code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = None
class _lowercase ( lowercase__ , lowercase__):
"""simple docstring"""
A__ = 2
@register_to_config
def __init__( self : List[str] , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 100 , __lowerCamelCase : float = 1.0_0_7 , __lowerCamelCase : float = 80 , __lowerCamelCase : float = 0.0_5 , __lowerCamelCase : float = 50 , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = sigma_max
# setable values
lowerCamelCase__ : int = None
lowerCamelCase__ : np.IntTensor = None
lowerCamelCase__ : torch.FloatTensor = None # sigma(t_i)
def lowerCAmelCase ( self : Any , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Optional[int] = None ):
'''simple docstring'''
return sample
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : Union[str, torch.device] = None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = num_inference_steps
lowerCamelCase__ : int = np.arange(0 , self.num_inference_steps )[::-1].copy()
lowerCamelCase__ : Union[str, Any] = torch.from_numpy(__lowerCamelCase ).to(__lowerCamelCase )
lowerCamelCase__ : Any = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
lowerCamelCase__ : Optional[int] = torch.tensor(__lowerCamelCase , dtype=torch.floataa , device=__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : Optional[torch.Generator] = None ):
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
lowerCamelCase__ : Dict = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
lowerCamelCase__ : Tuple = 0
# sample eps ~ N(0, S_noise^2 * I)
lowerCamelCase__ : Tuple = self.config.s_noise * randn_tensor(sample.shape , generator=__lowerCamelCase ).to(sample.device )
lowerCamelCase__ : str = sigma + gamma * sigma
lowerCamelCase__ : List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : str = sample_hat + sigma_hat * model_output
lowerCamelCase__ : Optional[Any] = (sample_hat - pred_original_sample) / sigma_hat
lowerCamelCase__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : float , __lowerCamelCase : float , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : Any = sample_prev + sigma_prev * model_output
lowerCamelCase__ : Any = (sample_prev - pred_original_sample) / sigma_prev
lowerCamelCase__ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=__lowerCamelCase , derivative=__lowerCamelCase , pred_original_sample=__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ):
'''simple docstring'''
raise NotImplementedError()
| 5 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_funnel import FunnelTokenizer
A : Union[str, Any] = logging.get_logger(__name__)
A : List[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
A : List[Any] = [
"small",
"small-base",
"medium",
"medium-base",
"intermediate",
"intermediate-base",
"large",
"large-base",
"xlarge",
"xlarge-base",
]
A : Optional[int] = {
"vocab_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json",
"funnel-transformer/small-base": (
"https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json"
),
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json",
"funnel-transformer/medium-base": (
"https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json",
"funnel-transformer/large-base": (
"https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json"
),
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json",
"funnel-transformer/xlarge-base": (
"https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json"
),
},
}
A : Union[str, Any] = {f'funnel-transformer/{name}': 512 for name in _model_names}
A : Union[str, Any] = {f'funnel-transformer/{name}': {"do_lower_case": True} for name in _model_names}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_INIT_CONFIGURATION
A__ = FunnelTokenizer
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = 2
def __init__( self : Optional[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<sep>" , __lowerCamelCase : Tuple="<pad>" , __lowerCamelCase : str="<cls>" , __lowerCamelCase : List[str]="<mask>" , __lowerCamelCase : Dict="<s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[str]="##" , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(
__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , clean_text=__lowerCamelCase , tokenize_chinese_chars=__lowerCamelCase , strip_accents=__lowerCamelCase , wordpieces_prefix=__lowerCamelCase , **__lowerCamelCase , )
lowerCamelCase__ : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __lowerCamelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __lowerCamelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __lowerCamelCase ) != tokenize_chinese_chars
):
lowerCamelCase__ : int = getattr(__lowerCamelCase , normalizer_state.pop("type" ) )
lowerCamelCase__ : Dict = do_lower_case
lowerCamelCase__ : Union[str, Any] = strip_accents
lowerCamelCase__ : Dict = tokenize_chinese_chars
lowerCamelCase__ : Optional[int] = normalizer_class(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = do_lower_case
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : List[str] = [self.sep_token_id]
lowerCamelCase__ : Optional[int] = [self.cls_token_id]
if token_ids_a is None:
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0]
return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self._tokenizer.model.save(__lowerCamelCase , name=__lowerCamelCase )
return tuple(__lowerCamelCase )
| 5 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 1 |
from typing import Dict, List, Optional, Tuple, Union
import torch
from ...models import AutoencoderKL, TransformeraDModel
from ...schedulers import KarrasDiffusionSchedulers
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Tuple , __lowerCamelCase : TransformeraDModel , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : KarrasDiffusionSchedulers , __lowerCamelCase : Optional[Dict[int, str]] = None , ):
'''simple docstring'''
super().__init__()
self.register_modules(transformer=__lowerCamelCase , vae=__lowerCamelCase , scheduler=__lowerCamelCase )
# create a imagenet -> id dictionary for easier use
lowerCamelCase__ : Dict = {}
if idalabel is not None:
for key, value in idalabel.items():
for label in value.split("," ):
lowerCamelCase__ : Dict = int(__lowerCamelCase )
lowerCamelCase__ : str = dict(sorted(self.labels.items() ) )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, List[str]] ):
'''simple docstring'''
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Optional[int] = list(__lowerCamelCase )
for l in label:
if l not in self.labels:
raise ValueError(
f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." )
return [self.labels[l] for l in label]
@torch.no_grad()
def __call__( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : float = 4.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ):
'''simple docstring'''
lowerCamelCase__ : str = len(__lowerCamelCase )
lowerCamelCase__ : Dict = self.transformer.config.sample_size
lowerCamelCase__ : Tuple = self.transformer.config.in_channels
lowerCamelCase__ : Union[str, Any] = randn_tensor(
shape=(batch_size, latent_channels, latent_size, latent_size) , generator=__lowerCamelCase , device=self.device , dtype=self.transformer.dtype , )
lowerCamelCase__ : Union[str, Any] = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents
lowerCamelCase__ : List[Any] = torch.tensor(__lowerCamelCase , device=self.device ).reshape(-1 )
lowerCamelCase__ : str = torch.tensor([1000] * batch_size , device=self.device )
lowerCamelCase__ : List[Any] = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels
# set step values
self.scheduler.set_timesteps(__lowerCamelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
if guidance_scale > 1:
lowerCamelCase__ : int = latent_model_input[: len(__lowerCamelCase ) // 2]
lowerCamelCase__ : Tuple = torch.cat([half, half] , dim=0 )
lowerCamelCase__ : Union[str, Any] = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = t
if not torch.is_tensor(__lowerCamelCase ):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
# This would be a good case for the `match` statement (Python 3.10+)
lowerCamelCase__ : List[Any] = latent_model_input.device.type == "mps"
if isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : List[str] = torch.floataa if is_mps else torch.floataa
else:
lowerCamelCase__ : Any = torch.intaa if is_mps else torch.intaa
lowerCamelCase__ : Dict = torch.tensor([timesteps] , dtype=__lowerCamelCase , device=latent_model_input.device )
elif len(timesteps.shape ) == 0:
lowerCamelCase__ : Any = timesteps[None].to(latent_model_input.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
lowerCamelCase__ : Any = timesteps.expand(latent_model_input.shape[0] )
# predict noise model_output
lowerCamelCase__ : List[str] = self.transformer(
__lowerCamelCase , timestep=__lowerCamelCase , class_labels=__lowerCamelCase ).sample
# perform guidance
if guidance_scale > 1:
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:]
lowerCamelCase__ , lowerCamelCase__ : Dict = torch.split(__lowerCamelCase , len(__lowerCamelCase ) // 2 , dim=0 )
lowerCamelCase__ : Any = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
lowerCamelCase__ : Optional[Any] = torch.cat([half_eps, half_eps] , dim=0 )
lowerCamelCase__ : Tuple = torch.cat([eps, rest] , dim=1 )
# learned sigma
if self.transformer.config.out_channels // 2 == latent_channels:
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = torch.split(__lowerCamelCase , __lowerCamelCase , dim=1 )
else:
lowerCamelCase__ : str = noise_pred
# compute previous image: x_t -> x_t-1
lowerCamelCase__ : Dict = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
if guidance_scale > 1:
lowerCamelCase__ , lowerCamelCase__ : int = latent_model_input.chunk(2 , dim=0 )
else:
lowerCamelCase__ : str = latent_model_input
lowerCamelCase__ : Optional[int] = 1 / self.vae.config.scaling_factor * latents
lowerCamelCase__ : Optional[int] = self.vae.decode(__lowerCamelCase ).sample
lowerCamelCase__ : List[str] = (samples / 2 + 0.5).clamp(0 , 1 )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
lowerCamelCase__ : Dict = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowerCamelCase__ : List[Any] = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (samples,)
return ImagePipelineOutput(images=__lowerCamelCase )
| 5 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
def lowercase_ ( _A : float ):
"""simple docstring"""
return 10 - x * x
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if equation(_A ) * equation(_A ) >= 0:
raise ValueError("Wrong space!" )
lowerCamelCase__ : List[str] = a
while (b - a) >= 0.01:
# Find middle point
lowerCamelCase__ : List[Any] = (a + b) / 2
# Check if middle point is root
if equation(_A ) == 0.0:
break
# Decide the side to repeat the steps
if equation(_A ) * equation(_A ) < 0:
lowerCamelCase__ : List[str] = c
else:
lowerCamelCase__ : List[Any] = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import argparse
import json
from collections import OrderedDict
import torch
from huggingface_hub import cached_download, hf_hub_url
from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification
def lowercase_ ( _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : Dict = []
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight",
F"stage{idx}.patch_embed.proj.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias",
F"stage{idx}.patch_embed.proj.bias",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight",
F"stage{idx}.patch_embed.norm.weight",
) )
embed.append(
(
F"cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias",
F"stage{idx}.patch_embed.norm.bias",
) )
return embed
def lowercase_ ( _A : List[str] , _A : Optional[Any] ):
"""simple docstring"""
lowerCamelCase__ : int = []
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked",
F"stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_q.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_q.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_k.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_k.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight",
F"stage{idx}.blocks.{cnt}.attn.proj_v.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias",
F"stage{idx}.blocks.{cnt}.attn.proj_v.bias",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight",
F"stage{idx}.blocks.{cnt}.attn.proj.weight",
) )
attention_weights.append(
(
F"cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias",
F"stage{idx}.blocks.{cnt}.attn.proj.bias",
) )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight", F"stage{idx}.blocks.{cnt}.mlp.fc2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias", F"stage{idx}.blocks.{cnt}.mlp.fc2.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight", F"stage{idx}.blocks.{cnt}.norm1.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias", F"stage{idx}.blocks.{cnt}.norm1.bias") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight", F"stage{idx}.blocks.{cnt}.norm2.weight") )
attention_weights.append(
(F"cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias", F"stage{idx}.blocks.{cnt}.norm2.bias") )
return attention_weights
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = []
token.append((F"cvt.encoder.stages.{idx}.cls_token", "stage2.cls_token") )
return token
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = []
head.append(("layernorm.weight", "norm.weight") )
head.append(("layernorm.bias", "norm.bias") )
head.append(("classifier.weight", "head.weight") )
head.append(("classifier.bias", "head.bias") )
return head
def lowercase_ ( _A : List[Any] , _A : Dict , _A : Dict , _A : Union[str, Any] ):
"""simple docstring"""
lowerCamelCase__ : Any = "imagenet-1k-id2label.json"
lowerCamelCase__ : Optional[int] = 1000
lowerCamelCase__ : int = "huggingface/label-files"
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type="dataset" ) ) , "r" ) )
lowerCamelCase__ : Dict = {int(_A ): v for k, v in idalabel.items()}
lowerCamelCase__ : str = idalabel
lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()}
lowerCamelCase__ : Union[str, Any] = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A )
# For depth size 13 (13 = 1+2+10)
if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13":
lowerCamelCase__ : Any = [1, 2, 10]
# For depth size 21 (21 = 1+4+16)
elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21":
lowerCamelCase__ : List[str] = [1, 4, 16]
# For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20)
else:
lowerCamelCase__ : List[Any] = [2, 2, 20]
lowerCamelCase__ : str = [3, 12, 16]
lowerCamelCase__ : Tuple = [192, 768, 1024]
lowerCamelCase__ : Optional[Any] = CvtForImageClassification(_A )
lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" )
lowerCamelCase__ : Optional[Any] = image_size
lowerCamelCase__ : Union[str, Any] = torch.load(_A , map_location=torch.device("cpu" ) )
lowerCamelCase__ : Any = OrderedDict()
lowerCamelCase__ : Dict = []
for idx in range(len(config.depth ) ):
if config.cls_token[idx]:
lowerCamelCase__ : Union[str, Any] = list_of_state_dict + cls_token(_A )
lowerCamelCase__ : Tuple = list_of_state_dict + embeddings(_A )
for cnt in range(config.depth[idx] ):
lowerCamelCase__ : List[Any] = list_of_state_dict + attention(_A , _A )
lowerCamelCase__ : List[str] = list_of_state_dict + final()
for gg in list_of_state_dict:
print(_A )
for i in range(len(_A ) ):
lowerCamelCase__ : Any = original_weights[list_of_state_dict[i][1]]
model.load_state_dict(_A )
model.save_pretrained(_A )
image_processor.save_pretrained(_A )
# Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al
if __name__ == "__main__":
A : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--cvt_model",
default="cvt-w24",
type=str,
help="Name of the cvt model you'd like to convert.",
)
parser.add_argument(
"--image_size",
default=384,
type=int,
help="Input Image Size",
)
parser.add_argument(
"--cvt_file_name",
default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth",
type=str,
help="Input Image Size",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
A : List[str] = parser.parse_args()
convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
| 5 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 1 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return f"gaussian_noise_s={seed}_shape={'_'.join([str(__lowerCamelCase ) for s in shape] )}.npy"
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
super().tearDown()
gc.collect()
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : List[Any]=(4, 4, 64, 64) , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Any = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase , __lowerCamelCase ) ) , dtype=__lowerCamelCase )
return image
def lowerCAmelCase ( self : str , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Optional[int] = "bf16" if fpaa else None
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = FlaxUNetaDConditionModel.from_pretrained(
__lowerCamelCase , subfolder="unet" , dtype=__lowerCamelCase , revision=__lowerCamelCase )
return model, params
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Tuple=0 , __lowerCamelCase : List[Any]=(4, 77, 768) , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = jnp.bfloataa if fpaa else jnp.floataa
lowerCamelCase__ : Optional[Any] = jnp.array(load_hf_numpy(self.get_file_format(__lowerCamelCase , __lowerCamelCase ) ) , dtype=__lowerCamelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_3_2_3, -0.1_3_0_4, 0.0_8_1_3, -0.3_0_9_3, -0.0_9_1_9, -0.1_5_7_1, -0.1_1_2_5, -0.5_8_0_6]],
[17, 0.5_5, [-0.0_8_3_1, -0.2_4_4_3, 0.0_9_0_1, -0.0_9_1_9, 0.3_3_9_6, 0.0_1_0_3, -0.3_7_4_3, 0.0_7_0_1]],
[8, 0.8_9, [-0.4_8_6_3, 0.0_8_5_9, 0.0_8_7_5, -0.1_6_5_8, 0.9_1_9_9, -0.0_1_1_4, 0.4_8_3_9, 0.4_6_3_9]],
[3, 1000, [-0.5_6_4_9, 0.2_4_0_2, -0.5_5_1_8, 0.1_2_4_8, 1.1_3_2_8, -0.2_4_4_3, -0.0_3_2_5, -1.0_0_7_8]],
# fmt: on
] )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = self.get_latents(__lowerCamelCase , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = self.get_encoder_hidden_states(__lowerCamelCase , fpaa=__lowerCamelCase )
lowerCamelCase__ : int = model.apply(
{"params": params} , __lowerCamelCase , jnp.array(__lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCamelCase , ).sample
assert sample.shape == latents.shape
lowerCamelCase__ : Optional[int] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
lowerCamelCase__ : List[Any] = jnp.array(__lowerCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_5_1_4, 0.0_8_0_7, 0.1_6_2_4, 0.1_0_1_6, -0.1_8_9_6, 0.0_2_6_3, 0.0_6_7_7, 0.2_3_1_0]],
[17, 0.5_5, [0.1_1_6_4, -0.0_2_1_6, 0.0_1_7_0, 0.1_5_8_9, -0.3_1_2_0, 0.1_0_0_5, -0.0_5_8_1, -0.1_4_5_8]],
[8, 0.8_9, [-0.1_7_5_8, -0.0_1_6_9, 0.1_0_0_4, -0.1_4_1_1, 0.1_3_1_2, 0.1_1_0_3, -0.1_9_9_6, 0.2_1_3_9]],
[3, 1000, [0.1_2_1_4, 0.0_3_5_2, -0.0_7_3_1, -0.1_5_6_2, -0.0_9_9_4, -0.0_9_0_6, -0.2_3_4_0, -0.0_5_3_9]],
# fmt: on
] )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : str = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=__lowerCamelCase )
lowerCamelCase__ : Dict = self.get_latents(__lowerCamelCase , shape=(4, 4, 96, 96) , fpaa=__lowerCamelCase )
lowerCamelCase__ : str = self.get_encoder_hidden_states(__lowerCamelCase , shape=(4, 77, 1024) , fpaa=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = model.apply(
{"params": params} , __lowerCamelCase , jnp.array(__lowerCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=__lowerCamelCase , ).sample
assert sample.shape == latents.shape
lowerCamelCase__ : str = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
lowerCamelCase__ : Optional[Any] = jnp.array(__lowerCamelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-2 )
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
class _lowercase ( lowercase__):
"""simple docstring"""
pass
class _lowercase ( lowercase__):
"""simple docstring"""
pass
class _lowercase :
"""simple docstring"""
def __init__( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = [
[],
[],
[],
]
def lowerCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int ):
'''simple docstring'''
try:
if len(self.queues[priority] ) >= 100:
raise OverflowError("Maximum queue size is 100" )
self.queues[priority].append(__lowerCamelCase )
except IndexError:
raise ValueError("Valid priorities are 0, 1, and 2" )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
for queue in self.queues:
if queue:
return queue.pop(0 )
raise UnderFlowError("All queues are empty" )
def __str__( self : Optional[Any] ):
'''simple docstring'''
return "\n".join(f"Priority {i}: {q}" for i, q in enumerate(self.queues ) )
class _lowercase :
"""simple docstring"""
def __init__( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = []
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int ):
'''simple docstring'''
if len(self.queue ) == 100:
raise OverFlowError("Maximum queue size is 100" )
self.queue.append(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if not self.queue:
raise UnderFlowError("The queue is empty" )
else:
lowerCamelCase__ : str = min(self.queue )
self.queue.remove(__lowerCamelCase )
return data
def __str__( self : Union[str, Any] ):
'''simple docstring'''
return str(self.queue )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = FixedPriorityQueue()
fpq.enqueue(0 , 10 )
fpq.enqueue(1 , 70 )
fpq.enqueue(0 , 100 )
fpq.enqueue(2 , 1 )
fpq.enqueue(2 , 5 )
fpq.enqueue(1 , 7 )
fpq.enqueue(2 , 4 )
fpq.enqueue(1 , 64 )
fpq.enqueue(0 , 128 )
print(_A )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(_A )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
print(fpq.dequeue() )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = ElementPriorityQueue()
epq.enqueue(10 )
epq.enqueue(70 )
epq.enqueue(100 )
epq.enqueue(1 )
epq.enqueue(5 )
epq.enqueue(7 )
epq.enqueue(4 )
epq.enqueue(64 )
epq.enqueue(128 )
print(_A )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(_A )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
print(epq.dequeue() )
if __name__ == "__main__":
fixed_priority_queue()
element_priority_queue()
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import platform
import numpy as np
import psutil
import torch
from accelerate import __version__ as version
from accelerate.commands.config import default_config_file, load_config_from_file
from ..utils import is_npu_available, is_xpu_available
def lowercase_ ( _A : Dict=None ):
"""simple docstring"""
if subparsers is not None:
lowerCamelCase__ : List[Any] = subparsers.add_parser("env" )
else:
lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser("Accelerate env command" )
parser.add_argument(
"--config_file" , default=_A , help="The config file to use for the default values in the launching script." )
if subparsers is not None:
parser.set_defaults(func=_A )
return parser
def lowercase_ ( _A : Tuple ):
"""simple docstring"""
lowerCamelCase__ : int = torch.__version__
lowerCamelCase__ : Optional[int] = torch.cuda.is_available()
lowerCamelCase__ : Any = is_xpu_available()
lowerCamelCase__ : Dict = is_npu_available()
lowerCamelCase__ : str = "Not found"
# Get the default from the config file.
if args.config_file is not None or os.path.isfile(_A ):
lowerCamelCase__ : Any = load_config_from_file(args.config_file ).to_dict()
lowerCamelCase__ : List[str] = {
"`Accelerate` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Numpy version": np.__version__,
"PyTorch version (GPU?)": F"{pt_version} ({pt_cuda_available})",
"PyTorch XPU available": str(_A ),
"PyTorch NPU available": str(_A ),
"System RAM": F"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB",
}
if pt_cuda_available:
lowerCamelCase__ : Dict = torch.cuda.get_device_name()
print("\nCopy-and-paste the text below in your GitHub issue\n" )
print("\n".join([F"- {prop}: {val}" for prop, val in info.items()] ) )
print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:" )
lowerCamelCase__ : Optional[int] = (
"\n".join([F"\t- {prop}: {val}" for prop, val in accelerate_config.items()] )
if isinstance(_A , _A )
else F"\t{accelerate_config}"
)
print(_A )
lowerCamelCase__ : Tuple = accelerate_config
return info
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = env_command_parser()
lowerCamelCase__ : List[Any] = parser.parse_args()
env_command(_A )
return 0
if __name__ == "__main__":
raise SystemExit(main())
| 5 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 1 |
from typing import List
import numpy as np
def lowercase_ ( _A : dict ):
"""simple docstring"""
lowerCamelCase__ : Any = {key: len(_A ) for key, value in gen_kwargs.items() if isinstance(_A , _A )}
if len(set(lists_lengths.values() ) ) > 1:
raise RuntimeError(
(
"Sharding is ambiguous for this dataset: "
+ "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n"
+ "\n".join(F"\t- key {key} has length {length}" for key, length in lists_lengths.items() )
+ "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, "
+ "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length."
