = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def lowercase_ ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowercase_ ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowercase_ ( _A : Optional[Any] , _A : List[str] , _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : int = dataset_loading_script_name
lowerCamelCase__ : Optional[Any] = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=_A )
lowerCamelCase__ : int = script_dir / F"{script_name}.py"
with open(_A , "w" ) as f:
f.write(_A )
return str(_A )
| 716 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def lowercase_ ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = coefficient_matrix.shape
lowerCamelCase__ : Union[str, Any] = constant_matrix.shape
if rowsa != colsa:
lowerCamelCase__ : Dict = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"
raise ValueError(_A )
if colsa != 1:
lowerCamelCase__ : Optional[Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}"
raise ValueError(_A )
if rowsa != rowsa:
lowerCamelCase__ : Union[str, Any] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
F"received {rowsa}x{colsa} and {rowsa}x{colsa}"
)
raise ValueError(_A )
if len(_A ) != rowsa:
lowerCamelCase__ : Union[str, Any] = (
"Number of initial values must be equal to number of rows in coefficient "
F"matrix but received {len(_A )} and {rowsa}"
)
raise ValueError(_A )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
lowerCamelCase__ : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowerCamelCase__ : Optional[Any] = table.shape
strictly_diagonally_dominant(_A )
# Iterates the whole matrix for given number of times
for _ in range(_A ):
lowerCamelCase__ : Tuple = []
for row in range(_A ):
lowerCamelCase__ : List[str] = 0
for col in range(_A ):
if col == row:
lowerCamelCase__ : Union[str, Any] = table[row][col]
elif col == cols - 1:
lowerCamelCase__ : Tuple = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowerCamelCase__ : str = (temp + val) / denom
new_val.append(_A )
lowerCamelCase__ : Optional[Any] = new_val
return [float(_A ) for i in new_val]
def lowercase_ ( _A : NDArray[floataa] ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = table.shape
lowerCamelCase__ : List[str] = True
for i in range(0 , _A ):
lowerCamelCase__ : Dict = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 0 |
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
A : Optional[Any] = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["input_values", "padding_mask"]
def __init__( self : Any , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 24000 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = None , __lowerCamelCase : float = None , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Tuple = chunk_length_s
lowerCamelCase__ : List[str] = overlap
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self : str , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
if padding and truncation:
raise ValueError("Both padding and truncation were set. Make sure you only set one." )
elif padding is None:
# by default let's pad the inputs
lowerCamelCase__ : int = True
lowerCamelCase__ : str = bool(
isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
lowerCamelCase__ : List[str] = [np.asarray(__lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ):
lowerCamelCase__ : Dict = np.asarray(__lowerCamelCase , dtype=np.floataa )
elif isinstance(__lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
lowerCamelCase__ : Any = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ : Any = [np.asarray(__lowerCamelCase ).T]
# verify inputs are valid
for idx, example in enumerate(__lowerCamelCase ):
if example.ndim > 2:
raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" )
lowerCamelCase__ : List[Any] = None
lowerCamelCase__ : Union[str, Any] = BatchFeature({"input_values": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
lowerCamelCase__ : Optional[int] = min(array.shape[0] for array in raw_audio )
lowerCamelCase__ : Any = int(np.floor(max_length / self.chunk_stride ) )
lowerCamelCase__ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
lowerCamelCase__ : Optional[int] = max(array.shape[0] for array in raw_audio )
lowerCamelCase__ : Any = int(np.ceil(max_length / self.chunk_stride ) )
lowerCamelCase__ : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length
lowerCamelCase__ : Optional[Any] = "max_length"
else:
lowerCamelCase__ : Any = input_values
# normal padding on batch
if padded_inputs is None:
lowerCamelCase__ : List[str] = self.pad(
__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , padding=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
if padding:
lowerCamelCase__ : Dict = padded_inputs.pop("attention_mask" )
lowerCamelCase__ : Any = []
for example in padded_inputs.pop("input_values" ):
if self.feature_size == 1:
lowerCamelCase__ : str = example[..., None]
input_values.append(example.T )
lowerCamelCase__ : str = input_values
if return_tensors is not None:
lowerCamelCase__ : Dict = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 718 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A : Optional[int] = {
"configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"],
"tokenization_roc_bert": ["RoCBertTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[Any] = [
"ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"RoCBertForCausalLM",
"RoCBertForMaskedLM",
"RoCBertForMultipleChoice",
"RoCBertForPreTraining",
"RoCBertForQuestionAnswering",
"RoCBertForSequenceClassification",
"RoCBertForTokenClassification",
"RoCBertLayer",
"RoCBertModel",
"RoCBertPreTrainedModel",
"load_tf_weights_in_roc_bert",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 719 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
A : int = logging.get_logger(__name__)
A : Dict = ["model.decoder.embed_positions.weights"]
def lowercase_ ( _A : Optional[Any] ):
"""simple docstring"""
if "emb" in name:
lowerCamelCase__ : Tuple = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
lowerCamelCase__ : Dict = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
lowerCamelCase__ : List[str] = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
lowerCamelCase__ : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
lowerCamelCase__ : List[str] = name.replace("linear2" , "fc2" )
if "norm1" in name:
lowerCamelCase__ : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
lowerCamelCase__ : Optional[int] = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
lowerCamelCase__ : Tuple = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
lowerCamelCase__ : Tuple = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
lowerCamelCase__ : str = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
lowerCamelCase__ : List[str] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase_ ( _A : OrderedDict , _A : int ):
"""simple docstring"""
lowerCamelCase__ : int = list(state_dict.keys() )
lowerCamelCase__ : Optional[Any] = {}
for key in keys:
lowerCamelCase__ : Optional[Any] = state_dict.pop(_A )
lowerCamelCase__ : Any = rename_keys(_A )
if "in_proj_weight" in key:
# split fused qkv proj
lowerCamelCase__ : List[str] = val[:hidden_size, :]
lowerCamelCase__ : str = val[hidden_size : 2 * hidden_size, :]
lowerCamelCase__ : List[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowerCamelCase__ : str = val
else:
lowerCamelCase__ : Dict = val
return state_dict, enc_dec_proj_state_dict
def lowercase_ ( _A : str ):
"""simple docstring"""
if checkpoint == "small":
# default config values
lowerCamelCase__ : Union[str, Any] = 1024
lowerCamelCase__ : List[Any] = 24
lowerCamelCase__ : int = 16
elif checkpoint == "medium":
lowerCamelCase__ : Tuple = 1536
lowerCamelCase__ : Union[str, Any] = 48
lowerCamelCase__ : Optional[Any] = 24
elif checkpoint == "large":
lowerCamelCase__ : Any = 2048
lowerCamelCase__ : Optional[Any] = 48
lowerCamelCase__ : Tuple = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
lowerCamelCase__ : Tuple = MusicgenDecoderConfig(
hidden_size=_A , ffn_dim=hidden_size * 4 , num_hidden_layers=_A , num_attention_heads=_A , )
return config
@torch.no_grad()
def lowercase_ ( _A : List[str] , _A : Any=None , _A : Dict=None , _A : str="cpu" ):
"""simple docstring"""
lowerCamelCase__ : Dict = MusicGen.get_pretrained(_A , device=_A )
lowerCamelCase__ : Optional[Any] = decoder_config_from_checkpoint(_A )
lowerCamelCase__ : str = fairseq_model.lm.state_dict()
lowerCamelCase__ : Optional[Any] = rename_state_dict(
_A , hidden_size=decoder_config.hidden_size )
lowerCamelCase__ : Union[str, Any] = TaEncoderModel.from_pretrained("t5-base" )
lowerCamelCase__ : Dict = EncodecModel.from_pretrained("facebook/encodec_32khz" )
lowerCamelCase__ : List[Any] = MusicgenForCausalLM(_A ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowerCamelCase__ : Optional[int] = decoder.load_state_dict(_A , strict=_A )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_A )
if len(_A ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(_A ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
lowerCamelCase__ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=_A , audio_encoder=_A , decoder=_A )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_A )
# check we can do a forward pass
lowerCamelCase__ : Optional[int] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowerCamelCase__ : Any = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(input_ids=_A , decoder_input_ids=_A ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("t5-base" )
lowerCamelCase__ : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
lowerCamelCase__ : List[str] = MusicgenProcessor(feature_extractor=_A , tokenizer=_A )
# set the appropriate bos/pad token ids
lowerCamelCase__ : Union[str, Any] = 2048
lowerCamelCase__ : Dict = 2048
# set other default generation config params
lowerCamelCase__ : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
lowerCamelCase__ : Dict = True
lowerCamelCase__ : int = 3.0
if pytorch_dump_folder is not None:
Path(_A ).mkdir(exist_ok=_A )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(_A )
processor.save_pretrained(_A )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(_A )
processor.push_to_hub(_A )
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
A : Optional[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 720 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 0 |
from typing import List
import datasets
from datasets.tasks import AudioClassification
from ..folder_based_builder import folder_based_builder
A : Optional[int] = datasets.utils.logging.get_logger(__name__)
class _lowercase ( folder_based_builder.FolderBasedBuilderConfig):
"""simple docstring"""
A__ = None
A__ = None
class _lowercase ( folder_based_builder.FolderBasedBuilder):
"""simple docstring"""
A__ = datasets.Audio()
A__ = "audio"
A__ = AudioFolderConfig
A__ = 42 # definition at the bottom of the script
A__ = AudioClassification(audio_column="audio" , label_column="label")
A : Any = [
".aiff",
".au",
".avr",
".caf",
".flac",
".htk",
".svx",
".mat4",
".mat5",
".mpc2k",
".ogg",
".paf",
".pvf",
".raw",
".rf64",
".sd2",
".sds",
".ircam",
".voc",
".w64",
".wav",
".nist",
".wavex",
".wve",
".xi",
".mp3",
".opus",
]
A : Dict = AUDIO_EXTENSIONS
| 721 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 0 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowercase :
"""simple docstring"""
def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=[10, 20, 30, 40] , __lowerCamelCase : List[str]=[2, 2, 3, 2] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=10 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Any=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : Optional[Any] = batch_size
lowerCamelCase__ : str = image_size
lowerCamelCase__ : str = num_channels
lowerCamelCase__ : Optional[Any] = num_stages
lowerCamelCase__ : Optional[int] = hidden_sizes
lowerCamelCase__ : Union[str, Any] = depths
lowerCamelCase__ : Any = is_training
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : Tuple = type_sequence_label_size
lowerCamelCase__ : Tuple = initializer_range
lowerCamelCase__ : Tuple = out_features
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = scope
lowerCamelCase__ : int = num_stages
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : List[str] = None
if self.use_labels:
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : str = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : Any = UperNetForSemanticSegmentation(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : int = model(__lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.prepare_config_and_inputs()
(
lowerCamelCase__
) : Optional[int] = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