) )
lowerCamelCase__ : Optional[Any] = max(lists_lengths.values() , default=0 )
return max(1 , _A )
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
lowerCamelCase__ : List[str] = []
for group_idx in range(_A ):
lowerCamelCase__ : str = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs))
if num_shards_to_add == 0:
break
lowerCamelCase__ : List[str] = shards_indices_per_group[-1].stop if shards_indices_per_group else 0
lowerCamelCase__ : Tuple = range(_A , start + num_shards_to_add )
shards_indices_per_group.append(_A )
return shards_indices_per_group
def lowercase_ ( _A : dict , _A : int ):
"""simple docstring"""
lowerCamelCase__ : int = _number_of_shards_in_gen_kwargs(_A )
if num_shards == 1:
return [dict(_A )]
else:
lowerCamelCase__ : Any = _distribute_shards(num_shards=_A , max_num_jobs=_A )
return [
{
key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]]
if isinstance(_A , _A )
else value
for key, value in gen_kwargs.items()
}
for group_idx in range(len(_A ) )
]
def lowercase_ ( _A : List[dict] ):
"""simple docstring"""
return {
key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]]
if isinstance(gen_kwargs_list[0][key] , _A )
else gen_kwargs_list[0][key]
for key in gen_kwargs_list[0]
}
def lowercase_ ( _A : np.random.Generator , _A : dict ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = {len(_A ) for value in gen_kwargs.values() if isinstance(_A , _A )}
lowerCamelCase__ : Any = {}
for size in list_sizes:
lowerCamelCase__ : str = list(range(_A ) )
rng.shuffle(indices_per_size[size] )
# Now let's copy the gen_kwargs and shuffle the lists based on their sizes
lowerCamelCase__ : Tuple = dict(_A )
for key, value in shuffled_kwargs.items():
if isinstance(_A , _A ):
lowerCamelCase__ : Tuple = [value[i] for i in indices_per_size[len(_A )]]
return shuffled_kwargs
| 5 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 1 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
A : List[Any] = logging.get_logger(__name__)
def lowercase_ ( _A : np.ndarray , _A : Union[int, Iterable[int]] , _A : bool , _A : int ):
"""simple docstring"""
def constraint_to_multiple_of(_A : Optional[Any] , _A : Optional[int] , _A : Any=0 , _A : int=None ):
lowerCamelCase__ : Tuple = round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCamelCase__ : str = math.floor(val / multiple ) * multiple
if x < min_val:
lowerCamelCase__ : Any = math.ceil(val / multiple ) * multiple
return x
lowerCamelCase__ : int = (output_size, output_size) if isinstance(_A , _A ) else output_size
lowerCamelCase__ , lowerCamelCase__ : int = get_image_size(_A )
lowerCamelCase__ , lowerCamelCase__ : List[str] = output_size
# determine new height and width
lowerCamelCase__ : int = output_height / input_height
lowerCamelCase__ : int = output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCamelCase__ : Tuple = scale_width
else:
# fit height
lowerCamelCase__ : Optional[int] = scale_height
lowerCamelCase__ : Any = constraint_to_multiple_of(scale_height * input_height , multiple=_A )
lowerCamelCase__ : Tuple = constraint_to_multiple_of(scale_width * input_width , multiple=_A )
return (new_height, new_width)
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["pixel_values"]
def __init__( self : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCamelCase : bool = False , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , **__lowerCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = size if size is not None else {"height": 384, "width": 384}
lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase )
lowerCamelCase__ : Any = do_resize
lowerCamelCase__ : int = size
lowerCamelCase__ : str = keep_aspect_ratio
lowerCamelCase__ : Tuple = ensure_multiple_of
lowerCamelCase__ : Union[str, Any] = resample
lowerCamelCase__ : int = do_rescale
lowerCamelCase__ : int = rescale_factor
lowerCamelCase__ : List[Any] = do_normalize
lowerCamelCase__ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__ : int = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : bool = False , __lowerCamelCase : int = 1 , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
'''simple docstring'''
lowerCamelCase__ : str = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}" )
lowerCamelCase__ : List[Any] = get_resize_output_image_size(
__lowerCamelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=__lowerCamelCase , multiple=__lowerCamelCase , )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ):
'''simple docstring'''
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : int , ):
'''simple docstring'''
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
lowerCamelCase__ : str = do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ : Tuple = size if size is not None else self.size
lowerCamelCase__ : Dict = get_size_dict(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCamelCase__ : Optional[Any] = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCamelCase__ : int = resample if resample is not None else self.resample
lowerCamelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ : int = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ : Dict = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ : Dict = image_std if image_std is not None else self.image_std
lowerCamelCase__ : List[Any] = make_list_of_images(__lowerCamelCase )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
lowerCamelCase__ : Any = [to_numpy_array(__lowerCamelCase ) for image in images]
if do_resize:
lowerCamelCase__ : Tuple = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images]
if do_rescale:
lowerCamelCase__ : Dict = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images]
if do_normalize:
lowerCamelCase__ : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images]
lowerCamelCase__ : str = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images]
lowerCamelCase__ : Optional[Any] = {"pixel_values": images}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Tuple] = None ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits" )
if is_torch_tensor(__lowerCamelCase ):
lowerCamelCase__ : Any = target_sizes.numpy()
lowerCamelCase__ : Optional[Any] = []
for idx in range(len(__lowerCamelCase ) ):
lowerCamelCase__ : List[str] = torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = resized_logits[0].argmax(dim=0 )
semantic_segmentation.append(__lowerCamelCase )
else:
lowerCamelCase__ : Union[str, Any] = logits.argmax(dim=1 )
lowerCamelCase__ : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )]
return semantic_segmentation
| 5 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
from functools import reduce
A : List[Any] = (
"73167176531330624919225119674426574742355349194934"
"96983520312774506326239578318016984801869478851843"
"85861560789112949495459501737958331952853208805511"
"12540698747158523863050715693290963295227443043557"
"66896648950445244523161731856403098711121722383113"
"62229893423380308135336276614282806444486645238749"
"30358907296290491560440772390713810515859307960866"
"70172427121883998797908792274921901699720888093776"
"65727333001053367881220235421809751254540594752243"
"52584907711670556013604839586446706324415722155397"
"53697817977846174064955149290862569321978468622482"
"83972241375657056057490261407972968652414535100474"
"82166370484403199890008895243450658541227588666881"
"16427171479924442928230863465674813919123162824586"
"17866458359124566529476545682848912883142607690042"
"24219022671055626321111109370544217506941658960408"
"07198403850962455444362981230987879927244284909188"
"84580156166097919133875499200524063689912560717606"
"05886116467109405077541002256983155200055935729725"
"71636269561882670428252483600823257530420752963450"
)
def lowercase_ ( _A : str = N ):
"""simple docstring"""
return max(
# mypy cannot properly interpret reduce
int(reduce(lambda _A , _A : str(int(_A ) * int(_A ) ) , n[i : i + 13] ) )
for i in range(len(_A ) - 12 ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from datetime import datetime
import requests
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Any = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url="
lowerCamelCase__ : Tuple = requests.get(base_url + url ).json()[0]["urls"][0]["src"]
return requests.get(_A ).content
if __name__ == "__main__":
A : Optional[Any] = input("Enter Video/IGTV url: ").strip()
A : List[str] = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4'
with open(file_name, "wb") as fp:
fp.write(download_video(url))
print(f'Done. Video saved to disk as {file_name}.')
| 5 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 1 |
from __future__ import annotations
def lowercase_ ( _A : list[int] ):
"""simple docstring"""
if not nums:
return 0
lowerCamelCase__ : List[str] = nums[0]
lowerCamelCase__ : str = 0
for num in nums[1:]:
lowerCamelCase__ , lowerCamelCase__ : str = (
max_excluding + num,
max(_A , _A ),
)
return max(_A , _A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 1 |
import argparse
import json
import subprocess
def lowercase_ ( _A : Dict , _A : Tuple ):
"""simple docstring"""
lowerCamelCase__ : str = []
lowerCamelCase__ : str = (
F"curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\""
" https://api.github.com/repos/huggingface/transformers/actions/runners"
)
lowerCamelCase__ : List[Any] = subprocess.run(_A , shell=_A , stdout=subprocess.PIPE )
lowerCamelCase__ : Union[str, Any] = output.stdout.decode("utf-8" )
lowerCamelCase__ : Dict = json.loads(_A )
lowerCamelCase__ : Dict = status["runners"]
for runner in runners:
if runner["name"] in target_runners:
if runner["status"] == "offline":
offline_runners.append(_A )
# save the result so we can report them on Slack
with open("offline_runners.txt" , "w" ) as fp:
fp.write(json.dumps(_A ) )
if len(_A ) > 0:
lowerCamelCase__ : Optional[Any] = "\n".join([x["name"] for x in offline_runners] )
raise ValueError(F"The following runners are offline:\n{failed}" )
if __name__ == "__main__":
def lowercase_ ( _A : Any ):
"""simple docstring"""
return values.split("," )
A : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--target_runners",
default=None,
type=list_str,
required=True,
help="Comma-separated list of runners to check status.",
)
parser.add_argument(
"--token", default=None, type=str, required=True, help="A token that has actions:read permission."
)
A : Optional[int] = parser.parse_args()
get_runner_status(args.target_runners, args.token)
| 5 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import unittest
import numpy as np
from transformers import AlbertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.albert.modeling_flax_albert import (
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForPreTraining,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertModel,
)
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def __init__( self : Any , __lowerCamelCase : int , __lowerCamelCase : str=13 , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : str=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : Any=5 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[Any]=37 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : int=2 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : Optional[Any]=4 , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : Optional[int] = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : str = is_training
lowerCamelCase__ : Dict = use_attention_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : Tuple = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[Any] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Dict = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Union[str, Any] = num_choices
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Dict = None
if self.use_attention_mask:
lowerCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[int] = None
if self.use_token_type_ids:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Optional[Any] = AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = config_and_inputs
lowerCamelCase__ : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask}
return config, inputs_dict
@require_flax
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
FlaxAlbertModel,
FlaxAlbertForPreTraining,
FlaxAlbertForMaskedLM,
FlaxAlbertForMultipleChoice,
FlaxAlbertForQuestionAnswering,
FlaxAlbertForSequenceClassification,
FlaxAlbertForTokenClassification,
FlaxAlbertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = FlaxAlbertModelTester(self )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
lowerCamelCase__ : Union[str, Any] = model_class_name.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Dict = model(np.ones((1, 1) ) )
self.assertIsNotNone(__lowerCamelCase )
@require_flax
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = FlaxAlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : List[str] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = (1, 11, 768)
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Any = np.array(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 1 |
import heapq as hq
import math
from collections.abc import Iterator
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = str(id_ )
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : Any = []
lowerCamelCase__ : Dict = {} # {vertex:distance}
def __lt__( self : List[Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
return self.key < other.key
def __repr__( self : Optional[Any] ):
'''simple docstring'''
return self.id
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Any ):
'''simple docstring'''
self.neighbors.append(__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = weight
def lowercase_ ( _A : str , _A : int , _A : Optional[int] , _A : List[str] ):
"""simple docstring"""
graph[a - 1].add_neighbor(graph[b - 1] )
graph[b - 1].add_neighbor(graph[a - 1] )
# add the edges:
graph[a - 1].add_edge(graph[b - 1] , _A )
graph[b - 1].add_edge(graph[a - 1] , _A )
def lowercase_ ( _A : list , _A : Vertex ):
"""simple docstring"""
lowerCamelCase__ : str = []
for u in graph:
lowerCamelCase__ : str = math.inf
lowerCamelCase__ : str = None
lowerCamelCase__ : str = 0
lowerCamelCase__ : Union[str, Any] = graph[:]
while q:
lowerCamelCase__ : Any = min(_A )
q.remove(_A )
for v in u.neighbors:
if (v in q) and (u.edges[v.id] < v.key):
lowerCamelCase__ : Dict = u
lowerCamelCase__ : int = u.edges[v.id]
for i in range(1 , len(_A ) ):
a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) )
return a
def lowercase_ ( _A : list , _A : Vertex ):
"""simple docstring"""
for u in graph:
lowerCamelCase__ : Any = math.inf
lowerCamelCase__ : str = None
lowerCamelCase__ : Tuple = 0
lowerCamelCase__ : Tuple = list(_A )
hq.heapify(_A )
while h:
lowerCamelCase__ : int = hq.heappop(_A )
for v in u.neighbors:
if (v in h) and (u.edges[v.id] < v.key):
lowerCamelCase__ : Dict = u
lowerCamelCase__ : int = u.edges[v.id]
hq.heapify(_A )
for i in range(1 , len(_A ) ):
yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1)
def lowercase_ ( ):
"""simple docstring"""
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
A : Tuple = logging.get_logger(__name__)
@add_end_docstrings(lowercase__)
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : str , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
requires_backends(self , "vision" )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : Dict , __lowerCamelCase : Union[str, List[str], "Image", List["Image"]] , **__lowerCamelCase : Optional[int] ):
'''simple docstring'''
return super().__call__(__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : int , **__lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = {}
if "candidate_labels" in kwargs:
lowerCamelCase__ : Optional[Any] = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
lowerCamelCase__ : str = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def lowerCAmelCase ( self : str , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[Any]="This is a photo of {}." ):
'''simple docstring'''
lowerCamelCase__ : int = load_image(__lowerCamelCase )
lowerCamelCase__ : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
lowerCamelCase__ : List[Any] = candidate_labels
lowerCamelCase__ : Any = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels]
lowerCamelCase__ : int = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase )
lowerCamelCase__ : str = [text_inputs]
return inputs
def lowerCAmelCase ( self : int , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = model_inputs.pop("candidate_labels" )
lowerCamelCase__ : List[str] = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , __lowerCamelCase ):
lowerCamelCase__ : Optional[Any] = text_inputs[0]
else:
# Batching case.
lowerCamelCase__ : Union[str, Any] = text_inputs[0][0]
lowerCamelCase__ : Optional[int] = self.model(**__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_image,
}
return model_outputs
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = model_outputs.pop("candidate_labels" )
lowerCamelCase__ : Optional[int] = model_outputs["logits"][0]
if self.framework == "pt":
lowerCamelCase__ : Tuple = logits.softmax(dim=-1 ).squeeze(-1 )
lowerCamelCase__ : List[str] = probs.tolist()
if not isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : str = [scores]
elif self.framework == "tf":
lowerCamelCase__ : Tuple = stable_softmax(__lowerCamelCase , axis=-1 )
lowerCamelCase__ : Dict = probs.numpy().tolist()
else:
raise ValueError(f"Unsupported framework: {self.framework}" )
lowerCamelCase__ : str = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] )
]
return result
| 5 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 1 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
A : str = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : int , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
warnings.warn(
"The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use VideoMAEImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
| 5 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 1 |
from typing import List, Optional, Union
import numpy as np
import torch
import torchaudio.compliance.kaldi as ta_kaldi
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
A : Union[str, Any] = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = ["input_features", "attention_mask"]
def __init__( self : str , __lowerCamelCase : str=80 , __lowerCamelCase : Optional[int]=16000 , __lowerCamelCase : Optional[int]=80 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = num_mel_bins
lowerCamelCase__ : Any = do_ceptral_normalize
lowerCamelCase__ : List[str] = normalize_means
lowerCamelCase__ : List[Any] = normalize_vars
lowerCamelCase__ : int = True
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : np.ndarray , ):
'''simple docstring'''
lowerCamelCase__ : int = waveform * (2**15) # Kaldi compliance: 16-bit signed integers
lowerCamelCase__ : Dict = torch.from_numpy(__lowerCamelCase ).unsqueeze(0 )
lowerCamelCase__ : Optional[Any] = ta_kaldi.fbank(__lowerCamelCase , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate )
return features.numpy()
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : float = 0.0 , ):
'''simple docstring'''
if normalize_means:
lowerCamelCase__ : int = x[:input_length].mean(axis=0 )
lowerCamelCase__ : int = np.subtract(__lowerCamelCase , __lowerCamelCase )
if normalize_vars:
lowerCamelCase__ : int = x[:input_length].std(axis=0 )
lowerCamelCase__ : List[Any] = np.divide(__lowerCamelCase , __lowerCamelCase )
if input_length < x.shape[0]:
lowerCamelCase__ : Optional[int] = padding_value
# make sure array is in float32
lowerCamelCase__ : List[Any] = x.astype(np.floataa )
return x
def lowerCAmelCase ( self : Any , __lowerCamelCase : List[np.ndarray] , __lowerCamelCase : Optional[np.ndarray] = None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [
self.utterance_cmvn(__lowerCamelCase , __lowerCamelCase , self.normalize_means , self.normalize_vars , self.padding_value )
for x, n in zip(__lowerCamelCase , __lowerCamelCase )
]
def __call__( self : Dict , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , **__lowerCamelCase : List[str] , ):
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of"
f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with"
f" {self.sampling_rate} and not {sampling_rate}." )
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowerCamelCase__ : int = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}" )
lowerCamelCase__ : int = is_batched_numpy or (
isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
lowerCamelCase__ : Optional[Any] = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ):
lowerCamelCase__ : List[Any] = np.asarray(__lowerCamelCase , dtype=np.floataa )
elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCamelCase__ : List[str] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCamelCase__ : Dict = [raw_speech]
# extract fbank features
lowerCamelCase__ : Dict = [self._extract_fbank_features(__lowerCamelCase ) for waveform in raw_speech]
# convert into correct format for padding
lowerCamelCase__ : Optional[Any] = BatchFeature({"input_features": features} )
lowerCamelCase__ : Dict = self.pad(
__lowerCamelCase , padding=__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , **__lowerCamelCase , )
# make sure list is in array format
lowerCamelCase__ : Tuple = padded_inputs.get("input_features" )
if isinstance(input_features[0] , __lowerCamelCase ):
lowerCamelCase__ : List[str] = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in input_features]
lowerCamelCase__ : Optional[int] = padded_inputs.get("attention_mask" )
if attention_mask is not None:
lowerCamelCase__ : Tuple = [np.asarray(__lowerCamelCase , dtype=np.intaa ) for array in attention_mask]
# Utterance-level cepstral mean and variance normalization
if self.do_ceptral_normalize:
lowerCamelCase__ : Any = (
np.array(__lowerCamelCase , dtype=np.intaa )
if self._get_padding_strategies(__lowerCamelCase , max_length=__lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
lowerCamelCase__ : List[Any] = self.normalize(
padded_inputs["input_features"] , attention_mask=__lowerCamelCase )
if return_tensors is not None:
lowerCamelCase__ : Optional[Any] = padded_inputs.convert_to_tensors(__lowerCamelCase )
return padded_inputs
| 5 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 1 |
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers.testing_utils import require_vision
from transformers.utils import is_vision_available
if is_vision_available():
from PIL import Image
from transformers import (
AutoProcessor,
BertTokenizerFast,
BlipImageProcessor,
GPTaTokenizer,
InstructBlipProcessor,
PreTrainedTokenizerFast,
)
@require_vision
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = tempfile.mkdtemp()
lowerCamelCase__ : Optional[int] = BlipImageProcessor()
lowerCamelCase__ : Tuple = GPTaTokenizer.from_pretrained("hf-internal-testing/tiny-random-GPT2Model" )
lowerCamelCase__ : Optional[Any] = BertTokenizerFast.from_pretrained("hf-internal-testing/tiny-random-bert" )
lowerCamelCase__ : List[str] = InstructBlipProcessor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
processor.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Dict ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).tokenizer
def lowerCAmelCase ( self : Dict , **__lowerCamelCase : Dict ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).image_processor
def lowerCAmelCase ( self : Optional[int] , **__lowerCamelCase : int ):
'''simple docstring'''
return AutoProcessor.from_pretrained(self.tmpdirname , **__lowerCamelCase ).qformer_tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
lowerCamelCase__ : Optional[int] = [Image.fromarray(np.moveaxis(__lowerCamelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase__ : str = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
lowerCamelCase__ : str = self.get_image_processor(do_normalize=__lowerCamelCase , padding_value=1.0 )
lowerCamelCase__ : Union[str, Any] = InstructBlipProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__lowerCamelCase , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , __lowerCamelCase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , __lowerCamelCase )
self.assertIsInstance(processor.qformer_tokenizer , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.get_image_processor()
lowerCamelCase__ : str = self.get_tokenizer()
lowerCamelCase__ : Optional[int] = self.get_qformer_tokenizer()
lowerCamelCase__ : Dict = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs()
lowerCamelCase__ : Union[str, Any] = image_processor(__lowerCamelCase , return_tensors="np" )
lowerCamelCase__ : Optional[int] = processor(images=__lowerCamelCase , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : str = self.get_image_processor()
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ : Any = self.get_qformer_tokenizer()
lowerCamelCase__ : int = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : str = "lower newer"
lowerCamelCase__ : Optional[int] = processor(text=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
lowerCamelCase__ : List[Any] = qformer_tokenizer(__lowerCamelCase , return_token_type_ids=__lowerCamelCase )
for key in encoded_tokens.keys():
self.assertListEqual(encoded_tokens[key] , encoded_processor[key] )
for key in encoded_tokens_qformer.keys():
self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["qformer_" + key] )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : int = self.get_image_processor()
lowerCamelCase__ : Tuple = self.get_tokenizer()
lowerCamelCase__ : List[str] = self.get_qformer_tokenizer()
lowerCamelCase__ : Dict = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Dict = "lower newer"
lowerCamelCase__ : List[str] = self.prepare_image_inputs()
lowerCamelCase__ : List[str] = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(
list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
# test if it raises when no input is passed
with pytest.raises(__lowerCamelCase ):
processor()
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.get_image_processor()
lowerCamelCase__ : Optional[Any] = self.get_tokenizer()
lowerCamelCase__ : Optional[Any] = self.get_qformer_tokenizer()
lowerCamelCase__ : str = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__ : int = processor.batch_decode(__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.batch_decode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Any = self.get_image_processor()
lowerCamelCase__ : Dict = self.get_tokenizer()
lowerCamelCase__ : Union[str, Any] = self.get_qformer_tokenizer()
lowerCamelCase__ : str = InstructBlipProcessor(
tokenizer=__lowerCamelCase , image_processor=__lowerCamelCase , qformer_tokenizer=__lowerCamelCase )
lowerCamelCase__ : Dict = "lower newer"
lowerCamelCase__ : Union[str, Any] = self.prepare_image_inputs()
lowerCamelCase__ : Any = processor(text=__lowerCamelCase , images=__lowerCamelCase )
self.assertListEqual(
list(inputs.keys() ) , ["input_ids", "attention_mask", "qformer_input_ids", "qformer_attention_mask", "pixel_values"] , )
| 5 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 1 |
from math import pi, sqrt
def lowercase_ ( _A : float ):
"""simple docstring"""
if num <= 0:
raise ValueError("math domain error" )
if num > 171.5:
raise OverflowError("math range error" )
elif num - int(_A ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(_A )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def lowercase_ ( ):
"""simple docstring"""
assert gamma(0.5 ) == sqrt(_A )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
A : Dict = 1.0
while num:
A : List[str] = float(input("Gamma of: "))
print(f'gamma({num}) = {gamma(num)}')
print("\nEnter 0 to exit...")
| 5 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 1 |
from math import pi, sqrt, tan
def lowercase_ ( _A : float ):
"""simple docstring"""
if side_length < 0:
raise ValueError("surface_area_cube() only accepts non-negative values" )
return 6 * side_length**2
def lowercase_ ( _A : float , _A : float , _A : float ):
"""simple docstring"""
if length < 0 or breadth < 0 or height < 0:
raise ValueError("surface_area_cuboid() only accepts non-negative values" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def lowercase_ ( _A : float ):
"""simple docstring"""
if radius < 0:
raise ValueError("surface_area_sphere() only accepts non-negative values" )
return 4 * pi * radius**2
def lowercase_ ( _A : float ):
"""simple docstring"""
if radius < 0:
raise ValueError("surface_area_hemisphere() only accepts non-negative values" )
return 3 * pi * radius**2
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError("surface_area_cone() only accepts non-negative values" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def lowercase_ ( _A : float , _A : float , _A : float ):
"""simple docstring"""
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"surface_area_conical_frustum() only accepts non-negative values" )
lowerCamelCase__ : Optional[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if radius < 0 or height < 0:
raise ValueError("surface_area_cylinder() only accepts non-negative values" )
return 2 * pi * radius * (height + radius)
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if torus_radius < 0 or tube_radius < 0:
raise ValueError("surface_area_torus() only accepts non-negative values" )
if torus_radius < tube_radius:
raise ValueError(
"surface_area_torus() does not support spindle or self intersecting tori" )
return 4 * pow(_A , 2 ) * torus_radius * tube_radius
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if length < 0 or width < 0:
raise ValueError("area_rectangle() only accepts non-negative values" )
return length * width
def lowercase_ ( _A : float ):
"""simple docstring"""
if side_length < 0:
raise ValueError("area_square() only accepts non-negative values" )
return side_length**2
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError("area_triangle() only accepts non-negative values" )
return (base * height) / 2
def lowercase_ ( _A : float , _A : float , _A : float ):
"""simple docstring"""
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("area_triangle_three_sides() only accepts non-negative values" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("Given three sides do not form a triangle" )
lowerCamelCase__ : List[str] = (sidea + sidea + sidea) / 2
lowerCamelCase__ : List[Any] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if base < 0 or height < 0:
raise ValueError("area_parallelogram() only accepts non-negative values" )
return base * height
def lowercase_ ( _A : float , _A : float , _A : float ):
"""simple docstring"""
if basea < 0 or basea < 0 or height < 0:
raise ValueError("area_trapezium() only accepts non-negative values" )
return 1 / 2 * (basea + basea) * height
def lowercase_ ( _A : float ):
"""simple docstring"""
if radius < 0:
raise ValueError("area_circle() only accepts non-negative values" )
return pi * radius**2
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if radius_x < 0 or radius_y < 0:
raise ValueError("area_ellipse() only accepts non-negative values" )
return pi * radius_x * radius_y
def lowercase_ ( _A : float , _A : float ):
"""simple docstring"""
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("area_rhombus() only accepts non-negative values" )
return 1 / 2 * diagonal_a * diagonal_a
def lowercase_ ( _A : int , _A : float ):
"""simple docstring"""
if not isinstance(_A , _A ) or sides < 3:
raise ValueError(
"area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides" )
elif length < 0:
raise ValueError(
"area_reg_polygon() only accepts non-negative values as \
length of a side" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print("[DEMO] Areas of various geometric shapes: \n")
print(f'Rectangle: {area_rectangle(10, 20) = }')
print(f'Square: {area_square(10) = }')
print(f'Triangle: {area_triangle(10, 10) = }')
print(f'Triangle: {area_triangle_three_sides(5, 12, 13) = }')
print(f'Parallelogram: {area_parallelogram(10, 20) = }')
print(f'Rhombus: {area_rhombus(10, 20) = }')
print(f'Trapezium: {area_trapezium(10, 20, 30) = }')
print(f'Circle: {area_circle(20) = }')
print(f'Ellipse: {area_ellipse(10, 20) = }')
print("\nSurface Areas of various geometric shapes: \n")
print(f'Cube: {surface_area_cube(20) = }')
print(f'Cuboid: {surface_area_cuboid(10, 20, 30) = }')
print(f'Sphere: {surface_area_sphere(20) = }')
print(f'Hemisphere: {surface_area_hemisphere(20) = }')
print(f'Cone: {surface_area_cone(10, 20) = }')
print(f'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }')
print(f'Cylinder: {surface_area_cylinder(10, 20) = }')
print(f'Torus: {surface_area_torus(20, 10) = }')
print(f'Equilateral Triangle: {area_reg_polygon(3, 10) = }')
print(f'Square: {area_reg_polygon(4, 10) = }')
print(f'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
| 5 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 1 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 1 |
import heapq
import sys
import numpy as np
A : List[Any] = tuple[int, int]
class _lowercase :
"""simple docstring"""
def __init__( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = []
lowerCamelCase__ : Any = set()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float("inf" )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return len(self.elements ) == 0
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str ):
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__lowerCamelCase )
else:
# update
# print("update", item)
lowerCamelCase__ : Tuple = []
((lowerCamelCase__) , (lowerCamelCase__)) : Tuple = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((lowerCamelCase__) , (lowerCamelCase__)) : Union[str, Any] = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
if item in self.set:
self.set.remove(__lowerCamelCase )
lowerCamelCase__ : str = []
((lowerCamelCase__) , (lowerCamelCase__)) : Optional[int] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((lowerCamelCase__) , (lowerCamelCase__)) : Optional[Any] = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
return self.elements[0][1]
def lowerCAmelCase ( self : int ):
'''simple docstring'''
((lowerCamelCase__) , (lowerCamelCase__)) : Tuple = heapq.heappop(self.elements )
self.set.remove(__lowerCamelCase )
return (priority, item)
def lowercase_ ( _A : TPos , _A : TPos ):
"""simple docstring"""
lowerCamelCase__ : Dict = np.array(_A )
lowerCamelCase__ : str = np.array(_A )
return np.linalg.norm(a - b )
def lowercase_ ( _A : TPos , _A : TPos ):
"""simple docstring"""
return consistent_heuristic(_A , _A ) // t
def lowercase_ ( _A : TPos , _A : TPos ):
"""simple docstring"""
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowercase_ ( _A : TPos , _A : int , _A : TPos , _A : dict[TPos, float] ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = g_function[start] + Wa * heuristics[i](_A , _A )
return ans
def lowercase_ ( _A : Dict , _A : Dict , _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : List[str] = np.chararray((n, n) )
for i in range(_A ):
for j in range(_A ):
lowerCamelCase__ : Any = "*"
for i in range(_A ):
for j in range(_A ):
if (j, (n - 1) - i) in blocks:
lowerCamelCase__ : Optional[Any] = "#"
lowerCamelCase__ : Union[str, Any] = "-"
lowerCamelCase__ : Union[str, Any] = back_pointer[goal]
while x != start:
((lowerCamelCase__) , (lowerCamelCase__)) : str = x
# print(x)
lowerCamelCase__ : int = "-"
lowerCamelCase__ : Dict = back_pointer[x]
lowerCamelCase__ : Union[str, Any] = "-"
for i in range(_A ):
for j in range(_A ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=" " )
print("<-- End position" , end=" " )
else:
print(grid[i][j] , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
print("PATH TAKEN BY THE ALGORITHM IS:-" )
lowerCamelCase__ : Optional[int] = back_pointer[goal]
while x != start:
print(_A , end=" " )
lowerCamelCase__ : Any = back_pointer[x]
print(_A )
sys.exit()
def lowercase_ ( _A : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowercase_ ( _A : List[str] , _A : List[str] , _A : Any , _A : Any , _A : Optional[Any] , _A : List[str] , _A : Dict , _A : int , ):
"""simple docstring"""
for itera in range(_A ):
open_list[itera].remove_element(_A )
# print("s", s)
# print("j", j)
((lowerCamelCase__) , (lowerCamelCase__)) : Union[str, Any] = s
lowerCamelCase__ : Any = (x - 1, y)
lowerCamelCase__ : List[Any] = (x + 1, y)
lowerCamelCase__ : Any = (x, y + 1)
lowerCamelCase__ : List[str] = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(_A ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(_A )
lowerCamelCase__ : Optional[Any] = -1
lowerCamelCase__ : Optional[Any] = float("inf" )
if valid(_A ) and g_function[neighbours] > g_function[s] + 1:
lowerCamelCase__ : Tuple = g_function[s] + 1
lowerCamelCase__ : List[Any] = s
if neighbours not in close_list_anchor:
open_list[0].put(_A , key(_A , 0 , _A , _A ) )
if neighbours not in close_list_inad:
for var in range(1 , _A ):
if key(_A , _A , _A , _A ) <= Wa * key(
_A , 0 , _A , _A ):
open_list[j].put(
_A , key(_A , _A , _A , _A ) )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
A : Optional[int] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
A : Union[str, Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
A : Optional[Any] = make_common_ground()
A : Optional[Any] = blocks_blk
# hyper parameters
A : List[Any] = 1
A : str = 1
A : Tuple = 20
A : int = 3 # one consistent and two other inconsistent
# start and end destination
A : str = (0, 0)
A : Union[str, Any] = (n - 1, n - 1)
A : Tuple = 1
def lowercase_ ( _A : TPos , _A : TPos , _A : int ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = {start: 0, goal: float("inf" )}
lowerCamelCase__ : List[Any] = {start: -1, goal: -1}
lowerCamelCase__ : Union[str, Any] = []
lowerCamelCase__ : str = set()
for i in range(_A ):
open_list.append(PriorityQueue() )
open_list[i].put(_A , key(_A , _A , _A , _A ) )
lowerCamelCase__ : list[int] = []
lowerCamelCase__ : list[int] = []
while open_list[0].minkey() < float("inf" ):
for i in range(1 , _A ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float("inf" ):
do_something(_A , _A , _A )
else:
lowerCamelCase__ , lowerCamelCase__ : List[str] = open_list[i].top_show()
visited.add(_A )
expand_state(
_A , _A , _A , _A , _A , _A , _A , _A , )
close_list_inad.append(_A )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float("inf" ):
do_something(_A , _A , _A )
else:
lowerCamelCase__ : Any = open_list[0].top_show()
visited.add(_A )
expand_state(
_A , 0 , _A , _A , _A , _A , _A , _A , )
close_list_anchor.append(_A )
print("No path found to goal" )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(_A ):
if (j, i) in blocks:
print("#" , end=" " )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print("*" , end=" " )
else:
print("-" , end=" " )
else:
print("*" , end=" " )
if (j, i) == (n - 1, n - 1):
print("<-- End position" , end=" " )
print()
print("^" )
print("Start position" )
print()
print("# is an obstacle" )
print("- is the path taken by algorithm" )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 5 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : Dict = (1 + 24 * n) ** 0.5
return ((1 + root) / 6) % 1 == 0
def lowercase_ ( _A : int = 5000 ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = [(i * (3 * i - 1)) // 2 for i in range(1 , _A )]
for i, pentagonal_i in enumerate(_A ):
for j in range(_A , len(_A ) ):
lowerCamelCase__ : str = pentagonal_nums[j]
lowerCamelCase__ : Any = pentagonal_i + pentagonal_j
lowerCamelCase__ : Tuple = pentagonal_j - pentagonal_i
if is_pentagonal(_A ) and is_pentagonal(_A ):
return b
return -1
if __name__ == "__main__":
print(f'{solution() = }')
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : Tuple = r"\w+[.]\d+"
lowerCamelCase__ : Optional[Any] = re.findall(_A , _A )
for pat in pats:
lowerCamelCase__ : Tuple = key.replace(_A , "_".join(pat.split("." ) ) )
return key
def lowercase_ ( _A : Any , _A : int , _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Tuple = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
lowerCamelCase__ : Tuple = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
lowerCamelCase__ : List[str] = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
lowerCamelCase__ : str = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
lowerCamelCase__ : Optional[int] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
lowerCamelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
lowerCamelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowercase_ ( _A : Any , _A : str , _A : str=42 ):
"""simple docstring"""
lowerCamelCase__ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
lowerCamelCase__ : List[Any] = flax_model.init_weights(PRNGKey(_A ) )
lowerCamelCase__ : int = flatten_dict(_A )
lowerCamelCase__ : Union[str, Any] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
lowerCamelCase__ : Any = rename_key(_A )
lowerCamelCase__ : List[str] = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
lowerCamelCase__ , lowerCamelCase__ : List[str] = rename_key_and_reshape_tensor(_A , _A , _A )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# also add unexpected weight so that warning is thrown
lowerCamelCase__ : Optional[Any] = jnp.asarray(_A )
return unflatten_dict(_A )
| 5 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A : Any = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = ["XLNetTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = ["XLNetTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
"XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLNetForMultipleChoice",
"XLNetForQuestionAnswering",
"XLNetForQuestionAnsweringSimple",
"XLNetForSequenceClassification",
"XLNetForTokenClassification",
"XLNetLMHeadModel",
"XLNetModel",
"XLNetPreTrainedModel",
"load_tf_weights_in_xlnet",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Dict = [
"TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLNetForMultipleChoice",
"TFXLNetForQuestionAnsweringSimple",
"TFXLNetForSequenceClassification",
"TFXLNetForTokenClassification",
"TFXLNetLMHeadModel",
"TFXLNetMainLayer",
"TFXLNetModel",
"TFXLNetPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, PerceiverTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
A : List[str] = "pt"
elif is_tf_available():
A : str = "tf"
else:
A : str = "jax"
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = PerceiverTokenizer
A__ = False
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : Tuple = PerceiverTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return PerceiverTokenizer.from_pretrained("deepmind/language-perceiver" )
def lowerCAmelCase ( self : Union[str, Any] , **__lowerCamelCase : str ):
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowerCamelCase )
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict=False , __lowerCamelCase : int=20 , __lowerCamelCase : Optional[Any]=5 ):
'''simple docstring'''
lowerCamelCase__ : Tuple = []
for i in range(len(__lowerCamelCase ) ):
try:
lowerCamelCase__ : Any = tokenizer.decode([i] , clean_up_tokenization_spaces=__lowerCamelCase )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
lowerCamelCase__ : Union[str, Any] = list(filter(lambda __lowerCamelCase : re.match(R"^[ a-zA-Z]+$" , t[1] ) , __lowerCamelCase ) )
lowerCamelCase__ : List[str] = list(filter(lambda __lowerCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=__lowerCamelCase ) , __lowerCamelCase ) )
if max_length is not None and len(__lowerCamelCase ) > max_length:
lowerCamelCase__ : Union[str, Any] = toks[:max_length]
if min_length is not None and len(__lowerCamelCase ) < min_length and len(__lowerCamelCase ) > 0:
while len(__lowerCamelCase ) < min_length:
lowerCamelCase__ : Dict = toks + toks
# toks_str = [t[1] for t in toks]
lowerCamelCase__ : Tuple = [t[0] for t in toks]
# Ensure consistency
lowerCamelCase__ : Optional[int] = tokenizer.decode(__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase )
if " " not in output_txt and len(__lowerCamelCase ) > 1:
lowerCamelCase__ : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=__lowerCamelCase )
+ " "
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=__lowerCamelCase )
)
if with_prefix_space:
lowerCamelCase__ : Union[str, Any] = " " + output_txt
lowerCamelCase__ : List[Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
return output_txt, output_ids
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.perceiver_tokenizer
lowerCamelCase__ : Optional[Any] = "Unicode €."