A__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : int = UperNetModelTester(self )
lowerCamelCase__ : Any = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[Any] = model_class(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : Any = [*signature.parameters.keys()]
lowerCamelCase__ : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase )
@unittest.skip(reason="UperNet does not use inputs_embeds" )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not support input and output embeddings" )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ):
lowerCamelCase__ : Dict = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
lowerCamelCase__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : List[Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ : Optional[int] = _config_zero_init(__lowerCamelCase )
lowerCamelCase__ : Any = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
lowerCamelCase__ : Tuple = model_class(config=__lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip(reason="UperNet does not have tied weights" )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[Any] = UperNetForSemanticSegmentation.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowercase_ ( ):
lowerCamelCase__ : Optional[int] = hf_hub_download(
repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" )
lowerCamelCase__ : List[str] = Image.open(_A ).convert("RGB" )
return image
@require_torch
@require_vision
@slow
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" )
lowerCamelCase__ : int = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__lowerCamelCase )
lowerCamelCase__ : str = prepare_img()
lowerCamelCase__ : Any = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
with torch.no_grad():
lowerCamelCase__ : str = model(**__lowerCamelCase )
lowerCamelCase__ : Any = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" )
lowerCamelCase__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = prepare_img()
lowerCamelCase__ : str = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
with torch.no_grad():
lowerCamelCase__ : Union[str, Any] = model(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
| 700 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : Dict = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 701 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : str = logging.get_logger(__name__)
A : Dict = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "data2vec-vision"
def __init__( self : Dict , __lowerCamelCase : List[str]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Dict=1E-1_2 , __lowerCamelCase : str=224 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=[3, 5, 7, 11] , __lowerCamelCase : str=[1, 2, 3, 6] , __lowerCamelCase : int=True , __lowerCamelCase : Any=0.4 , __lowerCamelCase : Union[str, Any]=256 , __lowerCamelCase : int=1 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Dict=255 , **__lowerCamelCase : Any , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : List[str] = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : List[Any] = image_size
lowerCamelCase__ : Tuple = patch_size
lowerCamelCase__ : List[str] = num_channels
lowerCamelCase__ : List[str] = use_mask_token
lowerCamelCase__ : Tuple = use_absolute_position_embeddings
lowerCamelCase__ : Optional[int] = use_relative_position_bias
lowerCamelCase__ : str = use_shared_relative_position_bias
lowerCamelCase__ : List[str] = layer_scale_init_value
lowerCamelCase__ : List[str] = drop_path_rate
lowerCamelCase__ : Optional[int] = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCamelCase__ : Dict = out_indices
lowerCamelCase__ : Union[str, Any] = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__ : str = use_auxiliary_head
lowerCamelCase__ : Optional[int] = auxiliary_loss_weight
lowerCamelCase__ : List[str] = auxiliary_channels
lowerCamelCase__ : List[str] = auxiliary_num_convs
lowerCamelCase__ : str = auxiliary_concat_input
lowerCamelCase__ : Any = semantic_loss_ignore_index
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = version.parse("1.11")
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 1E-4
| 702 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 0 |
import os
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from ...models.controlnet import ControlNetModel, ControlNetOutput
from ...models.modeling_utils import ModelMixin
from ...utils import logging
A : Optional[Any] = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ):
'''simple docstring'''
super().__init__()
lowerCamelCase__ : List[str] = nn.ModuleList(__lowerCamelCase )
def lowerCAmelCase ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[torch.Tensor, float, int] , __lowerCamelCase : torch.Tensor , __lowerCamelCase : List[torch.tensor] , __lowerCamelCase : List[float] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , ):
'''simple docstring'''
for i, (image, scale, controlnet) in enumerate(zip(__lowerCamelCase , __lowerCamelCase , self.nets ) ):
lowerCamelCase__ : int = controlnet(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , )
# merge samples
if i == 0:
lowerCamelCase__ : Union[str, Any] = down_samples, mid_sample
else:
lowerCamelCase__ : Tuple = [
samples_prev + samples_curr
for samples_prev, samples_curr in zip(__lowerCamelCase , __lowerCamelCase )
]
mid_block_res_sample += mid_sample
return down_block_res_samples, mid_block_res_sample
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : bool = True , __lowerCamelCase : Callable = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , ):
'''simple docstring'''
lowerCamelCase__ : Any = 0
lowerCamelCase__ : Tuple = save_directory
for controlnet in self.nets:
controlnet.save_pretrained(
__lowerCamelCase , is_main_process=__lowerCamelCase , save_function=__lowerCamelCase , safe_serialization=__lowerCamelCase , variant=__lowerCamelCase , )
idx += 1
lowerCamelCase__ : Optional[Any] = model_path_to_save + f"_{idx}"
@classmethod
def lowerCAmelCase ( cls : Dict , __lowerCamelCase : Optional[Union[str, os.PathLike]] , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = 0
lowerCamelCase__ : List[str] = []
# load controlnet and append to list until no controlnet directory exists anymore
# first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained`
# second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ...
lowerCamelCase__ : int = pretrained_model_path
while os.path.isdir(__lowerCamelCase ):
lowerCamelCase__ : int = ControlNetModel.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
controlnets.append(__lowerCamelCase )
idx += 1
lowerCamelCase__ : int = pretrained_model_path + f"_{idx}"
logger.info(f"{len(__lowerCamelCase )} controlnets loaded from {pretrained_model_path}." )
if len(__lowerCamelCase ) == 0:
raise ValueError(
f"No ControlNets found under {os.path.dirname(__lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}." )
return cls(__lowerCamelCase )
| 703 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 0 |
from typing import Dict
from .base import GenericTensor, Pipeline
class _lowercase ( lowercase__):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str=None , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int ):
'''simple docstring'''
if tokenize_kwargs is None:
lowerCamelCase__ : Optional[int] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)" )
lowerCamelCase__ : List[str] = truncation
lowerCamelCase__ : Optional[Any] = tokenize_kwargs
lowerCamelCase__ : Optional[Any] = {}
if return_tensors is not None:
lowerCamelCase__ : str = return_tensors
return preprocess_params, {}, postprocess_params
def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[Any] , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.framework
lowerCamelCase__ : List[Any] = self.tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase , **__lowerCamelCase )
return model_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model(**__lowerCamelCase )
return model_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ):
'''simple docstring'''
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Optional[int] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
return super().__call__(*__lowerCamelCase , **__lowerCamelCase )
| 704 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 0 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase_ ( _A : Dict ):
"""simple docstring"""
return EnvironmentCommand()
def lowercase_ ( _A : List[Any] ):
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class _lowercase ( lowercase__):
"""simple docstring"""
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : ArgumentParser ):
'''simple docstring'''
lowerCamelCase__ : Any = parser.add_parser("env" )
download_parser.set_defaults(func=__lowerCamelCase )
download_parser.add_argument(
"--accelerate-config_file" , default=__lowerCamelCase , help="The accelerate config file to use for the default values in the launching script." , )
download_parser.set_defaults(func=__lowerCamelCase )
def __init__( self : Dict , __lowerCamelCase : int , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : int = accelerate_config_file
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = "not installed"
if is_safetensors_available():
import safetensors
lowerCamelCase__ : Tuple = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
lowerCamelCase__ : str = f"{safetensors.__version__} but is ignored because of PyTorch version too old."
lowerCamelCase__ : Tuple = "not installed"
lowerCamelCase__ : List[str] = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
lowerCamelCase__ : Union[str, Any] = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__lowerCamelCase ):
lowerCamelCase__ : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict()
lowerCamelCase__ : Any = (
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] )
if isinstance(__lowerCamelCase , __lowerCamelCase )
else f"\t{accelerate_config}"
)
lowerCamelCase__ : List[Any] = "not installed"
lowerCamelCase__ : Optional[int] = "NA"
if is_torch_available():
import torch
lowerCamelCase__ : Tuple = torch.__version__
lowerCamelCase__ : Optional[Any] = torch.cuda.is_available()
lowerCamelCase__ : List[str] = "not installed"
lowerCamelCase__ : Dict = "NA"
if is_tf_available():
import tensorflow as tf
lowerCamelCase__ : List[str] = tf.__version__
try:
# deprecated in v2.1
lowerCamelCase__ : Union[str, Any] = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
lowerCamelCase__ : Union[str, Any] = bool(tf.config.list_physical_devices("GPU" ) )
lowerCamelCase__ : int = "not installed"
lowerCamelCase__ : List[Any] = "not installed"
lowerCamelCase__ : int = "not installed"
lowerCamelCase__ : Tuple = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
lowerCamelCase__ : List[str] = flax.__version__
lowerCamelCase__ : Tuple = jax.__version__
lowerCamelCase__ : Tuple = jaxlib.__version__
lowerCamelCase__ : Any = jax.lib.xla_bridge.get_backend().platform
lowerCamelCase__ : Union[str, Any] = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f"{safetensors_version}",
"Accelerate version": f"{accelerate_version}",
"Accelerate config": f"{accelerate_config_str}",
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
"Jax version": f"{jax_version}",
"JaxLib version": f"{jaxlib_version}",
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(__lowerCamelCase ) )
return info
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : int ):
'''simple docstring'''
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
| 705 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
A : Tuple = "bert-base-cased"
A : int = "google/pegasus-xsum"
A : Optional[Any] = [" Sam ate lunch today.", "Sams lunch ingredients."]
A : Any = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
A : int = "patrickvonplaten/t5-tiny-random"
A : Optional[int] = "sshleifer/bart-tiny-random"
A : Any = "sshleifer/tiny-mbart"
A : Dict = "sshleifer/tiny-marian-en-de"
def lowercase_ ( _A : Path , _A : list ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = "\n".join(_A )
Path(_A ).open("w" ).writelines(_A )
def lowercase_ ( _A : Union[str, Any] ):
"""simple docstring"""
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(_A , F"{split}.source" ) , _A )
_dump_articles(os.path.join(_A , F"{split}.target" ) , _A )
return tmp_dir
class _lowercase ( lowercase__):
"""simple docstring"""
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCamelCase__ : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES )
lowerCamelCase__ : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES )
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : List[str] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
lowerCamelCase__ : int = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error.