lowerCamelCase__ : Dict = tokenizer(__lowerCamelCase )
lowerCamelCase__ : List[str] = [4, 91, 116, 111, 105, 117, 106, 107, 38, 232, 136, 178, 52, 5]
self.assertEqual(encoded["input_ids"] , __lowerCamelCase )
# decoding
lowerCamelCase__ : Any = tokenizer.decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , "[CLS]Unicode €.[SEP]" )
lowerCamelCase__ : int = tokenizer("e è é ê ë" )
lowerCamelCase__ : List[Any] = [4, 107, 38, 201, 174, 38, 201, 175, 38, 201, 176, 38, 201, 177, 5]
self.assertEqual(encoded["input_ids"] , __lowerCamelCase )
# decoding
lowerCamelCase__ : str = tokenizer.decode(__lowerCamelCase )
self.assertEqual(__lowerCamelCase , "[CLS]e è é ê ë[SEP]" )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "[CLS]e è é ê ë[SEP]" )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.perceiver_tokenizer
lowerCamelCase__ : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
# fmt: off
lowerCamelCase__ : Any = [4, 71, 38, 114, 117, 116, 109, 38, 118, 103, 120, 103, 109, 120, 103, 118, 110, 38, 108, 117, 120, 38, 121, 123, 115, 115, 103, 120, 111, 128, 103, 122, 111, 117, 116, 52, 5, 0]
# fmt: on
lowerCamelCase__ : str = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
if FRAMEWORK != "jax":
lowerCamelCase__ : Union[str, Any] = list(batch.input_ids.numpy()[0] )
else:
lowerCamelCase__ : int = list(batch.input_ids.tolist()[0] )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 38) , batch.input_ids.shape )
self.assertEqual((2, 38) , batch.attention_mask.shape )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.perceiver_tokenizer
lowerCamelCase__ : Optional[int] = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : List[Any] = tokenizer(__lowerCamelCase , padding=__lowerCamelCase , return_tensors=__lowerCamelCase )
# check if input_ids are returned and no decoder_input_ids
self.assertIn("input_ids" , __lowerCamelCase )
self.assertIn("attention_mask" , __lowerCamelCase )
self.assertNotIn("decoder_input_ids" , __lowerCamelCase )
self.assertNotIn("decoder_attention_mask" , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.perceiver_tokenizer
lowerCamelCase__ : Tuple = [
"Summary of the text.",
"Another summary.",
]
lowerCamelCase__ : List[Any] = tokenizer(
text_target=__lowerCamelCase , max_length=32 , padding="max_length" , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase )
self.assertEqual(32 , targets["input_ids"].shape[1] )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
lowerCamelCase__ : List[str] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCamelCase__ : int = tempfile.mkdtemp()
lowerCamelCase__ : List[Any] = " He is very happy, UNwant\u00E9d,running"
lowerCamelCase__ : Any = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = tokenizer.__class__.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
shutil.rmtree(__lowerCamelCase )
lowerCamelCase__ : int = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
# Isolate this from the other tests because we save additional tokens/etc
lowerCamelCase__ : str = tempfile.mkdtemp()
lowerCamelCase__ : Optional[Any] = " He is very happy, UNwant\u00E9d,running"
tokenizer.add_tokens(["bim", "bambam"] )
lowerCamelCase__ : List[str] = tokenizer.additional_special_tokens
additional_special_tokens.append("new_additional_special_token" )
tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} )
lowerCamelCase__ : Union[str, Any] = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
tokenizer.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = tokenizer.__class__.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = after_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
lowerCamelCase__ : Any = tokenizer.__class__.from_pretrained(__lowerCamelCase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file:
lowerCamelCase__ : List[str] = json.load(__lowerCamelCase )
lowerCamelCase__ : int = [f"<extra_id_{i}>" for i in range(125 )]
lowerCamelCase__ : List[Any] = added_tokens_extra_ids + [
"an_additional_special_token"
]
lowerCamelCase__ : List[str] = added_tokens_extra_ids + [
"an_additional_special_token"
]
with open(os.path.join(__lowerCamelCase , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
with open(os.path.join(__lowerCamelCase , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile:
json.dump(__lowerCamelCase , __lowerCamelCase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
lowerCamelCase__ : List[Any] = tokenizer_class.from_pretrained(
__lowerCamelCase , )
self.assertIn(
"an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens )
self.assertEqual(
["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
lowerCamelCase__ : int = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=__lowerCamelCase )]
lowerCamelCase__ : Any = tokenizer_class.from_pretrained(
__lowerCamelCase , additional_special_tokens=__lowerCamelCase , )
self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens )
self.assertEqual(
["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.perceiver_tokenizer
self.assertEqual(tokenizer.decode([178] ) , "�" )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : int ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : str ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.get_tokenizers(fast=__lowerCamelCase , do_lower_case=__lowerCamelCase )
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}" ):
lowerCamelCase__ : Union[str, Any] = ["[CLS]", "t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "s", "t", "[SEP]"]
lowerCamelCase__ : str = tokenizer.convert_tokens_to_string(__lowerCamelCase )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
| 5 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 1 |
from __future__ import annotations
from collections.abc import Callable
from typing import Generic, TypeVar
A : Dict = TypeVar("T")
A : Any = TypeVar("U")
class _lowercase ( Generic[T, U]):
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : T | None , __lowerCamelCase : U | None ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = key
lowerCamelCase__ : Tuple = val
lowerCamelCase__ : DoubleLinkedListNode[T, U] | None = None
lowerCamelCase__ : DoubleLinkedListNode[T, U] | None = None
def __repr__( self : str ):
'''simple docstring'''
return (
f"Node: key: {self.key}, val: {self.val}, "
f"has next: {bool(self.next )}, has prev: {bool(self.prev )}"
)
class _lowercase ( Generic[T, U]):
"""simple docstring"""
def __init__( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ , lowerCamelCase__ : Dict = self.rear, self.head
def __repr__( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = ["DoubleLinkedList"]
lowerCamelCase__ : List[Any] = self.head
while node.next is not None:
rep.append(str(__lowerCamelCase ) )
lowerCamelCase__ : List[Any] = node.next
rep.append(str(self.rear ) )
return ",\n ".join(__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
lowerCamelCase__ : str = self.rear.prev
# All nodes other than self.head are guaranteed to have non-None previous
assert previous is not None
lowerCamelCase__ : Tuple = node
lowerCamelCase__ : List[Any] = previous
lowerCamelCase__ : Any = node
lowerCamelCase__ : Optional[int] = self.rear
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : DoubleLinkedListNode[T, U] ):
'''simple docstring'''
if node.prev is None or node.next is None:
return None
lowerCamelCase__ : Optional[Any] = node.next
lowerCamelCase__ : List[str] = node.prev
lowerCamelCase__ : Any = None
lowerCamelCase__ : Optional[Any] = None
return node
class _lowercase ( Generic[T, U]):
"""simple docstring"""
A__ = {}
def __init__( self : List[Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : DoubleLinkedList[T, U] = DoubleLinkedList()
lowerCamelCase__ : Optional[int] = capacity
lowerCamelCase__ : Dict = 0
lowerCamelCase__ : List[Any] = 0
lowerCamelCase__ : Tuple = 0
lowerCamelCase__ : dict[T, DoubleLinkedListNode[T, U]] = {}
def __repr__( self : Union[str, Any] ):
'''simple docstring'''
return (
f"CacheInfo(hits={self.hits}, misses={self.miss}, "
f"capacity={self.capacity}, current size={self.num_keys})"
)
def __contains__( self : Tuple , __lowerCamelCase : T ):
'''simple docstring'''
return key in self.cache
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : T ):
'''simple docstring'''
if key in self.cache:
self.hits += 1
lowerCamelCase__ : DoubleLinkedListNode[T, U] = self.cache[key]
lowerCamelCase__ : Optional[Any] = self.list.remove(self.cache[key] )
assert node == value_node
# node is guaranteed not None because it is in self.cache
assert node is not None
self.list.add(__lowerCamelCase )
return node.val
self.miss += 1
return None
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : T , __lowerCamelCase : U ):
'''simple docstring'''
if key not in self.cache:
if self.num_keys >= self.capacity:
# delete first node (oldest) when over capacity
lowerCamelCase__ : Tuple = self.list.head.next
# guaranteed to have a non-None first node when num_keys > 0
# explain to type checker via assertions
assert first_node is not None
assert first_node.key is not None
assert (
self.list.remove(__lowerCamelCase ) is not None
) # node guaranteed to be in list assert node.key is not None
del self.cache[first_node.key]
self.num_keys -= 1
lowerCamelCase__ : Optional[int] = DoubleLinkedListNode(__lowerCamelCase , __lowerCamelCase )
self.list.add(self.cache[key] )
self.num_keys += 1
else:
# bump node to the end of the list, update value
lowerCamelCase__ : List[str] = self.list.remove(self.cache[key] )
assert node is not None # node guaranteed to be in list
lowerCamelCase__ : Any = value
self.list.add(__lowerCamelCase )
@classmethod
def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : int = 128 ):
'''simple docstring'''
def cache_decorator_inner(__lowerCamelCase : Callable[[T], U] ) -> Callable[..., U]:
def cache_decorator_wrapper(*__lowerCamelCase : T ) -> U:
if func not in cls.decorator_function_to_instance_map:
lowerCamelCase__ : int = LRUCache(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] )
if result is None:
lowerCamelCase__ : Optional[int] = func(*__lowerCamelCase )
cls.decorator_function_to_instance_map[func].put(args[0] , __lowerCamelCase )
return result
def cache_info() -> LRUCache[T, U]:
return cls.decorator_function_to_instance_map[func]
setattr(__lowerCamelCase , "cache_info" , __lowerCamelCase ) # noqa: B010
return cache_decorator_wrapper
return cache_decorator_inner
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 1 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : int = 32 , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __lowerCamelCase : Optional[Union[float, List[float]]] = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __lowerCamelCase : bool = True , __lowerCamelCase : str=7 , __lowerCamelCase : List[str]=30 , __lowerCamelCase : str=400 , __lowerCamelCase : Optional[int]=3 , ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = parent
lowerCamelCase__ : Optional[int] = do_resize
lowerCamelCase__ : Tuple = size if size is not None else {"shortest_edge": 288}
lowerCamelCase__ : Optional[Any] = size_divisor
lowerCamelCase__ : int = do_rescale
lowerCamelCase__ : List[Any] = rescale_factor
lowerCamelCase__ : Union[str, Any] = do_normalize
lowerCamelCase__ : Any = do_center_crop
lowerCamelCase__ : Dict = image_mean
lowerCamelCase__ : Optional[int] = image_std
lowerCamelCase__ : Dict = do_pad
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Optional[Any] = num_channels
lowerCamelCase__ : int = min_resolution
lowerCamelCase__ : List[str] = max_resolution
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : str=False ):
'''simple docstring'''
if not batched:
lowerCamelCase__ : str = self.size["shortest_edge"]
lowerCamelCase__ : List[str] = image_inputs[0]
if isinstance(__lowerCamelCase , Image.Image ):
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = image.size
else:
lowerCamelCase__ , lowerCamelCase__ : Any = image.shape[1], image.shape[2]
lowerCamelCase__ : Union[str, Any] = size / min(__lowerCamelCase , __lowerCamelCase )
if h < w:
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = size, scale * w
else:
lowerCamelCase__ , lowerCamelCase__ : List[Any] = scale * h, size
lowerCamelCase__ : Any = int((1333 / 800) * size )
if max(__lowerCamelCase , __lowerCamelCase ) > max_size:
lowerCamelCase__ : Optional[int] = max_size / max(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = newh * scale
lowerCamelCase__ : Optional[Any] = neww * scale
lowerCamelCase__ , lowerCamelCase__ : List[str] = int(newh + 0.5 ), int(neww + 0.5 )
lowerCamelCase__ , lowerCamelCase__ : str = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
lowerCamelCase__ : Optional[int] = []
for image in image_inputs:
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCamelCase__ : List[Any] = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[0] )[0]
lowerCamelCase__ : str = max(__lowerCamelCase , key=lambda __lowerCamelCase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BridgeTowerImageProcessor if is_vision_available() else None
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : int = BridgeTowerImageProcessingTester(self )
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , "image_mean" ) )
self.assertTrue(hasattr(__lowerCamelCase , "image_std" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_normalize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "do_resize" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size" ) )
self.assertTrue(hasattr(__lowerCamelCase , "size_divisor" ) )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , Image.Image )
# Test not batched input
lowerCamelCase__ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ : Union[str, Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCamelCase__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , np.ndarray )
# Test not batched input
lowerCamelCase__ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ : Optional[Any] = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for image in image_inputs:
self.assertIsInstance(__lowerCamelCase , torch.Tensor )
# Test not batched input
lowerCamelCase__ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : Any = self.image_processor_tester.get_expected_values(__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCamelCase__ : Any = image_processing(__lowerCamelCase , return_tensors="pt" ).pixel_values
lowerCamelCase__ , lowerCamelCase__ : List[str] = self.image_processor_tester.get_expected_values(__lowerCamelCase , batched=__lowerCamelCase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 5 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
import random
import unittest
import numpy as np
import torch
from diffusers import (
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
OnnxStableDiffusionUpscalePipeline,
PNDMScheduler,
)
from diffusers.utils import floats_tensor
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = "ssube/stable-diffusion-x4-upscaler-onnx"
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Dict=0 ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__lowerCamelCase ) )
lowerCamelCase__ : str = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : str = {
"prompt": "A painting of a squirrel eating a burger",
"image": image,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 7.5,
"output_type": "numpy",
}
return inputs
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : List[Any] = self.get_dummy_inputs()
lowerCamelCase__ : List[Any] = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : Any = image[0, -3:, -3:, -1].flatten()
# started as 128, should now be 512
assert image.shape == (1, 512, 512, 3)
lowerCamelCase__ : str = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice - expected_slice ).max() < 1E-1
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCamelCase__ : Dict = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : int = self.get_dummy_inputs()
lowerCamelCase__ : Tuple = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : List[Any] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase__ : Dict = np.array(
[0.6_8_9_8_8_9_2, 0.5_9_2_4_0_5_5_6, 0.5_2_4_9_9_5_2_7, 0.5_8_8_6_6_2_1_5, 0.5_2_2_5_8_2_3_5, 0.5_2_5_7_2_7_1_5, 0.6_2_4_1_4_4_7_3, 0.6_1_7_4_3_8_7, 0.6_2_1_4_9_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCamelCase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = self.get_dummy_inputs()
lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase__ : List[Any] = np.array(
[0.7_6_5_9_2_7_8, 0.7_6_4_3_7_6_6_4, 0.7_5_5_7_9_1_0_7, 0.7_6_9_1_1_1_6, 0.7_7_6_6_6_9_8_6, 0.7_7_2_7_6_7_2, 0.7_7_5_8_6_6_4, 0.7_8_1_2_2_2_6, 0.7_6_9_4_2_5_1_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCamelCase__ : Optional[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Any = self.get_dummy_inputs()
lowerCamelCase__ : Tuple = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase__ : Optional[Any] = np.array(
[0.6_9_7_4_7_8_2, 0.6_8_9_0_2_0_9_3, 0.7_0_1_3_5_8_8_5, 0.7_5_8_3_6_1_8, 0.7_8_0_4_5_4_5, 0.7_8_5_4_9_1_2, 0.7_8_6_6_7_4_2_6, 0.7_8_7_4_3_8_6_3, 0.7_8_0_7_0_2_2_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" )
lowerCamelCase__ : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : str = self.get_dummy_inputs()
lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images
lowerCamelCase__ : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
lowerCamelCase__ : Optional[int] = np.array(
[0.7_7_4_2_4_4_9_6, 0.7_7_3_6_0_1, 0.7_6_4_5_2_8_8, 0.7_7_6_9_5_9_8, 0.7_7_7_2_7_3_9, 0.7_7_3_8_6_8_8, 0.7_8_1_8_7_2_3_3, 0.7_7_8_7_9_5_8_4, 0.7_6_7_0_4_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
@nightly
@require_onnxruntime
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Any = ort.SessionOptions()
lowerCamelCase__ : List[Any] = False
return options
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
lowerCamelCase__ : List[str] = init_image.resize((128, 128) )
# using the PNDM scheduler by default
lowerCamelCase__ : List[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : List[str] = "A fantasy landscape, trending on artstation"
lowerCamelCase__ : Any = torch.manual_seed(0 )
lowerCamelCase__ : Union[str, Any] = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=10 , generator=__lowerCamelCase , output_type="np" , )
lowerCamelCase__ : List[Any] = output.images
lowerCamelCase__ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
lowerCamelCase__ : Optional[int] = np.array([0.4_8_8_3, 0.4_9_4_7, 0.4_9_8_0, 0.4_9_7_5, 0.4_9_8_2, 0.4_9_8_0, 0.5_0_0_0, 0.5_0_0_6, 0.4_9_7_2] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg" )
lowerCamelCase__ : Tuple = init_image.resize((128, 128) )
lowerCamelCase__ : str = LMSDiscreteScheduler.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler" )
lowerCamelCase__ : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(
"ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=__lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = "A fantasy landscape, trending on artstation"
lowerCamelCase__ : Union[str, Any] = torch.manual_seed(0 )
lowerCamelCase__ : List[str] = pipe(
prompt=__lowerCamelCase , image=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=20 , generator=__lowerCamelCase , output_type="np" , )
lowerCamelCase__ : Optional[Any] = output.images
lowerCamelCase__ : Optional[int] = images[0, 255:258, 383:386, -1]
assert images.shape == (1, 512, 512, 3)
lowerCamelCase__ : str = np.array(
[0.5_0_1_7_3_7_5_3, 0.5_0_2_2_3_3_5_6, 0.5_0_2_0_3_9, 0.5_0_2_3_3_0_3_6, 0.5_0_2_3_7_2_5, 0.5_0_2_2_6_0_1, 0.5_0_1_8_7_5_8, 0.5_0_2_3_4_0_8_5, 0.5_0_2_4_1_5_6_6] )
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
| 5 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Optional[Any] = logging.get_logger(__name__)
A : str = {
"caidas/swin2sr-classicalsr-x2-64": (
"https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "swin2sr"