lowerCamelCase__ : Optional[int] = SeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , )
lowerCamelCase__ : List[Any] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
lowerCamelCase__ : List[str] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCamelCase__ : Tuple = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES )
lowerCamelCase__ : Any = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES )
lowerCamelCase__ : Optional[Any] = 4
lowerCamelCase__ : int = LegacySeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=20 , max_target_length=__lowerCamelCase , )
lowerCamelCase__ : Tuple = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : str = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" )
lowerCamelCase__ : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
lowerCamelCase__ : int = tmp_dir.joinpath("train.source" ).open().readlines()
lowerCamelCase__ : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(__lowerCamelCase , __lowerCamelCase , 128 , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = {x.name for x in tmp_dir.iterdir()}
lowerCamelCase__ : List[Any] = {x.name for x in save_dir.iterdir()}
lowerCamelCase__ : Union[str, Any] = save_dir.joinpath("train.source" ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(__lowerCamelCase ) < len(__lowerCamelCase )
assert len(__lowerCamelCase ) == 1
assert len(packed_examples[0] ) == sum(len(__lowerCamelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if not FAIRSEQ_AVAILABLE:
return
lowerCamelCase__ : Any = self._get_dataset(max_len=64 )
lowerCamelCase__ : int = 64
lowerCamelCase__ : int = ds.make_dynamic_sampler(__lowerCamelCase , required_batch_size_multiple=__lowerCamelCase )
lowerCamelCase__ : int = [len(__lowerCamelCase ) for x in batch_sampler]
assert len(set(__lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(__lowerCamelCase ) == len(__lowerCamelCase ) # no dropped or added examples
lowerCamelCase__ : int = DataLoader(__lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
lowerCamelCase__ : Dict = []
lowerCamelCase__ : Optional[int] = []
for batch in data_loader:
lowerCamelCase__ : int = batch["input_ids"].shape
lowerCamelCase__ : Dict = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
lowerCamelCase__ : Any = np.product(batch["input_ids"].shape )
num_src_per_batch.append(__lowerCamelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(__lowerCamelCase )
assert num_src_per_batch[0] == max(__lowerCamelCase )
if failures:
raise AssertionError(f"too many tokens in {len(__lowerCamelCase )} batches" )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Any = self._get_dataset(max_len=512 )
lowerCamelCase__ : Optional[Any] = 2
lowerCamelCase__ : Any = ds.make_sortish_sampler(__lowerCamelCase , shuffle=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
lowerCamelCase__ : List[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCamelCase )
lowerCamelCase__ : Dict = tokenizer.pad_token_id
def count_pad_tokens(__lowerCamelCase : int , __lowerCamelCase : List[str]="input_ids" ):
return [batch[k].eq(__lowerCamelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(__lowerCamelCase , k="labels" ) ) < sum(count_pad_tokens(__lowerCamelCase , k="labels" ) )
assert sum(count_pad_tokens(__lowerCamelCase ) ) < sum(count_pad_tokens(__lowerCamelCase ) )
assert len(__lowerCamelCase ) == len(__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any]=1000 , __lowerCamelCase : Union[str, Any]=128 ):
'''simple docstring'''
if os.getenv("USE_REAL_DATA" , __lowerCamelCase ):
lowerCamelCase__ : Optional[int] = "examples/seq2seq/wmt_en_ro"
lowerCamelCase__ : Optional[int] = max_len * 2 * 64
if not Path(__lowerCamelCase ).joinpath("train.len" ).exists():
save_len_file(__lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : Dict = "examples/seq2seq/test_data/wmt_en_ro"
lowerCamelCase__ : List[Any] = max_len * 4
save_len_file(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : str = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : int = SeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , n_obs=__lowerCamelCase , )
return ds, max_tokens, tokenizer
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._get_dataset()
lowerCamelCase__ : str = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCamelCase ) )
lowerCamelCase__ : Tuple = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCamelCase ) )
assert idsa.intersection(__lowerCamelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def lowerCAmelCase ( self : int , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase )
if tok_name == MBART_TINY:
lowerCamelCase__ : Tuple = SeqaSeqDataset(
__lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , )
lowerCamelCase__ : List[Any] = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
lowerCamelCase__ : List[str] = SeqaSeqDataset(
__lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , )
lowerCamelCase__ : Optional[Any] = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(__lowerCamelCase ) == 1 if tok_name == BART_TINY else len(__lowerCamelCase ) == 0
| 706 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
A : List[Any] = {
"configuration_clip": [
"CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP",
"CLIPConfig",
"CLIPOnnxConfig",
"CLIPTextConfig",
"CLIPVisionConfig",
],
"processing_clip": ["CLIPProcessor"],
"tokenization_clip": ["CLIPTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = ["CLIPTokenizerFast"]
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = ["CLIPFeatureExtractor"]
A : Any = ["CLIPImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[Any] = [
"CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"CLIPModel",
"CLIPPreTrainedModel",
"CLIPTextModel",
"CLIPTextModelWithProjection",
"CLIPVisionModel",
"CLIPVisionModelWithProjection",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
"TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFCLIPModel",
"TFCLIPPreTrainedModel",
"TFCLIPTextModel",
"TFCLIPVisionModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = [
"FlaxCLIPModel",
"FlaxCLIPPreTrainedModel",
"FlaxCLIPTextModel",
"FlaxCLIPTextPreTrainedModel",
"FlaxCLIPVisionModel",
"FlaxCLIPVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_clip import (
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPConfig,
CLIPOnnxConfig,
CLIPTextConfig,
CLIPVisionConfig,
)
from .processing_clip import CLIPProcessor
from .tokenization_clip import CLIPTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_clip_fast import CLIPTokenizerFast
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clip import CLIPFeatureExtractor
from .image_processing_clip import CLIPImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clip import (
CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPModel,
CLIPPreTrainedModel,
CLIPTextModel,
CLIPTextModelWithProjection,
CLIPVisionModel,
CLIPVisionModelWithProjection,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_clip import (
TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFCLIPModel,
TFCLIPPreTrainedModel,
TFCLIPTextModel,
TFCLIPVisionModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_clip import (
FlaxCLIPModel,
FlaxCLIPPreTrainedModel,
FlaxCLIPTextModel,
FlaxCLIPTextPreTrainedModel,
FlaxCLIPVisionModel,
FlaxCLIPVisionPreTrainedModel,
)
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 707 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return f"gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase ) for s in shape] )}.npy"
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : List[Any]=(4, 4, 64, 64) , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Any = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase , __lowerCamelCase ) ) , dtype=__lowerCamelCase )
return image
def lowerCAmelCase ( self : str , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Optional[int] = "bf16" if fpaa else None
lowerCamelCase__ : Optional[int] = FlaxUNetaDConditionModel.from_pretrained(
__lowerCamelCase , subfolder="unet" , dtype=__lowerCamelCase , revision=__lowerCamelCase )
return model, params
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Tuple=0 , __lowerCamelCase : List[Any]=(4, 77, 768) , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase , __lowerCamelCase ) ) , dtype=__lowerCamelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = self.get_latents(__lowerCamelCase , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = self.get_encoder_hidden_states(__lowerCamelCase , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = model.apply(
{"params": params} , __lowerCamelCase , jnp.array(__lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCamelCase , ).sample
assert sample.shape == latents.shape
lowerCamelCase__ : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
lowerCamelCase__ : List[Any] = jnp.array(__lowerCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : str = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=__lowerCamelCase )
lowerCamelCase__ : Dict = self.get_latents(__lowerCamelCase , shape=(4, 4, 96, 96) , fpaa=__lowerCamelCase )
lowerCamelCase__ : str = self.get_encoder_hidden_states(__lowerCamelCase , shape=(4, 77, 1024) , fpaa=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = model.apply(
{"params": params} , __lowerCamelCase , jnp.array(__lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCamelCase , ).sample
assert sample.shape == latents.shape
lowerCamelCase__ : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
lowerCamelCase__ : Optional[Any] = jnp.array(__lowerCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 )
| 708 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A : Dict = {
"configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"],
"feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"],
"processing_wav2vec2": ["Wav2Vec2Processor"],
"tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"Wav2Vec2ForAudioFrameClassification",
"Wav2Vec2ForCTC",
"Wav2Vec2ForMaskedLM",
"Wav2Vec2ForPreTraining",
"Wav2Vec2ForSequenceClassification",
"Wav2Vec2ForXVector",
"Wav2Vec2Model",
"Wav2Vec2PreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWav2Vec2ForCTC",
"TFWav2Vec2Model",
"TFWav2Vec2PreTrainedModel",
"TFWav2Vec2ForSequenceClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = [
"FlaxWav2Vec2ForCTC",
"FlaxWav2Vec2ForPreTraining",
"FlaxWav2Vec2Model",
"FlaxWav2Vec2PreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 709 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 0 |
from __future__ import annotations
from collections.abc import Callable
A : Dict = list[list[float | int]]
def lowercase_ ( _A : Matrix , _A : Matrix ):
"""simple docstring"""
lowerCamelCase__ : int = len(_A )
lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_A )]
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : float
for row in range(_A ):
for col in range(_A ):
lowerCamelCase__ : Tuple = matrix[row][col]
lowerCamelCase__ : List[str] = vector[row][0]
lowerCamelCase__ : int = 0
lowerCamelCase__ : List[Any] = 0
while row < size and col < size:
# pivoting
lowerCamelCase__ : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_A , _A ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
lowerCamelCase__ : List[Any] = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , _A ):
lowerCamelCase__ : Union[str, Any] = augmented[rowa][col] / augmented[row][col]
lowerCamelCase__ : int = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , _A ):
for row in range(_A ):
lowerCamelCase__ : Any = augmented[row][col] / augmented[col][col]
for cola in range(_A , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_A )
]
def lowercase_ ( _A : list[int] ):
"""simple docstring"""
lowerCamelCase__ : int = len(_A )
lowerCamelCase__ : Matrix = [[0 for _ in range(_A )] for _ in range(_A )]
lowerCamelCase__ : Matrix = [[0] for _ in range(_A )]
lowerCamelCase__ : Matrix
lowerCamelCase__ : int
lowerCamelCase__ : int
lowerCamelCase__ : int
for x_val, y_val in enumerate(_A ):
for col in range(_A ):
lowerCamelCase__ : List[Any] = (x_val + 1) ** (size - col - 1)
lowerCamelCase__ : str = y_val
lowerCamelCase__ : Optional[int] = solve(_A , _A )
def interpolated_func(_A : int ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(_A ) )
return interpolated_func
def lowercase_ ( _A : int ):
"""simple docstring"""
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**10
)
def lowercase_ ( _A : Callable[[int], int] = question_function , _A : int = 10 ):
"""simple docstring"""
lowerCamelCase__ : list[int] = [func(_A ) for x_val in range(1 , order + 1 )]
lowerCamelCase__ : list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
lowerCamelCase__ : int = 0
lowerCamelCase__ : Callable[[int], int]
lowerCamelCase__ : int
for poly in polynomials:
lowerCamelCase__ : Any = 1
while func(_A ) == poly(_A ):
x_val += 1
ret += poly(_A )
return ret
if __name__ == "__main__":
print(f'{solution() = }')
| 710 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 0 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def lowercase_ ( _A : dict ):
"""simple docstring"""
return (data["data"], data["target"])
def lowercase_ ( _A : np.ndarray , _A : np.ndarray ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = XGBClassifier()