A__ = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Union[str, Any] , __lowerCamelCase : List[str]=64 , __lowerCamelCase : Any=1 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=180 , __lowerCamelCase : Optional[int]=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : Optional[Any]=[6, 6, 6, 6, 6, 6] , __lowerCamelCase : str=8 , __lowerCamelCase : List[str]=2.0 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=0.0 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Any=False , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-5 , __lowerCamelCase : str=2 , __lowerCamelCase : int=1.0 , __lowerCamelCase : int="1conv" , __lowerCamelCase : str="pixelshuffle" , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Any = image_size
lowerCamelCase__ : Union[str, Any] = patch_size
lowerCamelCase__ : Optional[Any] = num_channels
lowerCamelCase__ : List[str] = embed_dim
lowerCamelCase__ : Optional[int] = depths
lowerCamelCase__ : int = len(__lowerCamelCase )
lowerCamelCase__ : str = num_heads
lowerCamelCase__ : Optional[Any] = window_size
lowerCamelCase__ : List[str] = mlp_ratio
lowerCamelCase__ : Dict = qkv_bias
lowerCamelCase__ : Optional[Any] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = drop_path_rate
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[Any] = use_absolute_embeddings
lowerCamelCase__ : Optional[int] = layer_norm_eps
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Any = upscale
lowerCamelCase__ : Union[str, Any] = img_range
lowerCamelCase__ : Dict = resi_connection
lowerCamelCase__ : Optional[Any] = upsampler
| 5 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
A : Union[str, Any] = {
"configuration_gpt_neo": ["GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoConfig", "GPTNeoOnnxConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
"GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST",
"GPTNeoForCausalLM",
"GPTNeoForQuestionAnswering",
"GPTNeoForSequenceClassification",
"GPTNeoForTokenClassification",
"GPTNeoModel",
"GPTNeoPreTrainedModel",
"load_tf_weights_in_gpt_neo",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Optional[Any] = [
"FlaxGPTNeoForCausalLM",
"FlaxGPTNeoModel",
"FlaxGPTNeoPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neo import (
GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoForCausalLM,
GPTNeoForQuestionAnswering,
GPTNeoForSequenceClassification,
GPTNeoForTokenClassification,
GPTNeoModel,
GPTNeoPreTrainedModel,
load_tf_weights_in_gpt_neo,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel
else:
import sys
A : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 1 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
A : int = logging.get_logger(__name__)
A : Dict = ["model.decoder.embed_positions.weights"]
def lowercase_ ( _A : Optional[Any] ):
"""simple docstring"""
if "emb" in name:
lowerCamelCase__ : Tuple = name.replace("emb" , "model.decoder.embed_tokens" )
if "transformer" in name:
lowerCamelCase__ : Dict = name.replace("transformer" , "model.decoder" )
if "cross_attention" in name:
lowerCamelCase__ : List[str] = name.replace("cross_attention" , "encoder_attn" )
if "linear1" in name:
lowerCamelCase__ : List[Any] = name.replace("linear1" , "fc1" )
if "linear2" in name:
lowerCamelCase__ : List[str] = name.replace("linear2" , "fc2" )
if "norm1" in name:
lowerCamelCase__ : Optional[Any] = name.replace("norm1" , "self_attn_layer_norm" )
if "norm_cross" in name:
lowerCamelCase__ : Optional[int] = name.replace("norm_cross" , "encoder_attn_layer_norm" )
if "norm2" in name:
lowerCamelCase__ : Tuple = name.replace("norm2" , "final_layer_norm" )
if "out_norm" in name:
lowerCamelCase__ : Tuple = name.replace("out_norm" , "model.decoder.layer_norm" )
if "linears" in name:
lowerCamelCase__ : str = name.replace("linears" , "lm_heads" )
if "condition_provider.conditioners.description.output_proj" in name:
lowerCamelCase__ : List[str] = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" )
return name
def lowercase_ ( _A : OrderedDict , _A : int ):
"""simple docstring"""
lowerCamelCase__ : int = list(state_dict.keys() )
lowerCamelCase__ : Optional[Any] = {}
for key in keys:
lowerCamelCase__ : Optional[Any] = state_dict.pop(_A )
lowerCamelCase__ : Any = rename_keys(_A )
if "in_proj_weight" in key:
# split fused qkv proj
lowerCamelCase__ : List[str] = val[:hidden_size, :]
lowerCamelCase__ : str = val[hidden_size : 2 * hidden_size, :]
lowerCamelCase__ : List[Any] = val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowerCamelCase__ : str = val
else:
lowerCamelCase__ : Dict = val
return state_dict, enc_dec_proj_state_dict
def lowercase_ ( _A : str ):
"""simple docstring"""
if checkpoint == "small":
# default config values
lowerCamelCase__ : Union[str, Any] = 1024
lowerCamelCase__ : List[Any] = 24
lowerCamelCase__ : int = 16
elif checkpoint == "medium":
lowerCamelCase__ : Tuple = 1536
lowerCamelCase__ : Union[str, Any] = 48
lowerCamelCase__ : Optional[Any] = 24
elif checkpoint == "large":
lowerCamelCase__ : Any = 2048
lowerCamelCase__ : Optional[Any] = 48
lowerCamelCase__ : Tuple = 32
else:
raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." )
lowerCamelCase__ : Tuple = MusicgenDecoderConfig(
hidden_size=_A , ffn_dim=hidden_size * 4 , num_hidden_layers=_A , num_attention_heads=_A , )
return config
@torch.no_grad()
def lowercase_ ( _A : List[str] , _A : Any=None , _A : Dict=None , _A : str="cpu" ):
"""simple docstring"""
lowerCamelCase__ : Dict = MusicGen.get_pretrained(_A , device=_A )
lowerCamelCase__ : Optional[Any] = decoder_config_from_checkpoint(_A )
lowerCamelCase__ : str = fairseq_model.lm.state_dict()
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = rename_state_dict(
_A , hidden_size=decoder_config.hidden_size )
lowerCamelCase__ : Union[str, Any] = TaEncoderModel.from_pretrained("t5-base" )
lowerCamelCase__ : Dict = EncodecModel.from_pretrained("facebook/encodec_32khz" )
lowerCamelCase__ : List[Any] = MusicgenForCausalLM(_A ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = decoder.load_state_dict(_A , strict=_A )
for key in missing_keys.copy():
if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_A )
if len(_A ) > 0:
raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" )
if len(_A ) > 0:
raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" )
# init the composite model
lowerCamelCase__ : Optional[int] = MusicgenForConditionalGeneration(text_encoder=_A , audio_encoder=_A , decoder=_A )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_A )
# check we can do a forward pass
lowerCamelCase__ : Optional[int] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowerCamelCase__ : Any = input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(input_ids=_A , decoder_input_ids=_A ).logits
if logits.shape != (8, 1, 2048):
raise ValueError("Incorrect shape for logits" )
# now construct the processor
lowerCamelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("t5-base" )
lowerCamelCase__ : Dict = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" )
lowerCamelCase__ : List[str] = MusicgenProcessor(feature_extractor=_A , tokenizer=_A )
# set the appropriate bos/pad token ids
lowerCamelCase__ : Union[str, Any] = 2048
lowerCamelCase__ : Dict = 2048
# set other default generation config params
lowerCamelCase__ : Optional[Any] = int(30 * audio_encoder.config.frame_rate )
lowerCamelCase__ : Dict = True
lowerCamelCase__ : int = 3.0
if pytorch_dump_folder is not None:
Path(_A ).mkdir(exist_ok=_A )
logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" )
model.save_pretrained(_A )
processor.save_pretrained(_A )
if repo_id:
logger.info(F"Pushing model {checkpoint} to {repo_id}" )
model.push_to_hub(_A )
processor.push_to_hub(_A )
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint",
default="small",
type=str,
help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.",
)
parser.add_argument(
"--pytorch_dump_folder",
required=True,
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub."
)
parser.add_argument(
"--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda."
)
A : Optional[Any] = parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 5 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 1 |
from typing import List, Optional, Union
import numpy as np
import tensorflow as tf
from .utils import logging
A : List[str] = logging.get_logger(__name__)
def lowercase_ ( _A : Union[tf.Tensor, np.ndarray] ):
"""simple docstring"""
if isinstance(_A , np.ndarray ):
return list(tensor.shape )
lowerCamelCase__ : Union[str, Any] = tf.shape(_A )
if tensor.shape == tf.TensorShape(_A ):
return dynamic
lowerCamelCase__ : Optional[int] = tensor.shape.as_list()
return [dynamic[i] if s is None else s for i, s in enumerate(_A )]
def lowercase_ ( _A : tf.Tensor , _A : Optional[int] = None , _A : Optional[str] = None ):
"""simple docstring"""
return tf.nn.softmax(logits=logits + 1E-9 , axis=_A , name=_A )
def lowercase_ ( _A : Tuple , _A : Dict , _A : Any , _A : str=1E-5 , _A : Optional[Any]=-1 ):
"""simple docstring"""
if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(_A , _A ):
raise NotImplementedError("Only 1D weight and bias tensors are supported for now, with only a single axis." )
# Get mean and variance on the axis to be normalized
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = tf.nn.moments(_A , axes=[axis] , keepdims=_A )
if axis != -1:
# Reshape scale and weight to have the same rank as inputs, but with 1 dimensions
# on every dimension except axis
lowerCamelCase__ : List[Any] = [1] * inputs.shape.rank
lowerCamelCase__ : Union[str, Any] = shape_list(_A )[axis]
lowerCamelCase__ : Tuple = tf.reshape(_A , _A )
lowerCamelCase__ : List[Any] = tf.reshape(_A , _A )
# Compute layer normalization using the batch_normalization
# function.
lowerCamelCase__ : str = tf.nn.batch_normalization(
_A , _A , _A , offset=_A , scale=_A , variance_epsilon=_A , )
return outputs
def lowercase_ ( _A : int , _A : Optional[Any]=0 , _A : Optional[Any]=-1 ):
"""simple docstring"""
if end_dim < 0:
end_dim += input.shape.rank
if start_dim < 0:
start_dim += input.shape.rank
if start_dim == end_dim:
return input
lowerCamelCase__ : Dict = tf.shape(_A )
lowerCamelCase__ : List[str] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] )
lowerCamelCase__ : Optional[int] = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 )
return tf.reshape(_A , _A )
def lowercase_ ( _A : tf.Tensor ):
"""simple docstring"""
if not isinstance(_A , tf.Tensor ):
lowerCamelCase__ : str = tf.convert_to_tensor(_A ) # Catches stray NumPy inputs
if encoder_attention_mask.shape.rank == 3:
lowerCamelCase__ : Union[str, Any] = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.shape.rank == 2:
lowerCamelCase__ : Optional[Any] = encoder_attention_mask[:, None, None, :]
# T5 has a mask that can compare sequence ids, we can simulate this here with this transposition
# Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow
# /transformer/transformer_layers.py#L270
# encoder_extended_attention_mask = (encoder_extended_attention_mask ==
# encoder_extended_attention_mask.transpose(-1, -2))
lowerCamelCase__ : Any = (
tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask
) * encoder_extended_attention_mask.dtype.min
return encoder_extended_attention_mask
def lowercase_ ( _A : tf.Tensor , _A : int , _A : str = "input_ids" ):
"""simple docstring"""
tf.debugging.assert_less(
_A , tf.cast(_A , dtype=tensor.dtype ) , message=(
F"The maximum value of {tensor_name} ({tf.math.reduce_max(_A )}) must be smaller than the embedding "
F"layer's input dimension ({embed_dim}). The likely cause is some problem at tokenization time."
) , )
def lowercase_ ( _A : int , _A : List[Any] , _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Tuple = 64512
# Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT`
# because in that case even chunking the array would not make the saving
# possible.
lowerCamelCase__ : Union[str, Any] = [x for x in data if len(_A ) > HDF5_OBJECT_HEADER_LIMIT]
# Expecting this to never be true.
if bad_attributes:
raise RuntimeError(
"The following attributes cannot be saved to HDF5 file because "
F"they are larger than {HDF5_OBJECT_HEADER_LIMIT} "
F"bytes: {bad_attributes}" )
lowerCamelCase__ : List[Any] = np.asarray(_A )
lowerCamelCase__ : Any = 1
lowerCamelCase__ : Dict = np.array_split(_A , _A )
# This will never loop forever thanks to the test above.
while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ):
num_chunks += 1
lowerCamelCase__ : Optional[Any] = np.array_split(_A , _A )
if num_chunks > 1:
for chunk_id, chunk_data in enumerate(_A ):
lowerCamelCase__ : str = chunk_data
else:
lowerCamelCase__ : int = data
def lowercase_ ( _A : str , _A : Any ):
"""simple docstring"""
if name in group.attrs:
lowerCamelCase__ : str = [n.decode("utf8" ) if hasattr(_A , "decode" ) else n for n in group.attrs[name]]
else:
lowerCamelCase__ : List[Any] = []
lowerCamelCase__ : List[str] = 0
while "%s%d" % (name, chunk_id) in group.attrs:
data.extend(
[n.decode("utf8" ) if hasattr(_A , "decode" ) else n for n in group.attrs["%s%d" % (name, chunk_id)]] )
chunk_id += 1
return data
def lowercase_ ( _A : Dict ):
"""simple docstring"""
def _expand_single_ad_tensor(_A : Dict ):
if isinstance(_A , tf.Tensor ) and t.shape.rank == 1:
return tf.expand_dims(_A , axis=-1 )
return t
return tf.nest.map_structure(_expand_single_ad_tensor , _A )
| 5 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
from diffusers.utils import floats_tensor, nightly, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[str] = 1
lowerCamelCase__ : Any = 3
lowerCamelCase__ : Tuple = (32, 32)
lowerCamelCase__ : Union[str, Any] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase )
return image
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : List[str] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
return model
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : List[str] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , )
return model
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
return CLIPTextModel(__lowerCamelCase )
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
def extract(*__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : int ):
class _lowercase :
"""simple docstring"""
def __init__( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = torch.ones([0] )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
self.pixel_values.to(__lowerCamelCase )
return self
return Out()
return extract
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCamelCase__ : Union[str, Any] = self.dummy_cond_unet
lowerCamelCase__ : List[str] = DDIMScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , )
lowerCamelCase__ : Dict = self.dummy_vae
lowerCamelCase__ : Any = self.dummy_text_encoder
lowerCamelCase__ : Optional[Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCamelCase__ : str = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
lowerCamelCase__ : Dict = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = "A painting of a squirrel eating a burger"
lowerCamelCase__ : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
lowerCamelCase__ : Optional[Any] = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
lowerCamelCase__ : Optional[int] = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : Optional[int] = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = "cpu" # ensure determinism for the device-dependent torch.Generator
lowerCamelCase__ : List[Any] = self.dummy_cond_unet
lowerCamelCase__ : Tuple = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
lowerCamelCase__ : Dict = self.dummy_vae
lowerCamelCase__ : Any = self.dummy_text_encoder
lowerCamelCase__ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# make sure here that pndm scheduler skips prk
lowerCamelCase__ : str = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
lowerCamelCase__ : Optional[int] = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Dict = "A painting of a squirrel eating a burger"
lowerCamelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
lowerCamelCase__ : Any = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" )
lowerCamelCase__ : int = output.images
lowerCamelCase__ : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 )
lowerCamelCase__ : List[str] = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : List[Any] = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=__lowerCamelCase )
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert isinstance(pipe.scheduler , __lowerCamelCase )
assert pipe.safety_checker is None
lowerCamelCase__ : int = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
# check that there's no error when saving a pipeline with one of the models being None
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = StableDiffusionPipeline.from_pretrained(__lowerCamelCase )
# sanity check that the pipeline still works
assert pipe.safety_checker is None
lowerCamelCase__ : str = pipe("example prompt" , num_inference_steps=2 ).images[0]
assert image is not None
@unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_cond_unet
lowerCamelCase__ : Dict = PNDMScheduler(skip_prk_steps=__lowerCamelCase )
lowerCamelCase__ : Tuple = self.dummy_vae
lowerCamelCase__ : int = self.dummy_text_encoder
lowerCamelCase__ : Dict = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
# put models in fp16
lowerCamelCase__ : List[str] = unet.half()
lowerCamelCase__ : Any = vae.half()
lowerCamelCase__ : Dict = bert.half()
# make sure here that pndm scheduler skips prk
lowerCamelCase__ : Union[str, Any] = StableDiffusionPipeline(
unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , )
lowerCamelCase__ : Optional[Any] = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Any = "A painting of a squirrel eating a burger"
lowerCamelCase__ : int = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images
assert image.shape == (1, 64, 64, 3)
@nightly
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase )
lowerCamelCase__ : List[str] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCamelCase__ : str = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Dict = (
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
" children from bahnhof zoo, detailed "
)
lowerCamelCase__ : List[Any] = 4003660346
lowerCamelCase__ : str = 7
# without safety guidance (sld_guidance_scale = 0)
lowerCamelCase__ : Optional[Any] = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : List[Any] = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCamelCase__ : Dict = output.images
lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1]
lowerCamelCase__ : Optional[Any] = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
# without safety guidance (strong configuration)
lowerCamelCase__ : Any = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCamelCase__ : Union[str, Any] = output.images
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=__lowerCamelCase )
lowerCamelCase__ : Tuple = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config )
lowerCamelCase__ : str = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : List[Any] = "padme amidala taking a bath artwork, safe for work, no nudity"
lowerCamelCase__ : Union[str, Any] = 2734971755
lowerCamelCase__ : List[Any] = 7
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : Any = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCamelCase__ : Optional[int] = output.images
lowerCamelCase__ : str = image[0, -3:, -3:, -1]
lowerCamelCase__ : str = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : int = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCamelCase__ : Optional[int] = output.images
lowerCamelCase__ : Dict = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3]
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" )
lowerCamelCase__ : Union[str, Any] = sd_pipe.to(__lowerCamelCase )
sd_pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = (
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
" leyendecker"
)
lowerCamelCase__ : Optional[int] = 1044355234
lowerCamelCase__ : Optional[Any] = 12
lowerCamelCase__ : Optional[Any] = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : Any = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , )
lowerCamelCase__ : Optional[Any] = output.images