classifier.fit(_A , _A )
return classifier
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = load_iris()
lowerCamelCase__ : List[str] = data_handling(_A )
lowerCamelCase__ : List[Any] = train_test_split(
_A , _A , test_size=0.25 )
lowerCamelCase__ : List[Any] = iris["target_names"]
# Create an XGBoost Classifier from the training data
lowerCamelCase__ : str = xgboost(_A , _A )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
_A , _A , _A , display_labels=_A , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 711 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 0 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Tuple , __lowerCamelCase : TransformeraDModel , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : KarrasDiffusionSchedulers , __lowerCamelCase : Optional[Dict[int, str]] = None , ):
'''simple docstring'''
super().__init__()
self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase )
# create a imagenet -> id dictionary for easier use
lowerCamelCase__ : Dict = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split("," ):
lowerCamelCase__ : Dict = int(__lowerCamelCase )
lowerCamelCase__ : str = dict(sorted(self.labels.items() ) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, List[str]] ):
'''simple docstring'''
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Optional[int] = list(__lowerCamelCase )
for l in label:
if l not in self.labels:
raise ValueError(
f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : float = 4.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : str = len(__lowerCamelCase )
lowerCamelCase__ : Dict = self.transformer.config.sample_size
lowerCamelCase__ : Tuple = self.transformer.config.in_channels
lowerCamelCase__ : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , )
lowerCamelCase__ : Union[str, Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
lowerCamelCase__ : List[Any] = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 )
lowerCamelCase__ : str = torch.tensor([1000] * batch_size , device=self.device )
lowerCamelCase__ : List[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(__lowerCamelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
lowerCamelCase__ : int = latent_model_input[: len(__lowerCamelCase ) // 2]
lowerCamelCase__ : Tuple = torch.cat([half, half] , dim=0 )
lowerCamelCase__ : Union[str, Any] = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = t
if not torch.is_tensor(__lowerCamelCase ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
lowerCamelCase__ : List[Any] = latent_model_input.device.type == "mps"
if isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : List[str] = torch.floataa if is_mps else torch.floataa
else:
lowerCamelCase__ : Any = torch.intaa if is_mps else torch.intaa
lowerCamelCase__ : Dict = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
lowerCamelCase__ : Any = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
lowerCamelCase__ : Any = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
lowerCamelCase__ : List[str] = self.transformer(
__lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample
# perform guidance
if guidance_scale > 1:
lowerCamelCase__ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
lowerCamelCase__ : Dict = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 )
lowerCamelCase__ : Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
lowerCamelCase__ : Optional[Any] = torch.cat([half_eps, half_eps] , dim=0 )
lowerCamelCase__ : Tuple = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
lowerCamelCase__ : Union[str, Any] = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 )
else:
lowerCamelCase__ : str = noise_pred
# compute previous image: x_t -> x_t-1
lowerCamelCase__ : Dict = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
if guidance_scale > 1:
lowerCamelCase__ : int = latent_model_input.chunk(2 , dim=0 )
else:
lowerCamelCase__ : str = latent_model_input
lowerCamelCase__ : Optional[int] = 1 / self.vae.config.scaling_factor * latents
lowerCamelCase__ : Optional[int] = self.vae.decode(__lowerCamelCase ).sample
lowerCamelCase__ : List[str] = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowerCamelCase__ : Dict = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCamelCase__ : List[Any] = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=__lowerCamelCase )
| 712 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 0 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = None
class _lowercase ( lowercase__ , lowercase__):
"""simple docstring"""
A__ = 2
@register_to_config
def __init__( self : List[str] , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 1.0_0_7 , __lowerCamelCase : float = 80 , __lowerCamelCase : float = 0.0_5 , __lowerCamelCase : float = 50 , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = sigma_max
# setable values
lowerCamelCase__ : int = None
lowerCamelCase__ : np.IntTensor = None
lowerCamelCase__ : torch.FloatTensor = None # sigma(t_i)
def lowerCAmelCase ( self : Any , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = num_inference_steps
lowerCamelCase__ : int = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCamelCase__ : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase )
lowerCamelCase__ : Any = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCamelCase__ : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.floataa , device=__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : Optional[torch.Generator] = None ):
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
lowerCamelCase__ : Dict = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCamelCase__ : Tuple = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCamelCase__ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=__lowerCamelCase ).to(sample.device )
lowerCamelCase__ : str = sigma + gamma * sigma
lowerCamelCase__ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : str = sample_hat + sigma_hat * model_output
lowerCamelCase__ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCamelCase__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : Any = sample_prev + sigma_prev * model_output
lowerCamelCase__ : Any = (sample_prev - pred_original_sample) / sigma_prev
lowerCamelCase__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ):
'''simple docstring'''
raise NotImplementedError()
| 713 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 0 |
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : int = {
"snap-research/efficientformer-l1-300": (
"https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "efficientformer"
def __init__( self : str , __lowerCamelCase : List[int] = [3, 2, 6, 4] , __lowerCamelCase : List[int] = [48, 96, 224, 448] , __lowerCamelCase : List[bool] = [True, True, True, True] , __lowerCamelCase : int = 448 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 4 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 8 , __lowerCamelCase : int = 4 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : float = 1E-5 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 224 , __lowerCamelCase : float = 1E-0_5 , **__lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : List[Any] = hidden_dropout_prob
lowerCamelCase__ : str = hidden_sizes
lowerCamelCase__ : str = num_hidden_layers
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : Optional[int] = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = patch_size
lowerCamelCase__ : str = num_channels
lowerCamelCase__ : str = depths
lowerCamelCase__ : Tuple = mlp_expansion_ratio
lowerCamelCase__ : Dict = downsamples
lowerCamelCase__ : Union[str, Any] = dim
lowerCamelCase__ : List[Any] = key_dim
lowerCamelCase__ : Optional[Any] = attention_ratio
lowerCamelCase__ : int = resolution
lowerCamelCase__ : int = pool_size
lowerCamelCase__ : Optional[int] = downsample_patch_size
lowerCamelCase__ : List[Any] = downsample_stride
lowerCamelCase__ : Union[str, Any] = downsample_pad
lowerCamelCase__ : List[str] = drop_path_rate
lowerCamelCase__ : str = num_metaad_blocks
lowerCamelCase__ : str = distillation
lowerCamelCase__ : Dict = use_layer_scale
lowerCamelCase__ : Optional[Any] = layer_scale_init_value
lowerCamelCase__ : Optional[Any] = image_size
lowerCamelCase__ : int = batch_norm_eps
| 714 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 0 |
'''simple docstring'''
from __future__ import annotations
def lowercase_ ( _A : str ):
"""simple docstring"""
return [ord(_A ) - 96 for elem in plain]
def lowercase_ ( _A : list[int] ):
"""simple docstring"""
return "".join(chr(elem + 96 ) for elem in encoded )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Dict = encode(input("-> " ).strip().lower() )
print("Encoded: " , _A )
print("Decoded:" , decode(_A ) )
if __name__ == "__main__":
main()
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
from datetime import datetime
import requests
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Any = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url="
lowerCamelCase__ : Tuple = requests.get(base_url + url ).json()[0]["urls"][0]["src"]
return requests.get(_A ).content
if __name__ == "__main__":
A : Optional[Any] = input("Enter Video/IGTV url: ").strip()
A : List[str] = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(f'Done. Video saved to disk as {file_name}.')
| 716 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConfig,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaForCTC,
WavaVecaForPreTraining,
WavaVecaProcessor,
logging,
)
from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification
logging.set_verbosity_info()
A : Tuple = logging.get_logger(__name__)
A : Dict = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"adapter_layer": "encoder.layers.*.adapter_layer",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
"pooling_layer.linear": "projector",
"pooling_layer.projection": "classifier",
}
A : List[str] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"projector",
"classifier",
]
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : List[str] = {}
with open(_A , "r" ) as file:
for line_number, line in enumerate(_A ):
lowerCamelCase__ : int = line.strip()
if line:
lowerCamelCase__ : Any = line.split()
lowerCamelCase__ : Any = line_number
lowerCamelCase__ : List[Any] = words[0]
lowerCamelCase__ : int = value
return result
def lowercase_ ( _A : Tuple , _A : Optional[Any] , _A : Dict , _A : List[Any] , _A : Tuple ):
"""simple docstring"""
for attribute in key.split("." ):
lowerCamelCase__ : Any = getattr(_A , _A )
lowerCamelCase__ : str = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_A ):
lowerCamelCase__ : int = PARAM_MAPPING[full_name.split("." )[-1]]
lowerCamelCase__ : Tuple = "param"
if weight_type is not None and weight_type != "param":
lowerCamelCase__ : Union[str, Any] = getattr(_A , _A ).shape
elif weight_type is not None and weight_type == "param":
lowerCamelCase__ : Tuple = hf_pointer
for attribute in hf_param_name.split("." ):
lowerCamelCase__ : Tuple = getattr(_A , _A )
lowerCamelCase__ : List[str] = shape_pointer.shape
# let's reduce dimension
lowerCamelCase__ : List[str] = value[0]
else:
lowerCamelCase__ : int = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
F" {value.shape} for {full_name}" )
if weight_type == "weight":
lowerCamelCase__ : Dict = value
elif weight_type == "weight_g":
lowerCamelCase__ : Union[str, Any] = value
elif weight_type == "weight_v":
lowerCamelCase__ : Union[str, Any] = value
elif weight_type == "bias":
lowerCamelCase__ : int = value
elif weight_type == "param":
for attribute in hf_param_name.split("." ):
lowerCamelCase__ : Any = getattr(_A , _A )
lowerCamelCase__ : int = value
else:
lowerCamelCase__ : Dict = value
logger.info(F"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." )
def lowercase_ ( _A : List[Any] , _A : Any , _A : List[Any] , _A : List[Any] , _A : Tuple ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = None
for param_key in PARAM_MAPPING.keys():
if full_name.endswith(_A ):
lowerCamelCase__ : List[Any] = PARAM_MAPPING[full_name.split("." )[-1]]
lowerCamelCase__ : int = "param"
if weight_type is not None and weight_type != "param":
lowerCamelCase__ : Union[str, Any] = ".".join([key, weight_type] )
elif weight_type is not None and weight_type == "param":
lowerCamelCase__ : Union[str, Any] = ".".join([key, hf_param_name] )
else:
lowerCamelCase__ : str = key
lowerCamelCase__ : List[str] = value if "lm_head" in full_key else value[0]
A : int = {
"W_a": "linear_1.weight",
"W_b": "linear_2.weight",
"b_a": "linear_1.bias",
"b_b": "linear_2.bias",
"ln_W": "norm.weight",
"ln_b": "norm.bias",
}
def lowercase_ ( _A : Optional[int] , _A : Any , _A : Optional[Any]=None , _A : Tuple=None ):
"""simple docstring"""
lowerCamelCase__ : int = False
for key, mapped_key in MAPPING.items():
lowerCamelCase__ : Dict = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]:
lowerCamelCase__ : Tuple = True
if "*" in mapped_key:
lowerCamelCase__ : Any = name.split(_A )[0].split("." )[-2]
lowerCamelCase__ : Optional[int] = mapped_key.replace("*" , _A )
if "weight_g" in name:
lowerCamelCase__ : Union[str, Any] = "weight_g"
elif "weight_v" in name:
lowerCamelCase__ : List[Any] = "weight_v"
elif "bias" in name:
lowerCamelCase__ : List[Any] = "bias"