lowerCamelCase__ : List[str] = image[0, -3:, -3:, -1]
lowerCamelCase__ : Union[str, Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7
lowerCamelCase__ : Optional[Any] = torch.manual_seed(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = sd_pipe(
[prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , )
lowerCamelCase__ : Union[str, Any] = output.images
lowerCamelCase__ : Dict = image[0, -3:, -3:, -1]
lowerCamelCase__ : Union[str, Any] = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] )
assert image.shape == (1, 512, 512, 3)
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 5 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 1 |
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Dict = [0 for i in range(len(_A ) )]
# initialize interval's left pointer and right pointer
lowerCamelCase__ , lowerCamelCase__ : List[str] = 0, 0
for i in range(1 , len(_A ) ):
# case when current index is inside the interval
if i <= right_pointer:
lowerCamelCase__ : Dict = min(right_pointer - i + 1 , z_result[i - left_pointer] )
lowerCamelCase__ : Tuple = min_edge
while go_next(_A , _A , _A ):
z_result[i] += 1
# if new index's result gives us more right interval,
# we've to update left_pointer and right_pointer
if i + z_result[i] - 1 > right_pointer:
lowerCamelCase__ , lowerCamelCase__ : Any = i, i + z_result[i] - 1
return z_result
def lowercase_ ( _A : int , _A : list[int] , _A : str ):
"""simple docstring"""
return i + z_result[i] < len(_A ) and s[z_result[i]] == s[i + z_result[i]]
def lowercase_ ( _A : str , _A : str ):
"""simple docstring"""
lowerCamelCase__ : int = 0
# concatenate 'pattern' and 'input_str' and call z_function
# with concatenated string
lowerCamelCase__ : Optional[int] = z_function(pattern + input_str )
for val in z_result:
# if value is greater then length of the pattern string
# that means this index is starting position of substring
# which is equal to pattern string
if val >= len(_A ):
answer += 1
return answer
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 1 |
import os
import torch
from ..logging import get_logger
from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME
from .versions import is_torch_version
if is_torch_version(">=", FSDP_PYTORCH_VERSION):
import torch.distributed.checkpoint as dist_cp
from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner
from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType
A : List[Any] = get_logger(__name__)
def lowercase_ ( _A : List[str] , _A : Dict , _A : Optional[int] , _A : int , _A : str=0 ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
with FSDP.state_dict_type(
_A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowerCamelCase__ : int = model.state_dict()
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowerCamelCase__ : List[str] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
lowerCamelCase__ : int = os.path.join(_A , _A )
if accelerator.process_index == 0:
logger.info(F"Saving model to {output_model_file}" )
torch.save(_A , _A )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowerCamelCase__ : List[str] = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
lowerCamelCase__ : List[Any] = os.path.join(_A , _A )
logger.info(F"Saving model to {output_model_file}" )
torch.save(_A , _A )
logger.info(F"Model saved to {output_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowerCamelCase__ : Any = os.path.join(_A , F"{MODEL_NAME}_{model_index}" )
os.makedirs(_A , exist_ok=_A )
logger.info(F"Saving model to {ckpt_dir}" )
lowerCamelCase__ : List[str] = {"model": state_dict}
dist_cp.save_state_dict(
state_dict=_A , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , )
logger.info(F"Model saved to {ckpt_dir}" )
def lowercase_ ( _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Any , _A : int=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if type(_A ) != FSDP and accelerator.process_index != 0:
if not fsdp_plugin.sync_module_states:
raise ValueError(
"Set the `sync_module_states` flag to `True` so that model states are synced across processes when "
"initializing FSDP object" )
return
lowerCamelCase__ : Optional[Any] = F"{MODEL_NAME}.bin" if model_index == 0 else F"{MODEL_NAME}_{model_index}.bin"
lowerCamelCase__ : Dict = os.path.join(_A , _A )
logger.info(F"Loading model from {input_model_file}" )
lowerCamelCase__ : Union[str, Any] = torch.load(_A )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT:
lowerCamelCase__ : int = (
F"{MODEL_NAME}_rank{accelerator.process_index}.bin"
if model_index == 0
else F"{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin"
)
lowerCamelCase__ : Optional[Any] = os.path.join(_A , _A )
logger.info(F"Loading model from {input_model_file}" )
lowerCamelCase__ : List[Any] = torch.load(_A )
logger.info(F"Model loaded from {input_model_file}" )
elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT:
lowerCamelCase__ : str = (
os.path.join(_A , F"{MODEL_NAME}_{model_index}" )
if F"{MODEL_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading model from {ckpt_dir}" )
lowerCamelCase__ : Tuple = {"model": model.state_dict()}
dist_cp.load_state_dict(
state_dict=_A , storage_reader=dist_cp.FileSystemReader(_A ) , planner=DefaultLoadPlanner() , )
lowerCamelCase__ : str = state_dict["model"]
logger.info(F"Model loaded from {ckpt_dir}" )
model.load_state_dict(_A )
def lowercase_ ( _A : Dict , _A : str , _A : List[Any] , _A : List[str] , _A : List[Any] , _A : Tuple=0 ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
with FSDP.state_dict_type(
_A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
lowerCamelCase__ : Optional[int] = FSDP.optim_state_dict(_A , _A )
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
if accelerator.process_index == 0:
lowerCamelCase__ : Union[str, Any] = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
lowerCamelCase__ : str = os.path.join(_A , _A )
logger.info(F"Saving Optimizer state to {output_optimizer_file}" )
torch.save(_A , _A )
logger.info(F"Optimizer state saved in {output_optimizer_file}" )
else:
lowerCamelCase__ : Tuple = os.path.join(_A , F"{OPTIMIZER_NAME}_{optimizer_index}" )
os.makedirs(_A , exist_ok=_A )
logger.info(F"Saving Optimizer state to {ckpt_dir}" )
dist_cp.save_state_dict(
state_dict={"optimizer": optim_state} , storage_writer=dist_cp.FileSystemWriter(_A ) , planner=DefaultSavePlanner() , )
logger.info(F"Optimizer state saved in {ckpt_dir}" )
def lowercase_ ( _A : int , _A : Tuple , _A : Optional[Any] , _A : int , _A : Any , _A : Dict=0 ):
"""simple docstring"""
accelerator.wait_for_everyone()
with FSDP.state_dict_type(
_A , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ):
if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT:
lowerCamelCase__ : str = None
# below check should work but currently it isn't working (mostly opytorch issue),
# in the meantime disabling it at the cost of excess memory usage
# if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only:
lowerCamelCase__ : List[Any] = (
F"{OPTIMIZER_NAME}.bin" if optimizer_index == 0 else F"{OPTIMIZER_NAME}_{optimizer_index}.bin"
)
lowerCamelCase__ : Optional[int] = os.path.join(_A , _A )
logger.info(F"Loading Optimizer state from {input_optimizer_file}" )
lowerCamelCase__ : Union[str, Any] = torch.load(_A )
logger.info(F"Optimizer state loaded from {input_optimizer_file}" )
else:
lowerCamelCase__ : List[Any] = (
os.path.join(_A , F"{OPTIMIZER_NAME}_{optimizer_index}" )
if F"{OPTIMIZER_NAME}" not in input_dir
else input_dir
)
logger.info(F"Loading Optimizer from {ckpt_dir}" )
lowerCamelCase__ : Dict = load_sharded_optimizer_state_dict(
model_state_dict=model.state_dict() , optimizer_key="optimizer" , storage_reader=dist_cp.FileSystemReader(_A ) , )
lowerCamelCase__ : Any = optim_state["optimizer"]
logger.info(F"Optimizer loaded from {ckpt_dir}" )
lowerCamelCase__ : Any = FSDP.optim_state_dict_to_load(_A , _A , _A )
optimizer.load_state_dict(_A )
| 5 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
A : Dict = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST",
"ViTMAEForPreTraining",
"ViTMAELayer",
"ViTMAEModel",
"ViTMAEPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : str = [
"TFViTMAEForPreTraining",
"TFViTMAEModel",
"TFViTMAEPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_mae import (
VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMAEForPreTraining,
ViTMAELayer,
ViTMAEModel,
ViTMAEPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel
else:
import sys
A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 1 |
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from diffusers import DiffusionPipeline, ImagePipelineOutput
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase )
@torch.no_grad()
def __call__( self : str , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : int = 50 , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = torch.randn(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__lowerCamelCase , )
lowerCamelCase__ : str = image.to(self.device )
# set step values
self.scheduler.set_timesteps(__lowerCamelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
lowerCamelCase__ : Any = self.unet(__lowerCamelCase , __lowerCamelCase ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
lowerCamelCase__ : Tuple = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample
lowerCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
lowerCamelCase__ : Any = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
lowerCamelCase__ : str = self.numpy_to_pil(__lowerCamelCase )
if not return_dict:
return (image,), "This is a local test"
return ImagePipelineOutput(images=__lowerCamelCase ), "This is a local test"
| 5 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 1 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
A : Any = getLogger(__name__)
def lowercase_ ( _A : str , _A : str , _A : str , _A : int = 8 , _A : int = 1024 , _A : List[str]="val" , _A : Tuple=None , _A : Union[str, Any]=False , _A : Dict="summarization" , _A : str=None , _A : List[Any]=1 , _A : Dict = None , _A : int="" , **_A : str , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = str(_A )
assert local_rank is not None
torch.distributed.init_process_group(backend="nccl" , rank=_A )
lowerCamelCase__ : Optional[Any] = Path(_A )
lowerCamelCase__ : Tuple = save_dir.joinpath(F"rank_{local_rank}_output.json" )
torch.cuda.set_device(_A )
lowerCamelCase__ : int = AutoModelForSeqaSeqLM.from_pretrained(_A ).cuda()
if fpaa:
lowerCamelCase__ : Dict = model.half()
# determine if we need to increase num_beams
use_task_specific_params(_A , _A ) # update config with task specific params
lowerCamelCase__ : Tuple = generate_kwargs.pop("num_beams" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
lowerCamelCase__ : List[Any] = num_return_sequences
lowerCamelCase__ : Optional[Any] = AutoTokenizer.from_pretrained(_A )
logger.info(F"Inferred tokenizer type: {tokenizer.__class__}" ) # if this is wrong, check config.model_type.
if max_source_length is None:
lowerCamelCase__ : List[str] = tokenizer.model_max_length
if prefix is None:
lowerCamelCase__ : Union[str, Any] = prefix or getattr(model.config , "prefix" , "" ) or ""
lowerCamelCase__ : Dict = SeqaSeqDataset(
_A , _A , _A , max_target_length=1024 , type_path=_A , n_obs=_A , prefix=_A , **_A , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
lowerCamelCase__ : Optional[Any] = ds.make_sortish_sampler(_A , distributed=_A , add_extra_examples=_A , shuffle=_A )
lowerCamelCase__ : str = DataLoader(_A , sampler=_A , batch_size=_A , collate_fn=ds.collate_fn )
lowerCamelCase__ : List[str] = []
for batch in tqdm(_A ):
lowerCamelCase__ : Optional[Any] = model.generate(
input_ids=batch["input_ids"].to(model.device ) , attention_mask=batch["attention_mask"].to(model.device ) , num_return_sequences=_A , num_beams=_A , **_A , )
lowerCamelCase__ : Any = tokenizer.batch_decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A )
lowerCamelCase__ : str = batch["ids"]
if num_return_sequences > 1:
lowerCamelCase__ : str = chunks(_A , _A ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(_A ):
results.append({"pred": pred, "id": ids[i].item()} )
save_json(_A , _A )
return results, sampler.num_replicas
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = argparse.ArgumentParser(
epilog="Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate" )
parser.add_argument("--data_dir" , type=_A , help="like cnn_dm/test.source" )
parser.add_argument(
"--model_name" , type=_A , help="like facebook/bart-large-cnn,t5-base, etc." , default="sshleifer/distilbart-xsum-12-3" , )
parser.add_argument("--save_dir" , type=_A , help="where to save" , default="tmp_gen" )
parser.add_argument("--max_source_length" , type=_A , default=_A )
parser.add_argument(
"--type_path" , type=_A , default="test" , help="which subset to evaluate typically train/val/test" )
parser.add_argument("--task" , type=_A , default="summarization" , help="used for task_specific_params + metrics" )
parser.add_argument("--bs" , type=_A , default=8 , required=_A , help="batch size" )
parser.add_argument(
"--local_rank" , type=_A , default=-1 , required=_A , help="should be passed by distributed.launch" )
parser.add_argument(
"--n_obs" , type=_A , default=_A , required=_A , help="How many observations. Defaults to all." )
parser.add_argument(
"--num_return_sequences" , type=_A , default=1 , required=_A , help="How many sequences to return" )
parser.add_argument(
"--sync_timeout" , type=_A , default=600 , required=_A , help="How long should master process wait for other processes to finish." , )
parser.add_argument("--src_lang" , type=_A , default=_A , required=_A )
parser.add_argument("--tgt_lang" , type=_A , default=_A , required=_A )
parser.add_argument(
"--prefix" , type=_A , required=_A , default=_A , help="will be added to the begininng of src examples" )
parser.add_argument("--fp16" , action="store_true" )
parser.add_argument("--debug" , action="store_true" )
lowerCamelCase__ : List[Any] = time.time()
lowerCamelCase__ , lowerCamelCase__ : List[str] = parser.parse_known_args()
lowerCamelCase__ : Optional[int] = parse_numeric_n_bool_cl_kwargs(_A )
if generate_kwargs and args.local_rank <= 0:
print(F"parsed the following generate kwargs: {generate_kwargs}" )
lowerCamelCase__ : int = Path(args.save_dir + "_tmp" )
Path(_A ).mkdir(exist_ok=_A ) # this handles locking.
lowerCamelCase__ : Any = list(json_save_dir.glob("rank_*.json" ) )
if intermediate_files:
raise ValueError(F"Found files at {json_save_dir} please move or remove them." )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
lowerCamelCase__ : Dict = {}
if args.src_lang is not None:
lowerCamelCase__ : Dict = args.src_lang
if args.tgt_lang is not None:
lowerCamelCase__ : Any = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=_A )
lowerCamelCase__ , lowerCamelCase__ : Dict = eval_data_dir(
args.data_dir , _A , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_A , **_A , )
if args.local_rank <= 0:
lowerCamelCase__ : Tuple = Path(args.save_dir )
save_dir.mkdir(exist_ok=_A )
lowerCamelCase__ : Optional[int] = gather_results_from_each_node(_A , _A , args.sync_timeout )
lowerCamelCase__ : int = combine_partial_results(_A )
if args.num_return_sequences > 1:
lowerCamelCase__ : int = save_dir.joinpath("pseudolabel_results.json" )
print(F"Saving aggregated results at {save_path}, intermediate in {json_save_dir}/" )
save_json(_A , _A )
return
lowerCamelCase__ : Union[str, Any] = Path(args.data_dir ).joinpath(args.type_path + ".target" )
with open(_A ) as f:
lowerCamelCase__ : Union[str, Any] = [x.rstrip() for x in f.readlines()][: len(_A )]
# Calculate metrics, save metrics, and save _generations.txt
lowerCamelCase__ : Optional[Any] = "translation" in args.task
lowerCamelCase__ : int = calculate_bleu if calc_bleu else calculate_rouge
lowerCamelCase__ : List[str] = "bleu" if calc_bleu else "rouge"
lowerCamelCase__ : Dict = score_fn(_A , _A )
lowerCamelCase__ : int = len(_A )
lowerCamelCase__ : Optional[int] = time.time() - start_time
lowerCamelCase__ : str = round(runtime / metrics["n_obs"] , 4 )
lowerCamelCase__ : Any = num_replicas
# TODO(@stas00): add whatever metadata to metrics
lowerCamelCase__ : Any = save_dir.joinpath(F"{args.type_path}_{metric_name}.json" )
save_json(_A , _A , indent=_A )
print(_A )
write_txt_file(_A , save_dir.joinpath(F"{args.type_path}_generations.txt" ) )
if args.debug:
write_txt_file(_A , save_dir.joinpath(F"{args.type_path}.target" ) )
else:
shutil.rmtree(_A )
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : int = []
for partial_result in partial_results:
records.extend(_A )
lowerCamelCase__ : Optional[int] = sorted(_A , key=lambda _A : x["id"] )
lowerCamelCase__ : Dict = [x["pred"] for x in records]
return preds
def lowercase_ ( _A : str , _A : str , _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : str = time.time()
logger.info("waiting for all nodes to finish" )
lowerCamelCase__ : Dict = None
while (time.time() - start_wait) < timeout:
lowerCamelCase__ : Dict = list(save_dir.glob("rank_*.json" ) )
if len(_A ) < num_replicas:
continue
try:
# make sure all json files are fully saved
lowerCamelCase__ : Tuple = lmap(_A , _A )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("Rank 0 gave up on waiting for other processes" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 5 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
A : Any = logging.get_logger(__name__)
class _lowercase ( lowercase__ , lowercase__):
"""simple docstring"""
A__ = "maskformer-swin"
A__ = {
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any , __lowerCamelCase : Dict=224 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : int=3 , __lowerCamelCase : int=96 , __lowerCamelCase : Tuple=[2, 2, 6, 2] , __lowerCamelCase : Tuple=[3, 6, 12, 24] , __lowerCamelCase : Union[str, Any]=7 , __lowerCamelCase : Union[str, Any]=4.0 , __lowerCamelCase : Any=True , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Tuple=0.0_2 , __lowerCamelCase : List[Any]=1E-5 , __lowerCamelCase : Dict=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : int = image_size
lowerCamelCase__ : Dict = patch_size
lowerCamelCase__ : Optional[int] = num_channels
lowerCamelCase__ : Optional[Any] = embed_dim
lowerCamelCase__ : str = depths
lowerCamelCase__ : str = len(__lowerCamelCase )
lowerCamelCase__ : Dict = num_heads
lowerCamelCase__ : Optional[Any] = window_size
lowerCamelCase__ : str = mlp_ratio
lowerCamelCase__ : Tuple = qkv_bias
lowerCamelCase__ : Optional[Any] = hidden_dropout_prob
lowerCamelCase__ : List[str] = attention_probs_dropout_prob
lowerCamelCase__ : Union[str, Any] = drop_path_rate
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : Optional[Any] = use_absolute_embeddings
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
lowerCamelCase__ : List[str] = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) )
lowerCamelCase__ : Optional[Any] = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )]
lowerCamelCase__ , lowerCamelCase__ : int = get_aligned_output_features_output_indices(
out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
| 5 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 1 |
import argparse
A : Tuple = "docs/source/_static/js/custom.js"
def lowercase_ ( _A : List[Any] ):
"""simple docstring"""
with open(_A , encoding="utf-8" , newline="\n" ) as f:
lowerCamelCase__ : Tuple = f.readlines()
lowerCamelCase__ : str = 0
# First let's put the right version
while not lines[index].startswith("const stableVersion =" ):
index += 1
lowerCamelCase__ : int = F"const stableVersion = \"v{version}\"\n"
# Then update the dictionary
while not lines[index].startswith("const versionMapping = {" ):
index += 1
# We go until the end
while not lines[index].startswith("}" ):
index += 1
# We add the new version at the end
lines[index - 1] += F" \"v{version}\": \"v{version}\",\n"
with open(_A , "w" , encoding="utf-8" , newline="\n" ) as f:
f.writelines(_A )
if __name__ == "__main__":
A : Dict = argparse.ArgumentParser()
parser.add_argument("--version", help="Release version.")