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
lowerCamelCase__ : Optional[Any] = "weight"
else:
lowerCamelCase__ : Tuple = None
if hf_dict is not None:
rename_dict(_A , _A , _A , _A , _A )
else:
set_recursively(_A , _A , _A , _A , _A )
return is_used
return is_used
def lowercase_ ( _A : Dict , _A : int , _A : int ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = []
lowerCamelCase__ : Union[str, Any] = fairseq_model.state_dict()
lowerCamelCase__ : Optional[int] = hf_model.wavaveca.feature_extractor
for name, value in fairseq_dict.items():
lowerCamelCase__ : Union[str, Any] = False
if "conv_layers" in name:
load_conv_layer(
_A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , )
lowerCamelCase__ : Optional[int] = True
else:
lowerCamelCase__ : Optional[int] = load_wavaveca_layer(_A , _A , _A )
if not is_used:
unused_weights.append(_A )
logger.warning(F"Unused weights: {unused_weights}" )
def lowercase_ ( _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : List[Any] , _A : Union[str, Any] ):
"""simple docstring"""
lowerCamelCase__ : int = full_name.split("conv_layers." )[-1]
lowerCamelCase__ : Optional[Any] = name.split("." )
lowerCamelCase__ : Any = int(items[0] )
lowerCamelCase__ : int = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." )
lowerCamelCase__ : Tuple = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." )
lowerCamelCase__ : Tuple = value
logger.info(F"Feat extract conv layer {layer_id} was initialized from {full_name}." )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found." )
lowerCamelCase__ : Union[str, Any] = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"{full_name} has size {value.shape}, but"
F" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found." )
lowerCamelCase__ : Any = value
logger.info(F"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." )
else:
unused_weights.append(_A )
@torch.no_grad()
def lowercase_ ( _A : int , _A : Any , _A : Any=None , _A : List[Any]=None , _A : Tuple=True , _A : List[Any]=False ):
"""simple docstring"""
if config_path is not None:
lowerCamelCase__ : Optional[Any] = WavaVecaConfig.from_pretrained(_A )
else:
lowerCamelCase__ : str = WavaVecaConfig()
if is_seq_class:
lowerCamelCase__ : str = read_txt_into_dict(_A )
lowerCamelCase__ : List[Any] = idalabel
lowerCamelCase__ : List[Any] = WavaVecaForSequenceClassification(_A )
lowerCamelCase__ : Optional[int] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , )
feature_extractor.save_pretrained(_A )
elif is_finetuned:
if dict_path:
lowerCamelCase__ : Dict = Dictionary.load(_A )
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
lowerCamelCase__ : List[Any] = target_dict.pad_index
lowerCamelCase__ : str = target_dict.bos_index
lowerCamelCase__ : str = target_dict.eos_index
lowerCamelCase__ : Tuple = len(target_dict.symbols )
lowerCamelCase__ : Optional[Any] = os.path.join(_A , "vocab.json" )
if not os.path.isdir(_A ):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_A ) )
return
os.makedirs(_A , exist_ok=_A )
lowerCamelCase__ : List[str] = target_dict.indices
# fairseq has the <pad> and <s> switched
lowerCamelCase__ : str = 0
lowerCamelCase__ : Dict = 1
with open(_A , "w" , encoding="utf-8" ) as vocab_handle:
json.dump(_A , _A )
lowerCamelCase__ : Any = WavaVecaCTCTokenizer(
_A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_A , )
lowerCamelCase__ : Dict = True if config.feat_extract_norm == "layer" else False
lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , )
lowerCamelCase__ : Any = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A )
processor.save_pretrained(_A )
lowerCamelCase__ : int = WavaVecaForCTC(_A )
else:
lowerCamelCase__ : Optional[Any] = WavaVecaForPreTraining(_A )
if is_finetuned or is_seq_class:
lowerCamelCase__ : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} )
else:
lowerCamelCase__ : Dict = argparse.Namespace(task="audio_pretraining" )
lowerCamelCase__ : Any = fairseq.tasks.setup_task(_A )
lowerCamelCase__ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A )
lowerCamelCase__ : List[str] = model[0].eval()
recursively_load_weights(_A , _A , not is_finetuned )
hf_wavavec.save_pretrained(_A )
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
parser.add_argument(
"--is_seq_class",
action="store_true",
help="Whether the model to convert is a fine-tuned sequence classification model or not",
)
A : Optional[Any] = parser.parse_args()
A : Any = not args.not_finetuned and not args.is_seq_class
convert_wavaveca_checkpoint(
args.checkpoint_path,
args.pytorch_dump_folder_path,
args.config_path,
args.dict_path,
is_finetuned,
args.is_seq_class,
)
| 717 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 0 |
def UpperCamelCase__ ( _A : float ):
"""simple docstring"""
return 10 - x * x
def UpperCamelCase__ ( _A : float , _A : float ):
"""simple docstring"""
if equation(_A ) * equation(_A ) >= 0:
raise ValueError("Wrong space!" )
lowerCamelCase__ : List[str] = a
while (b - a) >= 0.01:
# Find middle point
lowerCamelCase__ : List[Any] = (a + b) / 2
# Check if middle point is root
if equation(_A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(_A ) * equation(_A ) < 0:
lowerCamelCase__ : List[str] = c
else:
lowerCamelCase__ : List[Any] = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 718 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 719 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import math
import unittest
def lowercase_ ( _A : int ):
"""simple docstring"""
assert isinstance(_A , _A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
with self.assertRaises(__lowerCamelCase ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , )
self.assertFalse(
is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 720 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
lowerCamelCase__
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 721 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 0 |
def lowercase_ ( _A : List[Any] , _A : int , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : int ):
if index == r:
for j in range(_A ):
print(data[j] , end=" " )
print(" " )
return
# When no more elements are there to put in data[]
if i >= n:
return
# current is included, put next at next location
lowerCamelCase__ : Optional[Any] = arr[i]
combination_util(_A , _A , _A , index + 1 , _A , i + 1 )
# current is excluded, replace it with
# next (Note that i+1 is passed, but
# index is not changed)
combination_util(_A , _A , _A , _A , _A , i + 1 )
# The main function that prints all combinations
# of size r in arr[] of size n. This function
# mainly uses combinationUtil()
def lowercase_ ( _A : List[Any] , _A : str , _A : int ):
lowerCamelCase__ : Dict = [0] * r
# Print all combination using temporary array 'data[]'
combination_util(_A , _A , _A , 0 , _A , 0 )
if __name__ == "__main__":
# Driver code to check the function above
A : str = [10, 20, 30, 40, 50]
print_combination(arr, len(arr), 3)
# This code is contributed by Ambuj sahu
| 700 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
from collections import defaultdict
def lowercase_ ( _A : str , _A : str ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = first_str.lower().strip()
lowerCamelCase__ : Optional[Any] = second_str.lower().strip()
# Remove whitespace
lowerCamelCase__ : Tuple = first_str.replace(" " , "" )
lowerCamelCase__ : str = second_str.replace(" " , "" )
# Strings of different lengths are not anagrams
if len(_A ) != len(_A ):
return False
# Default values for count should be 0
lowerCamelCase__ : defaultdict[str, int] = defaultdict(_A )
# For each character in input strings,
# increment count in the corresponding
for i in range(len(_A ) ):
count[first_str[i]] += 1
count[second_str[i]] -= 1
return all(_count == 0 for _count in count.values() )
if __name__ == "__main__":
from doctest import testmod
testmod()
A : Dict = input("Enter the first string ").strip()
A : int = input("Enter the second string ").strip()
A : Union[str, Any] = check_anagrams(input_a, input_b)
print(f'{input_a} and {input_b} are {"" if status else "not "}anagrams.')
| 701 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 702 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 0 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp()
lowerCamelCase__ : Optional[int] = BlipImageProcessor()
lowerCamelCase__ : Tuple = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
lowerCamelCase__ : Optional[Any] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" )
lowerCamelCase__ : List[str] = InstructBlipProcessor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Dict ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def lowerCAmelCase ( self : Dict , **__lowerCamelCase : Dict ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def lowerCAmelCase ( self : Optional[int] , **__lowerCamelCase : int ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).qformer_tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase__ : Optional[int] = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ : str = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCamelCase__ : str = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
self.assertIsInstance(processor.qformer_tokenizer , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.get_image_processor()
lowerCamelCase__ : str = self.get_tokenizer()
lowerCamelCase__ : Optional[int] = self.get_qformer_tokenizer()
lowerCamelCase__ : Dict = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs()
lowerCamelCase__ : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="np" )
lowerCamelCase__ : Optional[int] = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : str = self.get_image_processor()
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ : Any = self.get_qformer_tokenizer()
lowerCamelCase__ : int = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : str = "lower newer"
lowerCamelCase__ : Optional[int] = processor(text=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
lowerCamelCase__ : List[Any] = qformer_tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : int = self.get_image_processor()
lowerCamelCase__ : Tuple = self.get_tokenizer()
lowerCamelCase__ : List[str] = self.get_qformer_tokenizer()
lowerCamelCase__ : Dict = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Dict = "lower newer"
lowerCamelCase__ : List[str] = self.prepare_image_inputs()
lowerCamelCase__ : List[str] = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(
list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.get_image_processor()
lowerCamelCase__ : Optional[Any] = self.get_tokenizer()
lowerCamelCase__ : Optional[Any] = self.get_qformer_tokenizer()
lowerCamelCase__ : str = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ : int = processor.batch_decode(__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Any = self.get_image_processor()
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ : Union[str, Any] = self.get_qformer_tokenizer()
lowerCamelCase__ : str = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Dict = "lower newer"
lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs()
lowerCamelCase__ : Any = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(
list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
| 703 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 0 |
from __future__ import annotations
def lowercase_ ( _A : list[int] ):
"""simple docstring"""
return len(set(_A ) ) == len(_A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 704 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : List[str] = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 705 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import functools
def lowercase_ ( _A : list[int] , _A : list[int] ):
"""simple docstring"""
if not isinstance(_A , _A ) or not all(isinstance(_A , _A ) for day in days ):
raise ValueError("The parameter days should be a list of integers" )
if len(_A ) != 3 or not all(isinstance(_A , _A ) for cost in costs ):
raise ValueError("The parameter costs should be a list of three integers" )
if len(_A ) == 0:
return 0
if min(_A ) <= 0:
raise ValueError("All days elements should be greater than 0" )
if max(_A ) >= 366:
raise ValueError("All days elements should be less than 366" )
lowerCamelCase__ : str = set(_A )
@functools.cache
def dynamic_programming(_A : int ) -> int:
if index > 365:
return 0
if index not in days_set:
return dynamic_programming(index + 1 )
return min(
costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , )
return dynamic_programming(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 706 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 0 |
from math import pi, sqrt
def lowercase_ ( _A : float ):
"""simple docstring"""
if num <= 0:
raise ValueError("math domain error" )
if num > 171.5:
raise OverflowError("math range error" )
elif num - int(_A ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(_A )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase_ ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(_A )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
A : Dict = 1.0
while num:
A : List[str] = float(input("Gamma of: "))
print(F'gamma({num}) = {gamma(num)}')
print("\nEnter 0 to exit...")