A : Optional[int] = parser.parse_args()
update_custom_js(args.version)
| 5 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
while second != 0:
lowerCamelCase__ : str = first & second
first ^= second
lowerCamelCase__ : List[Any] = c << 1
return first
if __name__ == "__main__":
import doctest
doctest.testmod()
A : Dict = int(input("Enter the first number: ").strip())
A : List[str] = int(input("Enter the second number: ").strip())
print(f'{add(first, second) = }')
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
def lowercase_ ( _A : list , _A : int = 0 ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = length or len(_A )
lowerCamelCase__ : List[Any] = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
lowerCamelCase__ , lowerCamelCase__ : Dict = list_data[i + 1], list_data[i]
lowerCamelCase__ : str = True
return list_data if not swapped else bubble_sort(_A , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 1 |
from typing import List
from .keymap import KEYMAP, get_character
def lowercase_ ( _A : str ):
"""simple docstring"""
def decorator(_A : Any ):
lowerCamelCase__ : List[Any] = getattr(_A , "handle_key" , [] )
handle += [key]
setattr(_A , "handle_key" , _A )
return func
return decorator
def lowercase_ ( *_A : List[str] ):
"""simple docstring"""
def decorator(_A : Union[str, Any] ):
lowerCamelCase__ : List[str] = getattr(_A , "handle_key" , [] )
handle += keys
setattr(_A , "handle_key" , _A )
return func
return decorator
class _lowercase ( lowercase__):
"""simple docstring"""
def __new__( cls : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = super().__new__(cls , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if not hasattr(__lowerCamelCase , "key_handler" ):
setattr(__lowerCamelCase , "key_handler" , {} )
setattr(__lowerCamelCase , "handle_input" , KeyHandler.handle_input )
for value in attrs.values():
lowerCamelCase__ : Union[str, Any] = getattr(__lowerCamelCase , "handle_key" , [] )
for key in handled_keys:
lowerCamelCase__ : str = value
return new_cls
@staticmethod
def lowerCAmelCase ( cls : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = get_character()
if char != KEYMAP["undefined"]:
lowerCamelCase__ : int = ord(__lowerCamelCase )
lowerCamelCase__ : int = cls.key_handler.get(__lowerCamelCase )
if handler:
lowerCamelCase__ : Union[str, Any] = char
return handler(cls )
else:
return None
def lowercase_ ( cls : int ):
"""simple docstring"""
return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : str = logging.get_logger(__name__)
A : Dict = {
"facebook/data2vec-vision-base-ft": (
"https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "data2vec-vision"
def __init__( self : Dict , __lowerCamelCase : List[str]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Dict=1E-1_2 , __lowerCamelCase : str=224 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=[3, 5, 7, 11] , __lowerCamelCase : str=[1, 2, 3, 6] , __lowerCamelCase : int=True , __lowerCamelCase : Any=0.4 , __lowerCamelCase : Union[str, Any]=256 , __lowerCamelCase : int=1 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Dict=255 , **__lowerCamelCase : Any , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : List[str] = hidden_dropout_prob
lowerCamelCase__ : str = attention_probs_dropout_prob
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : List[Any] = image_size
lowerCamelCase__ : Tuple = patch_size
lowerCamelCase__ : List[str] = num_channels
lowerCamelCase__ : List[str] = use_mask_token
lowerCamelCase__ : Tuple = use_absolute_position_embeddings
lowerCamelCase__ : Optional[int] = use_relative_position_bias
lowerCamelCase__ : str = use_shared_relative_position_bias
lowerCamelCase__ : List[str] = layer_scale_init_value
lowerCamelCase__ : List[str] = drop_path_rate
lowerCamelCase__ : Optional[int] = use_mean_pooling
# decode head attributes (semantic segmentation)
lowerCamelCase__ : Dict = out_indices
lowerCamelCase__ : Union[str, Any] = pool_scales
# auxiliary head attributes (semantic segmentation)
lowerCamelCase__ : str = use_auxiliary_head
lowerCamelCase__ : Optional[int] = auxiliary_loss_weight
lowerCamelCase__ : List[str] = auxiliary_channels
lowerCamelCase__ : List[str] = auxiliary_num_convs
lowerCamelCase__ : str = auxiliary_concat_input
lowerCamelCase__ : Any = semantic_loss_ignore_index
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = version.parse("1.11")
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 1E-4
| 5 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 1 |
def lowercase_ ( _A : int = 10 , _A : int = 1000 , _A : bool = True ):
"""simple docstring"""
assert (
isinstance(_A , _A )
and isinstance(_A , _A )
and isinstance(_A , _A )
), "Invalid type of value(s) specified to function!"
if min_val > max_val:
raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" )
return min_val if option else max_val
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
return int((number_a + number_a) / 2 )
def lowercase_ ( _A : int , _A : int , _A : int ):
"""simple docstring"""
assert (
isinstance(_A , _A ) and isinstance(_A , _A ) and isinstance(_A , _A )
), 'argument values must be type of "int"'
if lower > higher:
raise ValueError("argument value for lower and higher must be(lower > higher)" )
if not lower < to_guess < higher:
raise ValueError(
"guess value must be within the range of lower and higher value" )
def answer(_A : int ) -> str:
if number > to_guess:
return "high"
elif number < to_guess:
return "low"
else:
return "same"
print("started..." )
lowerCamelCase__ : int = lower
lowerCamelCase__ : Optional[int] = higher
lowerCamelCase__ : Any = []
while True:
lowerCamelCase__ : str = get_avg(_A , _A )
last_numbers.append(_A )
if answer(_A ) == "low":
lowerCamelCase__ : Optional[Any] = number
elif answer(_A ) == "high":
lowerCamelCase__ : Union[str, Any] = number
else:
break
print(F"guess the number : {last_numbers[-1]}" )
print(F"details : {last_numbers!s}" )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = int(input("Enter lower value : " ).strip() )
lowerCamelCase__ : Dict = int(input("Enter high value : " ).strip() )
lowerCamelCase__ : int = int(input("Enter value to guess : " ).strip() )
guess_the_number(_A , _A , _A )
if __name__ == "__main__":
main()
| 5 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 1 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
def lowercase_ ( _A : float , _A : float , _A : int ):
"""simple docstring"""
if principal <= 0:
raise Exception("Principal borrowed must be > 0" )
if rate_per_annum < 0:
raise Exception("Rate of interest must be >= 0" )
if years_to_repay <= 0 or not isinstance(_A , _A ):
raise Exception("Years to repay must be an integer > 0" )
# Yearly rate is divided by 12 to get monthly rate
lowerCamelCase__ : Any = rate_per_annum / 12
# Years to repay is multiplied by 12 to get number of payments as payment is monthly
lowerCamelCase__ : int = years_to_repay * 12
return (
principal
* rate_per_month
* (1 + rate_per_month) ** number_of_payments
/ ((1 + rate_per_month) ** number_of_payments - 1)
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 1 |
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A : str = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "spiece.model"}
A : Union[str, Any] = {
"vocab_file": {
"albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model",
"albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model",
"albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model",
"albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model",
"albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model",
"albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model",
"albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model",
"albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model",
}
}
A : Optional[Any] = {
"albert-base-v1": 512,
"albert-large-v1": 512,
"albert-xlarge-v1": 512,
"albert-xxlarge-v1": 512,
"albert-base-v2": 512,
"albert-large-v2": 512,
"albert-xlarge-v2": 512,
"albert-xxlarge-v2": 512,
}
A : List[Any] = "▁"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Union[str, Any]="[CLS]" , __lowerCamelCase : List[str]="[SEP]" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="[SEP]" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="[CLS]" , __lowerCamelCase : List[str]="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
lowerCamelCase__ : int = (
AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase , normalized=__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase )
else mask_token
)
lowerCamelCase__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = do_lower_case
lowerCamelCase__ : Optional[Any] = remove_space
lowerCamelCase__ : int = keep_accents
lowerCamelCase__ : Dict = vocab_file
lowerCamelCase__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__lowerCamelCase )
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return len(self.sp_model )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Dict = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__dict__.copy()
lowerCamelCase__ : Optional[int] = None
return state
def __setstate__( self : Tuple , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Any = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
lowerCamelCase__ : Dict = {}
lowerCamelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
if self.remove_space:
lowerCamelCase__ : List[Any] = " ".join(inputs.strip().split() )
else:
lowerCamelCase__ : str = inputs
lowerCamelCase__ : List[str] = outputs.replace("``" , "\"" ).replace("''" , "\"" )
if not self.keep_accents:
lowerCamelCase__ : Tuple = unicodedata.normalize("NFKD" , __lowerCamelCase )
lowerCamelCase__ : str = "".join([c for c in outputs if not unicodedata.combining(__lowerCamelCase )] )
if self.do_lower_case:
lowerCamelCase__ : Any = outputs.lower()
return outputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.preprocess_text(__lowerCamelCase )
lowerCamelCase__ : str = self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
lowerCamelCase__ : Tuple = []
for piece in pieces:
if len(__lowerCamelCase ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit():
lowerCamelCase__ : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCamelCase , "" ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
lowerCamelCase__ : List[Any] = cur_pieces[1:]
else:
lowerCamelCase__ : Tuple = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(__lowerCamelCase )
else:
new_pieces.append(__lowerCamelCase )
return new_pieces
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.sp_model.PieceToId(__lowerCamelCase )
def lowerCAmelCase ( self : int , __lowerCamelCase : int ):
'''simple docstring'''
return self.sp_model.IdToPiece(__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = []
lowerCamelCase__ : Dict = ""
lowerCamelCase__ : int = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(__lowerCamelCase ) + token
lowerCamelCase__ : Dict = True
lowerCamelCase__ : Optional[Any] = []
else:
current_sub_tokens.append(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = False
out_string += self.sp_model.decode(__lowerCamelCase )
return out_string.strip()
def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Tuple = [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is not None:
return [1] + ([0] * len(__lowerCamelCase )) + [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : int = [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : str = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__lowerCamelCase , "wb" ) as fi:
lowerCamelCase__ : Tuple = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (out_vocab_file,)
| 5 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
A : Union[str, Any] = {
"configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Union[str, Any] = [
"NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST",
"NezhaForNextSentencePrediction",
"NezhaForMaskedLM",
"NezhaForPreTraining",
"NezhaForMultipleChoice",
"NezhaForQuestionAnswering",
"NezhaForSequenceClassification",
"NezhaForTokenClassification",
"NezhaModel",
"NezhaPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import argparse
import torch
from transformers import (
UniSpeechSatConfig,
UniSpeechSatForAudioFrameClassification,
UniSpeechSatForSequenceClassification,
UniSpeechSatForXVector,
WavaVecaFeatureExtractor,
logging,
)
logging.set_verbosity_info()
A : Dict = logging.get_logger(__name__)
def lowercase_ ( _A : Optional[int] , _A : Any , _A : int ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = UniSpeechSatForSequenceClassification.from_pretrained(_A , config=_A )
lowerCamelCase__ : Optional[int] = downstream_dict["projector.weight"]
lowerCamelCase__ : Optional[int] = downstream_dict["projector.bias"]
lowerCamelCase__ : int = downstream_dict["model.post_net.linear.weight"]
lowerCamelCase__ : Optional[Any] = downstream_dict["model.post_net.linear.bias"]
return model
def lowercase_ ( _A : str , _A : List[Any] , _A : List[str] ):
"""simple docstring"""
lowerCamelCase__ : Tuple = UniSpeechSatForAudioFrameClassification.from_pretrained(_A , config=_A )
lowerCamelCase__ : List[str] = downstream_dict["model.linear.weight"]
lowerCamelCase__ : Optional[int] = downstream_dict["model.linear.bias"]
return model
def lowercase_ ( _A : Optional[int] , _A : str , _A : Optional[Any] ):
"""simple docstring"""
lowerCamelCase__ : int = UniSpeechSatForXVector.from_pretrained(_A , config=_A )
lowerCamelCase__ : List[Any] = downstream_dict["connector.weight"]
lowerCamelCase__ : int = downstream_dict["connector.bias"]
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
lowerCamelCase__ : Optional[Any] = downstream_dict[
F"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
lowerCamelCase__ : Dict = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
lowerCamelCase__ : str = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"]
lowerCamelCase__ : List[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"]
lowerCamelCase__ : Dict = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"]
lowerCamelCase__ : Optional[Any] = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"]
lowerCamelCase__ : Dict = downstream_dict["objective.W"]
return model
@torch.no_grad()
def lowercase_ ( _A : str , _A : Tuple , _A : str , _A : Tuple ):
"""simple docstring"""
lowerCamelCase__ : List[str] = torch.load(_A , map_location="cpu" )
lowerCamelCase__ : Dict = checkpoint["Downstream"]
lowerCamelCase__ : List[Any] = UniSpeechSatConfig.from_pretrained(_A )
lowerCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained(
_A , return_attention_mask=_A , do_normalize=_A )
lowerCamelCase__ : int = hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
lowerCamelCase__ : str = convert_classification(_A , _A , _A )
elif arch.endswith("ForAudioFrameClassification" ):
lowerCamelCase__ : Optional[Any] = convert_diarization(_A , _A , _A )
elif arch.endswith("ForXVector" ):
lowerCamelCase__ : Optional[Any] = convert_xvector(_A , _A , _A )
else:
raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" )
if hf_config.use_weighted_layer_sum:
lowerCamelCase__ : Optional[Any] = checkpoint["Featurizer"]["weights"]
hf_feature_extractor.save_pretrained(_A )
hf_model.save_pretrained(_A )
if __name__ == "__main__":
A : Any = argparse.ArgumentParser()
parser.add_argument(
"--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model."
)
parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.")
parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.")
A : List[Any] = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 5 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 1 |
from __future__ import annotations
def lowercase_ ( _A : list ):
"""simple docstring"""
if len(_A ) == 0:
return []
lowerCamelCase__ , lowerCamelCase__ : Dict = min(_A ), max(_A )
lowerCamelCase__ : Any = int(max_value - min_value ) + 1
lowerCamelCase__ : list[list] = [[] for _ in range(_A )]
for i in my_list:
buckets[int(i - min_value )].append(_A )
return [v for bucket in buckets for v in sorted(_A )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
| 5 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
A : Optional[int] = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
A : Any = [{"type": "code", "content": INSTALL_CONTENT}]
A : str = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 5 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Optional[int] = logging.get_logger(__name__)
A : str = {
"asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json",
# See all SEW-D models at https://huggingface.co/models?filter=sew-d
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "sew-d"
def __init__( self : List[str] , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : int=512 , __lowerCamelCase : Dict=256 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=("p2c", "c2p") , __lowerCamelCase : str="layer_norm" , __lowerCamelCase : Optional[Any]="gelu_python" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.0 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-7 , __lowerCamelCase : Dict=1E-5 , __lowerCamelCase : List[Any]="group" , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Dict=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase : List[str]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=128 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=0.0_5 , __lowerCamelCase : str=10 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : List[Any]="mean" , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Any=256 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : Union[str, Any]=2 , **__lowerCamelCase : List[Any] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase )
lowerCamelCase__ : Any = hidden_size
lowerCamelCase__ : Union[str, Any] = feat_extract_norm
lowerCamelCase__ : List[str] = feat_extract_activation
lowerCamelCase__ : Any = list(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = list(__lowerCamelCase )
lowerCamelCase__ : int = list(__lowerCamelCase )
lowerCamelCase__ : List[str] = conv_bias
lowerCamelCase__ : Union[str, Any] = num_conv_pos_embeddings
lowerCamelCase__ : int = num_conv_pos_embedding_groups
lowerCamelCase__ : Union[str, Any] = len(self.conv_dim )
lowerCamelCase__ : Optional[Any] = num_hidden_layers
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Optional[int] = squeeze_factor
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : List[str] = position_buckets
lowerCamelCase__ : List[str] = share_att_key
lowerCamelCase__ : int = relative_attention
lowerCamelCase__ : Dict = norm_rel_ebd
lowerCamelCase__ : Optional[int] = list(__lowerCamelCase )
lowerCamelCase__ : Any = hidden_act
lowerCamelCase__ : List[str] = num_attention_heads
lowerCamelCase__ : Any = hidden_dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Any = activation_dropout
lowerCamelCase__ : List[str] = feat_proj_dropout
lowerCamelCase__ : int = final_dropout
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : List[Any] = feature_layer_norm_eps
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__ : List[str] = apply_spec_augment
lowerCamelCase__ : Optional[int] = mask_time_prob
lowerCamelCase__ : Optional[Any] = mask_time_length
lowerCamelCase__ : Union[str, Any] = mask_time_min_masks
lowerCamelCase__ : List[Any] = mask_feature_prob
lowerCamelCase__ : Optional[Any] = mask_feature_length
lowerCamelCase__ : Any = mask_feature_min_masks
# ctc loss
lowerCamelCase__ : Dict = ctc_loss_reduction
lowerCamelCase__ : List[Any] = ctc_zero_infinity
# sequence classification
lowerCamelCase__ : Optional[Any] = use_weighted_layer_sum
lowerCamelCase__ : Union[str, Any] = classifier_proj_size
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 5 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 1 |
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "Speech2TextFeatureExtractor"
A__ = "Speech2TextTokenizer"
def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
super().__init__(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : str = self.feature_extractor
lowerCamelCase__ : Optional[int] = False
def __call__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : str ):
'''simple docstring'''
if self._in_target_context_manager:
return self.current_processor(*__lowerCamelCase , **__lowerCamelCase )
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." )
lowerCamelCase__ : Tuple = kwargs.pop("raw_speech" )
else:
lowerCamelCase__ : Optional[int] = kwargs.pop("audio" , __lowerCamelCase )
lowerCamelCase__ : Any = kwargs.pop("sampling_rate" , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = kwargs.pop("text" , __lowerCamelCase )
if len(__lowerCamelCase ) > 0:
lowerCamelCase__ : List[str] = args[0]
lowerCamelCase__ : int = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process." )
if audio is not None:
lowerCamelCase__ : List[str] = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase )
if text is not None:
lowerCamelCase__ : str = self.tokenizer(__lowerCamelCase , **__lowerCamelCase )
if text is None:
return inputs
elif audio is None:
return encodings
else:
lowerCamelCase__ : List[str] = encodings["input_ids"]
return inputs
def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : str , **__lowerCamelCase : Optional[Any] ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , *__lowerCamelCase : int , **__lowerCamelCase : List[Any] ):
'''simple docstring'''
return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase )
@contextmanager
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call." )
lowerCamelCase__ : int = True
lowerCamelCase__ : Dict = self.tokenizer
yield
lowerCamelCase__ : Tuple = self.feature_extractor
lowerCamelCase__ : Any = False
| 5 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 1 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
A : Tuple = "bert-base-cased"
A : int = "google/pegasus-xsum"
A : Optional[Any] = [" Sam ate lunch today.", "Sams lunch ingredients."]