| 707 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import pprint
import requests
A : List[str] = "https://zenquotes.io/api"
def lowercase_ ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + "/today" ).json()
def lowercase_ ( ):
"""simple docstring"""
return requests.get(API_ENDPOINT_URL + "/random" ).json()
if __name__ == "__main__":
A : Union[str, Any] = random_quotes()
pprint.pprint(response)
| 708 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 0 |
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase_ ( _A : Optional[int] , _A : int , _A : Optional[int]=None ):
"""simple docstring"""
assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match"
lowerCamelCase__ : List[Any] = nn.Parameter(_A )
if bias is not None:
assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match"
lowerCamelCase__ : Any = nn.Parameter(_A )
def lowercase_ ( _A : List[Any] , _A : Union[str, Any] , _A : str ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = np.asarray(weights[0] )
lowerCamelCase__ : Dict = np.asarray(weights[1] )
lowerCamelCase__ : Optional[int] = np.asarray(weights[2] )
set_param(
torch_layer.self_attention.query_key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , )
set_param(
torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , )
def lowercase_ ( _A : Dict , _A : Tuple , _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : Tuple = np.asarray(weights[0] )
lowerCamelCase__ : List[Any] = np.asarray(weights[1] )
lowerCamelCase__ : str = np.asarray(weights[2] )
lowerCamelCase__ : Optional[int] = np.asarray(weights[3] )
set_param(
torch_layer.self_attention.query , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , )
set_param(
torch_layer.self_attention.key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , )
set_param(
torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , )
set_param(
torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , )
def lowercase_ ( _A : Tuple , _A : str , _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = weights[0][0][0]
lowerCamelCase__ : str = np.asarray(layer_norm_a[0] )
lowerCamelCase__ : Any = np.asarray(layer_norm_a[1] )
set_param(
torch_block.attention.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , )
# lsh weights + output
lowerCamelCase__ : Union[str, Any] = weights[0][1]
if len(_A ) < 4:
set_layer_weights_in_torch_lsh(_A , torch_block.attention , _A )
else:
set_layer_weights_in_torch_local(_A , torch_block.attention , _A )
# intermediate weighs
lowerCamelCase__ : Dict = weights[2][0][1][2]
# Chunked Feed Forward
if len(_A ) == 4:
lowerCamelCase__ : Optional[int] = intermediate_weights[2]
# layernorm 2
lowerCamelCase__ : List[str] = np.asarray(intermediate_weights[0][0] )
lowerCamelCase__ : Union[str, Any] = np.asarray(intermediate_weights[0][1] )
set_param(
torch_block.feed_forward.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , )
# intermediate dense
lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[1][0] )
lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[1][1] )
set_param(
torch_block.feed_forward.dense.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , )
# intermediate out
lowerCamelCase__ : str = np.asarray(intermediate_weights[4][0] )
lowerCamelCase__ : Tuple = np.asarray(intermediate_weights[4][1] )
set_param(
torch_block.feed_forward.output.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , )
def lowercase_ ( _A : List[Any] , _A : List[str] , _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = torch_model.reformer
# word embeds
lowerCamelCase__ : List[Any] = np.asarray(weights[1] )
set_param(
torch_model_reformer.embeddings.word_embeddings , torch.tensor(_A ) , )
if isinstance(weights[3] , _A ):
lowerCamelCase__ : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights ) ):
lowerCamelCase__ : Optional[int] = np.asarray(weights[3][emb_idx][0] )
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), F"{position_embeddings[emb_idx]} emb does not match"
lowerCamelCase__ : str = nn.Parameter(torch.tensor(_A ) )
lowerCamelCase__ : Optional[int] = weights[5]
assert len(torch_model_reformer.encoder.layers ) * 4 == len(
_A ), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ):
lowerCamelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(_A , _A , _A )
# output layer norm
lowerCamelCase__ : Dict = np.asarray(weights[7][0] )
lowerCamelCase__ : Any = np.asarray(weights[7][1] )
set_param(
torch_model_reformer.encoder.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , )
# output embeddings
lowerCamelCase__ : List[Any] = np.asarray(weights[9][0] )
lowerCamelCase__ : Union[str, Any] = np.asarray(weights[9][1] )
set_param(
torch_model.lm_head.decoder , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , )
def lowercase_ ( _A : Any , _A : Union[str, Any] , _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : Any = ReformerConfig.from_json_file(_A )
print(F"Building PyTorch model from configuration: {config}" )
lowerCamelCase__ : List[Any] = ReformerModelWithLMHead(_A )
with open(_A , "rb" ) as f:
lowerCamelCase__ : Tuple = pickle.load(_A )["weights"]
set_model_weights_in_torch(_A , _A , config.hidden_size )
# Save pytorch-model
print(F"Save PyTorch model to {pytorch_dump_path}" )
torch.save(model.state_dict() , _A )
if __name__ == "__main__":
A : Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
A : Union[str, Any] = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| 709 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 0 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
A : Any = getLogger(__name__)
def lowercase_ ( _A : str , _A : str , _A : str , _A : int = 8 , _A : int = 1024 , _A : List[str]="val" , _A : Tuple=None , _A : Union[str, Any]=False , _A : Dict="summarization" , _A : str=None , _A : List[Any]=1 , _A : Dict = None , _A : int="" , **_A : str , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = str(_A )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=_A )
lowerCamelCase__ : Optional[Any] = Path(_A )
lowerCamelCase__ : Tuple = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(_A )
lowerCamelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ).cuda()
if fpaa:
lowerCamelCase__ : Dict = model.half()
# determine if we need to increase num_beams
use_task_specific_params(_A , _A ) # update config with task specific params
lowerCamelCase__ : Tuple = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
lowerCamelCase__ : List[Any] = num_return_sequences
lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
lowerCamelCase__ : List[str] = tokenizer.model_max_length
if prefix is None:
lowerCamelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or ""
lowerCamelCase__ : Dict = SeqaSeqDataset(
_A , _A , _A , max_target_length=1024 , type_path=_A , n_obs=_A , prefix=_A , **_A , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
lowerCamelCase__ : Optional[Any] = ds.make_sortish_sampler(_A , distributed=_A , add_extra_examples=_A , shuffle=_A )
lowerCamelCase__ : str = DataLoader(_A , sampler=_A , batch_size=_A , collate_fn=ds.collate_fn )
lowerCamelCase__ : List[str] = []
for batch in tqdm(_A ):
lowerCamelCase__ : Optional[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=_A , num_beams=_A , **_A , )
lowerCamelCase__ : Any = tokenizer.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )
lowerCamelCase__ : str = batch["ids"]
if num_return_sequences > 1:
lowerCamelCase__ : str = chunks(_A , _A ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(_A ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(_A , _A )
return results, sampler.num_replicas
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=_A , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=_A , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=_A , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=_A , default=_A )
parser.add_argument(
"--type_path" , type=_A , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=_A , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=_A , default=8 , required=_A , help="batch size" )
parser.add_argument(
"--local_rank" , type=_A , default=-1 , required=_A , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=_A , default=_A , required=_A , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=_A , default=1 , required=_A , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=_A , default=600 , required=_A , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=_A , default=_A , required=_A )
parser.add_argument("--tgt_lang" , type=_A , default=_A , required=_A )
parser.add_argument(
"--prefix" , type=_A , required=_A , default=_A , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
lowerCamelCase__ : List[Any] = time.time()
lowerCamelCase__ : List[str] = parser.parse_known_args()
lowerCamelCase__ : Optional[int] = parse_numeric_n_bool_cl_kwargs(_A )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
lowerCamelCase__ : int = Path(args.save_dir + "_tmp" )
Path(_A ).mkdir(exist_ok=_A ) # this handles locking.
lowerCamelCase__ : Any = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
lowerCamelCase__ : Dict = {}
if args.src_lang is not None:
lowerCamelCase__ : Dict = args.src_lang
if args.tgt_lang is not None:
lowerCamelCase__ : Any = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=_A )
lowerCamelCase__ : Dict = eval_data_dir(
args.data_dir , _A , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_A , **_A , )
if args.local_rank <= 0:
lowerCamelCase__ : Tuple = Path(args.save_dir )
save_dir.mkdir(exist_ok=_A )
lowerCamelCase__ : Optional[int] = gather_results_from_each_node(_A , _A , args.sync_timeout )
lowerCamelCase__ : int = combine_partial_results(_A )
if args.num_return_sequences > 1:
lowerCamelCase__ : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(_A , _A )
return
lowerCamelCase__ : Union[str, Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(_A ) as f:
lowerCamelCase__ : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(_A )]
# Calculate metrics, save metrics, and save _generations.txt
lowerCamelCase__ : Optional[Any] = "translation" in args.task
lowerCamelCase__ : int = calculate_bleu if calc_bleu else calculate_rouge
lowerCamelCase__ : List[str] = "bleu" if calc_bleu else "rouge"
lowerCamelCase__ : Dict = score_fn(_A , _A )
lowerCamelCase__ : int = len(_A )
lowerCamelCase__ : Optional[int] = time.time() - start_time
lowerCamelCase__ : str = round(runtime / metrics["n_obs"] , 4 )
lowerCamelCase__ : Any = num_replicas
# TODO(@stas00): add whatever metadata to metrics
lowerCamelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(_A , _A , indent=_A )
print(_A )
write_txt_file(_A , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(_A , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(_A )
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : int = []
for partial_result in partial_results:
records.extend(_A )
lowerCamelCase__ : Optional[int] = sorted(_A , key=lambda _A : x["id"] )
lowerCamelCase__ : Dict = [x["pred"] for x in records]
return preds
def lowercase_ ( _A : str , _A : str , _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : str = time.time()
logger.info("waiting for all nodes to finish" )
lowerCamelCase__ : Dict = None
while (time.time() - start_wait) < timeout:
lowerCamelCase__ : Dict = list(save_dir.glob("rank_*.json" ) )
if len(_A ) < num_replicas:
continue
try:
# make sure all json files are fully saved
lowerCamelCase__ : Tuple = lmap(_A , _A )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 710 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 0 |
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import (
ImageTextPipelineOutput,
UniDiffuserPipeline,
)
else:
from .modeling_text_decoder import UniDiffuserTextDecoder
from .modeling_uvit import UniDiffuserModel, UTransformeraDModel
from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
| 711 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 0 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 712 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 0 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class _lowercase ( lowercase__ , lowercase__):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __lowerCamelCase : int = 768 , ):
'''simple docstring'''
super().__init__()
lowerCamelCase__ : List[Any] = nn.Parameter(torch.zeros(1 , __lowerCamelCase ) )
lowerCamelCase__ : int = nn.Parameter(torch.ones(1 , __lowerCamelCase ) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Union[str, torch.device]] = None , __lowerCamelCase : Optional[torch.dtype] = None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = nn.Parameter(self.mean.to(__lowerCamelCase ).to(__lowerCamelCase ) )
lowerCamelCase__ : Union[str, Any] = nn.Parameter(self.std.to(__lowerCamelCase ).to(__lowerCamelCase ) )
return self
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : str = (embeds - self.mean) * 1.0 / self.std
return embeds
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = (embeds * self.std) + self.mean
return embeds
| 713 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 0 |
from .testing import (
are_the_same_tensors,
execute_subprocess_async,
require_bnb,
require_cpu,
require_cuda,
require_huggingface_suite,
require_mps,
require_multi_gpu,
require_multi_xpu,
require_safetensors,
require_single_gpu,
require_single_xpu,
require_torch_min_version,
require_tpu,
require_xpu,
skip,
slow,
)
from .training import RegressionDataset, RegressionModel, RegressionModelaXPU
from .scripts import test_script, test_sync, test_ops # isort: skip
| 714 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = DiTPipeline
A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
A__ = PipelineTesterMixin.required_optional_params - {
"latents",
"num_images_per_prompt",
"callback",
"callback_steps",
}
A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
A__ = False
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Dict = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCamelCase , )
lowerCamelCase__ : int = AutoencoderKL()
lowerCamelCase__ : int = DDIMScheduler()
lowerCamelCase__ : str = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=0 ):
'''simple docstring'''
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Dict = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Any = {
"class_labels": [1],
"generator": generator,
"num_inference_steps": 2,
"output_type": "numpy",
}
return inputs
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Tuple = "cpu"
lowerCamelCase__ : int = self.get_dummy_components()
lowerCamelCase__ : Any = self.pipeline_class(**__lowerCamelCase )
pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase )
lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
lowerCamelCase__ : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
lowerCamelCase__ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__lowerCamelCase , 1E-3 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Dict = torch.manual_seed(0 )
lowerCamelCase__ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" )
pipe.to("cuda" )
lowerCamelCase__ : Tuple = ["vase", "umbrella", "white shark", "white wolf"]
lowerCamelCase__ : List[str] = pipe.get_label_ids(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type="np" ).images
for word, image in zip(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Any = load_numpy(
f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" )
assert np.abs((expected_image - image).max() ) < 1E-2
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" )
lowerCamelCase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("cuda" )
lowerCamelCase__ : Any = ["vase", "umbrella"]
lowerCamelCase__ : int = pipe.get_label_ids(__lowerCamelCase )
lowerCamelCase__ : int = torch.manual_seed(0 )
lowerCamelCase__ : Optional[int] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type="np" ).images
for word, image in zip(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : str = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/dit/{word}_512.npy" )
assert np.abs((expected_image - image).max() ) < 1E-1
| 715 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Dict = [0 for i in range(len(_A ) )]
# initialize interval's left pointer and right pointer
lowerCamelCase__ : List[str] = 0, 0
for i in range(1 , len(_A ) ):
# case when current index is inside the interval
if i <= right_pointer:
lowerCamelCase__ : Dict = min(right_pointer - i + 1 , z_result[i - left_pointer] )
lowerCamelCase__ : Tuple = min_edge
while go_next(_A , _A , _A ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
lowerCamelCase__ : Any = i, i + z_result[i] - 1
return z_result
def lowercase_ ( _A : int , _A : list[int] , _A : str ):
"""simple docstring"""
return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]]
def lowercase_ ( _A : str , _A : str ):
"""simple docstring"""
lowerCamelCase__ : int = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
lowerCamelCase__ : Optional[int] = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(_A ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 716 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
A : Tuple = logging.get_logger(__name__)
if is_vision_available():
import PIL
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["pixel_values"]
def __init__( self : str , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : int = size if size is not None else {"shortest_edge": 224}
lowerCamelCase__ : Optional[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
lowerCamelCase__ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224}
lowerCamelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="crop_size" )
lowerCamelCase__ : List[str] = do_resize
lowerCamelCase__ : int = size
lowerCamelCase__ : Optional[int] = resample
lowerCamelCase__ : List[str] = do_center_crop
lowerCamelCase__ : Dict = crop_size
lowerCamelCase__ : List[Any] = do_rescale
lowerCamelCase__ : Optional[int] = rescale_factor
lowerCamelCase__ : Optional[Any] = do_normalize
lowerCamelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCamelCase__ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD
lowerCamelCase__ : Optional[Any] = do_convert_rgb
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ):
'''simple docstring'''
lowerCamelCase__ : int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
if "shortest_edge" not in size:
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" )
lowerCamelCase__ : Any = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" )
return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ):
'''simple docstring'''
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
'''simple docstring'''
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ : Dict = size if size is not None else self.size
lowerCamelCase__ : str = get_size_dict(__lowerCamelCase , param_name="size" , default_to_square=__lowerCamelCase )
lowerCamelCase__ : Dict = resample if resample is not None else self.resample
lowerCamelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase__ : int = crop_size if crop_size is not None else self.crop_size
lowerCamelCase__ : List[str] = get_size_dict(__lowerCamelCase , param_name="crop_size" , default_to_square=__lowerCamelCase )
lowerCamelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ : Optional[int] = image_std if image_std is not None else self.image_std
lowerCamelCase__ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCamelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None:
raise ValueError("Size must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCamelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images]
# All transformations expect numpy arrays.
lowerCamelCase__ : Tuple = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
lowerCamelCase__ : int = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
if do_center_crop:
lowerCamelCase__ : Any = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images]
if do_rescale:
lowerCamelCase__ : List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images]
if do_normalize:
lowerCamelCase__ : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images]
lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
lowerCamelCase__ : Dict = {"pixel_values": images}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
| 717 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 0 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "Speech2TextFeatureExtractor"
A__ = "Speech2TextTokenizer"
def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
super().__init__(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : str = self.feature_extractor
lowerCamelCase__ : Optional[int] = False
def __call__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : str ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__lowerCamelCase , **__lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
lowerCamelCase__ : Tuple = kwargs.pop("raw_speech" )
else:
lowerCamelCase__ : Optional[int] = kwargs.pop("audio" , __lowerCamelCase )
lowerCamelCase__ : Any = kwargs.pop("sampling_rate" , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = kwargs.pop("text" , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
lowerCamelCase__ : List[str] = args[0]
lowerCamelCase__ : int = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
lowerCamelCase__ : List[str] = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase )
if text is not None:
lowerCamelCase__ : str = self.tokenizer(__lowerCamelCase , **__lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCamelCase__ : List[str] = encodings["input_ids"]
return inputs
def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@contextmanager
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
lowerCamelCase__ : int = True
lowerCamelCase__ : Dict = self.tokenizer
yield
lowerCamelCase__ : Tuple = self.feature_extractor
lowerCamelCase__ : Any = False
| 718 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
'''simple docstring'''
from __future__ import annotations
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import is_tf_available, is_vision_available
from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_tf_bert import TFBertModelTester
from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester
from ..deit.test_modeling_tf_deit import TFDeiTModelTester
from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester
from ..vit.test_modeling_tf_vit import TFViTModelTester
if is_tf_available():
from transformers import (
TFBertModel,
TFCLIPVisionModel,
TFDeiTModel,
TFRobertaModel,
TFVisionTextDualEncoderModel,
TFViTModel,
VisionTextDualEncoderConfig,
)
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor
def lowercase_ ( _A : Optional[Any] ):
"""simple docstring"""
if isinstance(_A , collections.abc.Iterable ):
return x
return (x, x)
@require_tf
class _lowercase :
"""simple docstring"""
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : str ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : int ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=None , **__lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : int = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model}
lowerCamelCase__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase )
lowerCamelCase__ : Any = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase )
self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase )
lowerCamelCase__ : Tuple = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase )
lowerCamelCase__ : List[Any] = output[0].numpy()
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : List[str] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase )
lowerCamelCase__ : List[str] = after_output[0].numpy()
lowerCamelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCamelCase , 1E-5 )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : int = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase )
lowerCamelCase__ : List[str] = model(
input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase )
lowerCamelCase__ : Dict = output.vision_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase__ : Optional[int] = to_atuple(vision_model.config.image_size )
lowerCamelCase__ : Dict = to_atuple(vision_model.config.patch_size )
lowerCamelCase__ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCamelCase__ : Optional[Any] = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCamelCase__ : List[Any] = output.text_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCAmelCase ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float ):
'''simple docstring'''
lowerCamelCase__ : str = np.abs((a - b) ).max()
self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , f"Difference between torch and flax is {diff} (>= {tol})." )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_model(**__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.prepare_config_and_inputs()
self.check_save_load(**__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Any = self.get_pretrained_model_and_inputs()
lowerCamelCase__ : Tuple = model_a(**__lowerCamelCase )
lowerCamelCase__ : int = outputs[0].numpy()
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Tuple = model_a(**__lowerCamelCase )
lowerCamelCase__ : Optional[int] = after_outputs[0].numpy()
lowerCamelCase__ : int = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(__lowerCamelCase , 1E-5 )
@require_tf
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" )
lowerCamelCase__ : Optional[int] = 13
lowerCamelCase__ : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase__ : List[Any] = random_attention_mask([batch_size, 4] )
lowerCamelCase__ : List[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any ):
'''simple docstring'''
lowerCamelCase__ : str = TFViTModel(__lowerCamelCase , name="vision_model" )
lowerCamelCase__ : int = TFBertModel(__lowerCamelCase , name="text_model" )
return vision_model, text_model
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFViTModelTester(self )
lowerCamelCase__ : int = TFBertModelTester(self )
lowerCamelCase__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : str = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : List[str] = vision_config_and_inputs
(
lowerCamelCase__
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" )
lowerCamelCase__ : List[Any] = 13
lowerCamelCase__ : List[str] = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] )
lowerCamelCase__ : Dict = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Any=None , **__lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : int = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase )
lowerCamelCase__ : List[Any] = model(
input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase )
lowerCamelCase__ : List[str] = output.vision_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers )
# in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens)
lowerCamelCase__ : Tuple = to_atuple(vision_model.config.image_size )
lowerCamelCase__ : Tuple = to_atuple(vision_model.config.patch_size )
lowerCamelCase__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
lowerCamelCase__ : List[Any] = num_patches + 2
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
lowerCamelCase__ : Optional[int] = output.text_model_output.attentions
self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = TFDeiTModel(__lowerCamelCase , name="vision_model" )
lowerCamelCase__ : Optional[int] = TFRobertaModel(__lowerCamelCase , name="text_model" )
return vision_model, text_model
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Any = TFDeiTModelTester(self )
lowerCamelCase__ : List[Any] = TFRobertaModelTester(self )
lowerCamelCase__ : int = vit_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : Dict = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : str = vision_config_and_inputs
(
lowerCamelCase__
) : Tuple = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_tf
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(
"Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" )
lowerCamelCase__ : Any = 13
lowerCamelCase__ : int = floats_tensor(
[
batch_size,
model.vision_model.config.num_channels,
model.vision_model.config.image_size,
model.vision_model.config.image_size,
] )
lowerCamelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size )
lowerCamelCase__ : int = random_attention_mask([batch_size, 4] )
lowerCamelCase__ : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask}
return model, inputs
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = TFCLIPVisionModel(__lowerCamelCase , name="vision_model" )
lowerCamelCase__ : Union[str, Any] = TFBertModel(__lowerCamelCase , name="text_model" )
return vision_model, text_model
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = TFCLIPVisionModelTester(self )
lowerCamelCase__ : Optional[int] = TFBertModelTester(self )
lowerCamelCase__ : List[str] = clip_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs()
lowerCamelCase__ : Union[str, Any] = vision_config_and_inputs
(
lowerCamelCase__
) : Optional[int] = text_config_and_inputs
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": input_mask,
"input_ids": input_ids,
"text_token_type_ids": token_type_ids,
"text_sequence_labels": sequence_labels,
"text_token_labels": token_labels,
"text_choice_labels": choice_labels,
}
@require_vision
@require_tf
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained(
"clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" )
lowerCamelCase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
lowerCamelCase__ : int = processor(
text=["una foto di un gatto", "una foto di un cane"] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" )
lowerCamelCase__ : Tuple = model(**__lowerCamelCase )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
lowerCamelCase__ : Optional[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] )
self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1E-3 ) )
| 719 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 0 |
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(lowercase__) , "Tatoeba directory does not exist.")
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Any = tempfile.mkdtemp()
return TatoebaConverter(save_dir=__lowerCamelCase )
@slow
def lowerCAmelCase ( self : str ):
'''simple docstring'''
self.resolver.convert_models(["heb-eng"] )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCamelCase )
assert mmeta["long_pair"] == "heb-eng"
| 720 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 0 |
def lowercase_ ( _A : list , _A : int = 0 ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = length or len(_A )
lowerCamelCase__ : List[Any] = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
lowerCamelCase__ : Dict = list_data[i + 1], list_data[i]
lowerCamelCase__ : str = True
return list_data if not swapped else bubble_sort(_A , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 721 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 0 |
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ):
'''simple docstring'''
self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) )
for a, b in zip(__lowerCamelCase , __lowerCamelCase ):
self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(__lowerCamelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step , 3 )
self.assertEqual(len(accumulator.gradients ) , 1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = None
ops.enable_eager_execution_internal()
lowerCamelCase__ : Optional[Any] = tf.config.list_physical_devices("CPU" )
if len(__lowerCamelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
lowerCamelCase__ : Optional[Any] = tf.config.list_logical_devices(device_type="CPU" )
lowerCamelCase__ : str = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
lowerCamelCase__ : Tuple = GradientAccumulator()
lowerCamelCase__ : Union[str, Any] = tf.Variable([4.0, 3.0] )
lowerCamelCase__ : Union[str, Any] = create_optimizer(5E-5 , 10 , 5 )
lowerCamelCase__ : str = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase )
def accumulate_on_replica(__lowerCamelCase : Optional[int] ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) )
@tf.function
def accumulate(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ):
with strategy.scope():
lowerCamelCase__ : int = strategy.experimental_local_results(__lowerCamelCase )
local_variables[0].assign(__lowerCamelCase )
local_variables[1].assign(__lowerCamelCase )
strategy.run(__lowerCamelCase , args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(__lowerCamelCase )
def _check_local_values(__lowerCamelCase : str , __lowerCamelCase : Tuple ):
lowerCamelCase__ : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1E-2 )
self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1E-2 )
accumulate([1.0, 2.0] , [-1.0, 1.0] )
accumulate([3.0, -1.0] , [-1.0, -1.0] )
accumulate([-2.0, 2.0] , [3.0, -2.0] )
self.assertEqual(accumulator.step , 3 )
_check_local_values([2.0, 3.0] , [1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step , 0 )
_check_local_values([0.0, 0.0] , [0.0, 0.0] )
| 700 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 0 |
import heapq as hq
import math
from collections.abc import Iterator
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = str(id_ )
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : Any = []
lowerCamelCase__ : Dict = {} # {vertex:distance}
def __lt__( self : List[Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
return self.key < other.key
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return self.id
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Any ):
'''simple docstring'''
self.neighbors.append(__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = weight
def lowercase_ ( _A : str , _A : int , _A : Optional[int] , _A : List[str] ):
"""simple docstring"""
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , _A )
graph[b - 1].add_edge(graph[a - 1] , _A )
def lowercase_ ( _A : list , _A : Vertex ):
"""simple docstring"""
lowerCamelCase__ : str = []
for u in graph:
lowerCamelCase__ : str = math.inf
lowerCamelCase__ : str = None
lowerCamelCase__ : str = 0
lowerCamelCase__ : Union[str, Any] = graph[:]
while q:
lowerCamelCase__ : Any = min(_A )
q.remove(_A )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
lowerCamelCase__ : Dict = u
lowerCamelCase__ : int = u.edges[v.id]
for i in range(1 , len(_A ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase_ ( _A : list , _A : Vertex ):
"""simple docstring"""
for u in graph:
lowerCamelCase__ : Any = math.inf
lowerCamelCase__ : str = None
lowerCamelCase__ : Tuple = 0
lowerCamelCase__ : Tuple = list(_A )
hq.heapify(_A )
while h:
lowerCamelCase__ : int = hq.heappop(_A )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
lowerCamelCase__ : Dict = u
lowerCamelCase__ : int = u.edges[v.id]
hq.heapify(_A )
for i in range(1 , len(_A ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 701 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : List[str] = {
"microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json",
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "wavlm"
def __init__( self : str , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : Optional[Any]="group" , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : List[Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : int=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : str=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Optional[Any]=320 , __lowerCamelCase : int=800 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[Any]=0.0_5 , __lowerCamelCase : int=10 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : List[Any]=320 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=100 , __lowerCamelCase : Any=256 , __lowerCamelCase : Dict=256 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int="mean" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Dict=256 , __lowerCamelCase : Dict=(512, 512, 512, 512, 1500) , __lowerCamelCase : List[Any]=(5, 3, 3, 1, 1) , __lowerCamelCase : Any=(1, 2, 3, 1, 1) , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=80 , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : int=False , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=None , **__lowerCamelCase : Any , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase )
lowerCamelCase__ : List[Any] = hidden_size
lowerCamelCase__ : Union[str, Any] = feat_extract_norm
lowerCamelCase__ : List[Any] = feat_extract_activation
lowerCamelCase__ : Any = list(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = list(__lowerCamelCase )
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Tuple = conv_bias
lowerCamelCase__ : Union[str, Any] = num_buckets
lowerCamelCase__ : Dict = max_bucket_distance
lowerCamelCase__ : Optional[Any] = num_conv_pos_embeddings
lowerCamelCase__ : str = num_conv_pos_embedding_groups
lowerCamelCase__ : int = len(self.conv_dim )
lowerCamelCase__ : List[str] = num_hidden_layers
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_dropout
lowerCamelCase__ : Union[str, Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Dict = feat_proj_dropout
lowerCamelCase__ : Any = final_dropout
lowerCamelCase__ : List[Any] = layerdrop
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : str = initializer_range
lowerCamelCase__ : Tuple = num_ctc_classes
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = do_stable_layer_norm
lowerCamelCase__ : int = use_weighted_layer_sum
lowerCamelCase__ : int = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,"
f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__ : Union[str, Any] = apply_spec_augment
lowerCamelCase__ : Optional[int] = mask_time_prob
lowerCamelCase__ : List[str] = mask_time_length
lowerCamelCase__ : int = mask_time_min_masks
lowerCamelCase__ : Optional[int] = mask_feature_prob
lowerCamelCase__ : List[Any] = mask_feature_length
# parameters for pretraining with codevector quantized representations
lowerCamelCase__ : int = num_codevectors_per_group
lowerCamelCase__ : List[Any] = num_codevector_groups
lowerCamelCase__ : List[str] = contrastive_logits_temperature
lowerCamelCase__ : str = num_negatives
lowerCamelCase__ : Optional[Any] = codevector_dim
lowerCamelCase__ : str = proj_codevector_dim
lowerCamelCase__ : List[Any] = diversity_loss_weight
# ctc loss
lowerCamelCase__ : List[Any] = ctc_loss_reduction
lowerCamelCase__ : Optional[int] = ctc_zero_infinity
# adapter
lowerCamelCase__ : Tuple = add_adapter
lowerCamelCase__ : Tuple = adapter_kernel_size
lowerCamelCase__ : Optional[Any] = adapter_stride
lowerCamelCase__ : Dict = num_adapter_layers
lowerCamelCase__ : Any = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
lowerCamelCase__ : Any = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
lowerCamelCase__ : Optional[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Dict = list(__lowerCamelCase )
lowerCamelCase__ : int = list(__lowerCamelCase )
lowerCamelCase__ : Tuple = xvector_output_dim
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 702 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 0 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
A : List[Any] = logging.get_logger(__name__)
def lowercase_ ( _A : np.ndarray , _A : Union[int, Iterable[int]] , _A : bool , _A : int ):
"""simple docstring"""
def constraint_to_multiple_of(_A : Optional[Any] , _A : Optional[int] , _A : Any=0 , _A : int=None ):
lowerCamelCase__ : Tuple = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCamelCase__ : str = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCamelCase__ : Any = math.ceil(val / multiple ) * multiple
return x
lowerCamelCase__ : int = (output_size, output_size) if isinstance(_A , _A ) else output_size
lowerCamelCase__ : int = get_image_size(_A )
lowerCamelCase__ : List[str] = output_size
# determine new height and width
lowerCamelCase__ : int = output_height / input_height
lowerCamelCase__ : int = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCamelCase__ : Tuple = scale_width
else:
# fit height
lowerCamelCase__ : Optional[int] = scale_height
lowerCamelCase__ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=_A )
lowerCamelCase__ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=_A )
return (new_height, new_width)
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["pixel_values"]
def __init__( self : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = False , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , **__lowerCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = size if size is not None else {"height": 384, "width": 384}
lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase )
lowerCamelCase__ : Any = do_resize
lowerCamelCase__ : int = size
lowerCamelCase__ : str = keep_aspect_ratio
lowerCamelCase__ : Tuple = ensure_multiple_of
lowerCamelCase__ : Union[str, Any] = resample
lowerCamelCase__ : int = do_rescale
lowerCamelCase__ : int = rescale_factor
lowerCamelCase__ : List[Any] = do_normalize
lowerCamelCase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : bool = False , __lowerCamelCase : int = 1 , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
'''simple docstring'''
lowerCamelCase__ : str = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
lowerCamelCase__ : List[Any] = get_resize_output_image_size(
__lowerCamelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=__lowerCamelCase , multiple=__lowerCamelCase , )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
'''simple docstring'''
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : int , ):
'''simple docstring'''
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
lowerCamelCase__ : str = do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ : Tuple = size if size is not None else self.size
lowerCamelCase__ : Dict = get_size_dict(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCamelCase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCamelCase__ : int = resample if resample is not None else self.resample
lowerCamelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ : Dict = image_std if image_std is not None else self.image_std
lowerCamelCase__ : List[Any] = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
lowerCamelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
lowerCamelCase__ : Tuple = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
if do_rescale:
lowerCamelCase__ : Dict = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images]
if do_normalize:
lowerCamelCase__ : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images]
lowerCamelCase__ : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
lowerCamelCase__ : Optional[Any] = {"pixel_values": images}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Tuple] = None ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(__lowerCamelCase ):
lowerCamelCase__ : Any = target_sizes.numpy()
lowerCamelCase__ : Optional[Any] = []
for idx in range(len(__lowerCamelCase ) ):
lowerCamelCase__ : List[str] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__lowerCamelCase )
else:
lowerCamelCase__ : Union[str, Any] = logits.argmax(dim=1 )
lowerCamelCase__ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 703 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 0 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : str=13 , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : Optional[Any]=4 , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : Optional[int] = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : str = is_training
lowerCamelCase__ : Dict = use_attention_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : Tuple = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[Any] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Dict = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Union[str, Any] = num_choices
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Dict = None
if self.use_attention_mask:
lowerCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[int] = None
if self.use_token_type_ids:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Optional[Any] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
lowerCamelCase__ : List[Any] = config_and_inputs
lowerCamelCase__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = FlaxAlbertModelTester(self )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__ : Union[str, Any] = model_class_name.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = (1, 11, 768)
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Any = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 704 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.