A : Any = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
A : int = "patrickvonplaten/t5-tiny-random"
A : Optional[int] = "sshleifer/bart-tiny-random"
A : Any = "sshleifer/tiny-mbart"
A : Dict = "sshleifer/tiny-marian-en-de"
def lowercase_ ( _A : Path , _A : list ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = "\n".join(_A )
Path(_A ).open("w" ).writelines(_A )
def lowercase_ ( _A : Union[str, Any] ):
"""simple docstring"""
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(_A , F"{split}.source" ) , _A )
_dump_articles(os.path.join(_A , F"{split}.target" ) , _A )
return tmp_dir
class _lowercase ( lowercase__):
"""simple docstring"""
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCamelCase__ : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES )
lowerCamelCase__ : List[Any] = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES )
lowerCamelCase__ : Tuple = 4
lowerCamelCase__ : List[str] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
lowerCamelCase__ , lowerCamelCase__ : int = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error.
lowerCamelCase__ : Optional[int] = SeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , src_lang=__lowerCamelCase , tgt_lang=__lowerCamelCase , )
lowerCamelCase__ : List[Any] = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(__lowerCamelCase , __lowerCamelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
lowerCamelCase__ : List[str] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Dict = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
lowerCamelCase__ : Tuple = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in ARTICLES )
lowerCamelCase__ : Any = max(len(tokenizer.encode(__lowerCamelCase ) ) for a in SUMMARIES )
lowerCamelCase__ : Optional[Any] = 4
lowerCamelCase__ : int = LegacySeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=20 , max_target_length=__lowerCamelCase , )
lowerCamelCase__ : Tuple = DataLoader(__lowerCamelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : str = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" )
lowerCamelCase__ : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
lowerCamelCase__ : int = tmp_dir.joinpath("train.source" ).open().readlines()
lowerCamelCase__ : str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(__lowerCamelCase , __lowerCamelCase , 128 , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = {x.name for x in tmp_dir.iterdir()}
lowerCamelCase__ : List[Any] = {x.name for x in save_dir.iterdir()}
lowerCamelCase__ : Union[str, Any] = save_dir.joinpath("train.source" ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(__lowerCamelCase ) < len(__lowerCamelCase )
assert len(__lowerCamelCase ) == 1
assert len(packed_examples[0] ) == sum(len(__lowerCamelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if not FAIRSEQ_AVAILABLE:
return
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self._get_dataset(max_len=64 )
lowerCamelCase__ : int = 64
lowerCamelCase__ : int = ds.make_dynamic_sampler(__lowerCamelCase , required_batch_size_multiple=__lowerCamelCase )
lowerCamelCase__ : int = [len(__lowerCamelCase ) for x in batch_sampler]
assert len(set(__lowerCamelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(__lowerCamelCase ) == len(__lowerCamelCase ) # no dropped or added examples
lowerCamelCase__ : int = DataLoader(__lowerCamelCase , batch_sampler=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
lowerCamelCase__ : Dict = []
lowerCamelCase__ : Optional[int] = []
for batch in data_loader:
lowerCamelCase__ : int = batch["input_ids"].shape
lowerCamelCase__ : Dict = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
lowerCamelCase__ : Any = np.product(batch["input_ids"].shape )
num_src_per_batch.append(__lowerCamelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(__lowerCamelCase )
assert num_src_per_batch[0] == max(__lowerCamelCase )
if failures:
raise AssertionError(f"too many tokens in {len(__lowerCamelCase )} batches" )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self._get_dataset(max_len=512 )
lowerCamelCase__ : Optional[Any] = 2
lowerCamelCase__ : Any = ds.make_sortish_sampler(__lowerCamelCase , shuffle=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 )
lowerCamelCase__ : List[Any] = DataLoader(__lowerCamelCase , batch_size=__lowerCamelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=__lowerCamelCase )
lowerCamelCase__ : Dict = tokenizer.pad_token_id
def count_pad_tokens(__lowerCamelCase : int , __lowerCamelCase : List[str]="input_ids" ):
return [batch[k].eq(__lowerCamelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(__lowerCamelCase , k="labels" ) ) < sum(count_pad_tokens(__lowerCamelCase , k="labels" ) )
assert sum(count_pad_tokens(__lowerCamelCase ) ) < sum(count_pad_tokens(__lowerCamelCase ) )
assert len(__lowerCamelCase ) == len(__lowerCamelCase )
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any]=1000 , __lowerCamelCase : Union[str, Any]=128 ):
'''simple docstring'''
if os.getenv("USE_REAL_DATA" , __lowerCamelCase ):
lowerCamelCase__ : Optional[int] = "examples/seq2seq/wmt_en_ro"
lowerCamelCase__ : Optional[int] = max_len * 2 * 64
if not Path(__lowerCamelCase ).joinpath("train.len" ).exists():
save_len_file(__lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : Dict = "examples/seq2seq/test_data/wmt_en_ro"
lowerCamelCase__ : List[Any] = max_len * 4
save_len_file(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : str = AutoTokenizer.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : int = SeqaSeqDataset(
__lowerCamelCase , data_dir=__lowerCamelCase , type_path="train" , max_source_length=__lowerCamelCase , max_target_length=__lowerCamelCase , n_obs=__lowerCamelCase , )
return ds, max_tokens, tokenizer
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self._get_dataset()
lowerCamelCase__ : str = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=__lowerCamelCase ) )
lowerCamelCase__ : Tuple = set(DistributedSortishSampler(__lowerCamelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=__lowerCamelCase ) )
assert idsa.intersection(__lowerCamelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def lowerCAmelCase ( self : int , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase )
if tok_name == MBART_TINY:
lowerCamelCase__ : Tuple = SeqaSeqDataset(
__lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , )
lowerCamelCase__ : List[Any] = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
lowerCamelCase__ : List[str] = SeqaSeqDataset(
__lowerCamelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , )
lowerCamelCase__ : Optional[Any] = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(__lowerCamelCase ) == 1 if tok_name == BART_TINY else len(__lowerCamelCase ) == 0
| 5 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 1 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : List[str] = logging.get_logger(__name__)
A : Optional[int] = {
"asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json",
# See all SEW models at https://huggingface.co/models?filter=sew
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "sew"
def __init__( self : Optional[Any] , __lowerCamelCase : int=32 , __lowerCamelCase : Dict=768 , __lowerCamelCase : Any=12 , __lowerCamelCase : int=12 , __lowerCamelCase : Dict=3072 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : Optional[int]="group" , __lowerCamelCase : int="gelu" , __lowerCamelCase : Any=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowerCamelCase : Optional[int]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowerCamelCase : Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowerCamelCase : Tuple=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Dict=16 , __lowerCamelCase : int=True , __lowerCamelCase : Any=0.0_5 , __lowerCamelCase : int=10 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : str=10 , __lowerCamelCase : List[str]=0 , __lowerCamelCase : Dict="mean" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Dict=1 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase )
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : List[str] = feat_extract_norm
lowerCamelCase__ : Dict = feat_extract_activation
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Dict = list(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = conv_bias
lowerCamelCase__ : List[str] = num_conv_pos_embeddings
lowerCamelCase__ : Tuple = num_conv_pos_embedding_groups
lowerCamelCase__ : Optional[Any] = len(self.conv_dim )
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : str = intermediate_size
lowerCamelCase__ : int = squeeze_factor
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : List[str] = num_attention_heads
lowerCamelCase__ : Any = hidden_dropout
lowerCamelCase__ : Tuple = attention_dropout
lowerCamelCase__ : Tuple = activation_dropout
lowerCamelCase__ : Tuple = feat_proj_dropout
lowerCamelCase__ : str = final_dropout
lowerCamelCase__ : int = layerdrop
lowerCamelCase__ : Union[str, Any] = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = initializer_range
lowerCamelCase__ : int = vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect."
"It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,"
f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)"
f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
lowerCamelCase__ : Tuple = apply_spec_augment
lowerCamelCase__ : Optional[Any] = mask_time_prob
lowerCamelCase__ : Tuple = mask_time_length
lowerCamelCase__ : List[Any] = mask_time_min_masks
lowerCamelCase__ : List[Any] = mask_feature_prob
lowerCamelCase__ : Any = mask_feature_length
lowerCamelCase__ : Any = mask_feature_min_masks
# ctc loss
lowerCamelCase__ : List[str] = ctc_loss_reduction
lowerCamelCase__ : Dict = ctc_zero_infinity
# sequence classification
lowerCamelCase__ : Tuple = use_weighted_layer_sum
lowerCamelCase__ : Optional[Any] = classifier_proj_size
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 5 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class _lowercase ( unittest.TestCase):
"""simple docstring"""
A__ = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def lowerCAmelCase ( self : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Any = hf_hub_download(
repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
lowerCamelCase__ : Union[str, Any] = VideoClassificationPipeline(model=__lowerCamelCase , image_processor=__lowerCamelCase , top_k=2 )
lowerCamelCase__ : List[Any] = [
example_video_filepath,
"https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4",
]
return video_classifier, examples
def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
for example in examples:
lowerCamelCase__ : Dict = video_classifier(__lowerCamelCase )
self.assertEqual(
__lowerCamelCase , [
{"score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase )},
{"score": ANY(__lowerCamelCase ), "label": ANY(__lowerCamelCase )},
] , )
@require_torch
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = "hf-internal-testing/tiny-random-VideoMAEForVideoClassification"
lowerCamelCase__ : List[str] = VideoMAEFeatureExtractor(
size={"shortest_edge": 10} , crop_size={"height": 10, "width": 10} )
lowerCamelCase__ : str = pipeline(
"video-classification" , model=__lowerCamelCase , feature_extractor=__lowerCamelCase , frame_sampling_rate=4 )
lowerCamelCase__ : List[Any] = hf_hub_download(repo_id="nateraw/video-demo" , filename="archery.mp4" , repo_type="dataset" )
lowerCamelCase__ : Union[str, Any] = video_classifier(__lowerCamelCase , top_k=2 )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}] , )
lowerCamelCase__ : Any = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(__lowerCamelCase , decimals=4 ) , [
[{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}],
[{"score": 0.5_1_9_9, "label": "LABEL_0"}, {"score": 0.4_8_0_1, "label": "LABEL_1"}],
] , )
@require_tf
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
pass
| 5 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=lowercase__)
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = field(default="summarization" , metadata={"include_in_asdict_even_if_is_default": True})
A__ = Features({"text": Value("string")})
A__ = Features({"summary": Value("string")})
A__ = "text"
A__ = "summary"
@property
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return {self.text_column: "text", self.summary_column: "summary"}
| 5 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 1 |
from __future__ import annotations
def lowercase_ ( _A : list[int | float] , _A : int , _A : int ):
"""simple docstring"""
if len(_A ) == 0:
raise ValueError("find_max() arg is an empty sequence" )
if (
left >= len(_A )
or left < -len(_A )
or right >= len(_A )
or right < -len(_A )
):
raise IndexError("list index out of range" )
if left == right:
return nums[left]
lowerCamelCase__ : List[Any] = (left + right) >> 1 # the middle
lowerCamelCase__ : List[Any] = find_max(_A , _A , _A ) # find max in range[left, mid]
lowerCamelCase__ : List[Any] = find_max(_A , mid + 1 , _A ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 5 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaControlnetImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image", "hint"]
A__ = ["image_embeds", "negative_image_embeds", "image", "hint"]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Any = {
"in_channels": 8,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image_hint",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : str = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Any = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.dummy_unet
lowerCamelCase__ : Union[str, Any] = self.dummy_movq
lowerCamelCase__ : Optional[Any] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Dict = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=0 ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[Any] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
# create hint
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : List[str] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : str = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"hint": hint,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Any = "cpu"
lowerCamelCase__ : Any = self.get_dummy_components()
lowerCamelCase__ : Union[str, Any] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : str = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : str = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : int = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1]
lowerCamelCase__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : Any = np.array(
[0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : List[str] = init_image.resize((512, 512) )
lowerCamelCase__ : Optional[Any] = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/hint_image_cat.png" )
lowerCamelCase__ : Optional[Any] = torch.from_numpy(np.array(__lowerCamelCase ) ).float() / 2_5_5.0
lowerCamelCase__ : Optional[Any] = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
lowerCamelCase__ : Optional[Any] = "A robot, 4k photo"
lowerCamelCase__ : str = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : int = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa )
lowerCamelCase__ : List[Any] = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : str = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , image=__lowerCamelCase , strength=0.8_5 , generator=__lowerCamelCase , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Dict = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , hint=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="np" , )
lowerCamelCase__ : List[Any] = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 1 |
from ..utils import DummyObject, requires_backends
class _lowercase ( metaclass=lowercase__):
"""simple docstring"""
A__ = ["note_seq"]
def __init__( self : Union[str, Any] , *__lowerCamelCase : Any , **__lowerCamelCase : int ):
'''simple docstring'''
requires_backends(self , ["note_seq"] )
@classmethod
def lowerCAmelCase ( cls : Union[str, Any] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["note_seq"] )
@classmethod
def lowerCAmelCase ( cls : Tuple , *__lowerCamelCase : Tuple , **__lowerCamelCase : str ):
'''simple docstring'''
requires_backends(cls , ["note_seq"] )
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = []
lowerCamelCase__ : Dict = 1
while len(_A ) < 1E6:
constant.append(str(_A ) )
i += 1
lowerCamelCase__ : List[Any] = "".join(_A )
return (
int(constant[0] )
* int(constant[9] )
* int(constant[99] )
* int(constant[999] )
* int(constant[9999] )
* int(constant[99999] )
* int(constant[999999] )
)
if __name__ == "__main__":
print(solution())
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
from collections.abc import Callable
def lowercase_ ( _A : Callable[[float], float] , _A : float , _A : float ):
"""simple docstring"""
lowerCamelCase__ : float = a
lowerCamelCase__ : float = b
if function(_A ) == 0: # one of the a or b is a root for the function
return a
elif function(_A ) == 0:
return b
elif (
function(_A ) * function(_A ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError("could not find root in given interval." )
else:
lowerCamelCase__ : float = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_A ) == 0:
return mid
elif function(_A ) * function(_A ) < 0:
lowerCamelCase__ : int = mid
else:
lowerCamelCase__ : Optional[int] = mid
lowerCamelCase__ : Optional[int] = start + (end - start) / 2.0
return mid
def lowercase_ ( _A : float ):
"""simple docstring"""
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1000))
import doctest
doctest.testmod()
| 5 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 1 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import numpy as np
from utils_multiple_choice import MultipleChoiceDataset, Split, processors
import transformers
from transformers import (
AutoConfig,
AutoModelForMultipleChoice,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import is_main_process
A : int = logging.getLogger(__name__)
def lowercase_ ( _A : Dict , _A : str ):
"""simple docstring"""
return (preds == labels).mean()
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"})
A__ = field(
default=lowercase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"})
A__ = field(
default=lowercase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"})
A__ = field(
default=lowercase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(metadata={"help": "The name of the task to train on: " + ", ".join(processors.keys())})
A__ = field(metadata={"help": "Should contain the data files for the task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
F"Output directory ({training_args.output_dir}) already exists and is not empty. Use"
" --overwrite_output_dir to overcome." )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info("Training/evaluation parameters %s" , _A )
# Set seed
set_seed(training_args.seed )
try:
lowerCamelCase__ : Dict = processors[data_args.task_name]()
lowerCamelCase__ : Dict = processor.get_labels()
lowerCamelCase__ : Optional[int] = len(_A )
except KeyError:
raise ValueError("Task not found: %s" % (data_args.task_name) )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , )
lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
lowerCamelCase__ : str = AutoModelForMultipleChoice.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , )
# Get datasets
lowerCamelCase__ : int = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , )
if training_args.do_train
else None
)
lowerCamelCase__ : Tuple = (
MultipleChoiceDataset(
data_dir=data_args.data_dir , tokenizer=_A , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , )
if training_args.do_eval
else None
)
def compute_metrics(_A : EvalPrediction ) -> Dict:
lowerCamelCase__ : Optional[Any] = np.argmax(p.predictions , axis=1 )
return {"acc": simple_accuracy(_A , p.label_ids )}
# Data collator
lowerCamelCase__ : Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) if training_args.fpaa else None
# Initialize our Trainer
lowerCamelCase__ : List[str] = Trainer(
model=_A , args=_A , train_dataset=_A , eval_dataset=_A , compute_metrics=_A , data_collator=_A , )
# Training
if training_args.do_train:
trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
trainer.save_model()
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
if trainer.is_world_master():
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
lowerCamelCase__ : int = {}
if training_args.do_eval:
logger.info("*** Evaluate ***" )
lowerCamelCase__ : str = trainer.evaluate()
lowerCamelCase__ : List[Any] = os.path.join(training_args.output_dir , "eval_results.txt" )
if trainer.is_world_master():
with open(_A , "w" ) as writer:
logger.info("***** Eval results *****" )
for key, value in result.items():
logger.info(" %s = %s" , _A , _A )
writer.write("%s = %s\n" % (key, value) )
results.update(_A )
return results
def lowercase_ ( _A : Tuple ):
"""simple docstring"""
main()
if __name__ == "__main__":
main()
| 5 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 1 |
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class _lowercase ( lowercase__ , lowercase__):
"""simple docstring"""
@register_to_config
def __init__( self : List[Any] , __lowerCamelCase : int = 768 , ):
'''simple docstring'''
super().__init__()
lowerCamelCase__ : List[Any] = nn.Parameter(torch.zeros(1 , __lowerCamelCase ) )
lowerCamelCase__ : int = nn.Parameter(torch.ones(1 , __lowerCamelCase ) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Union[str, torch.device]] = None , __lowerCamelCase : Optional[torch.dtype] = None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = nn.Parameter(self.mean.to(__lowerCamelCase ).to(__lowerCamelCase ) )
lowerCamelCase__ : Union[str, Any] = nn.Parameter(self.std.to(__lowerCamelCase ).to(__lowerCamelCase ) )
return self
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : str = (embeds - self.mean) * 1.0 / self.std
return embeds
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = (embeds * self.std) + self.mean
return embeds
| 5 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
A : List[str] = None
A : Dict = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
"70B": 28672,
}
A : Tuple = {
"7B": 1,
"7Bf": 1,
"13B": 2,
"13Bf": 2,
"30B": 4,
"65B": 8,
"70B": 8,
"70Bf": 8,
}
def lowercase_ ( _A : Union[str, Any] , _A : Optional[int]=1 , _A : List[Any]=256 ):
"""simple docstring"""
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase_ ( _A : Union[str, Any] ):
"""simple docstring"""
with open(_A , "r" ) as f:
return json.load(_A )
def lowercase_ ( _A : Tuple , _A : Union[str, Any] ):
"""simple docstring"""
with open(_A , "w" ) as f:
json.dump(_A , _A )
def lowercase_ ( _A : Tuple , _A : int , _A : Dict , _A : List[str]=True ):
"""simple docstring"""
os.makedirs(_A , exist_ok=_A )
lowerCamelCase__ : Optional[Any] = os.path.join(_A , "tmp" )
os.makedirs(_A , exist_ok=_A )
lowerCamelCase__ : str = read_json(os.path.join(_A , "params.json" ) )
lowerCamelCase__ : int = NUM_SHARDS[model_size]
lowerCamelCase__ : Optional[Any] = params["n_layers"]
lowerCamelCase__ : List[Any] = params["n_heads"]
lowerCamelCase__ : List[str] = n_heads // num_shards
lowerCamelCase__ : Dict = params["dim"]
lowerCamelCase__ : Dict = dim // n_heads
lowerCamelCase__ : str = 10_000.0
lowerCamelCase__ : Tuple = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head))
if "n_kv_heads" in params:
lowerCamelCase__ : Dict = params["n_kv_heads"] # for GQA / MQA
lowerCamelCase__ : str = n_heads_per_shard // num_key_value_heads
lowerCamelCase__ : Optional[Any] = dim // num_key_value_heads
else: # compatibility with other checkpoints
lowerCamelCase__ : List[Any] = n_heads
lowerCamelCase__ : Dict = n_heads_per_shard
lowerCamelCase__ : List[str] = dim
# permute for sliced rotary
def permute(_A : int , _A : Union[str, Any]=n_heads , _A : Tuple=dim , _A : List[str]=dim ):
return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A )
print(F"Fetching all parameters from the checkpoint at {input_base_path}." )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
lowerCamelCase__ : Any = torch.load(os.path.join(_A , "consolidated.00.pth" ) , map_location="cpu" )
else:
# Sharded
lowerCamelCase__ : str = [
torch.load(os.path.join(_A , F"consolidated.{i:02d}.pth" ) , map_location="cpu" )
for i in range(_A )
]
lowerCamelCase__ : Dict = 0
lowerCamelCase__ : Tuple = {"weight_map": {}}
for layer_i in range(_A ):
lowerCamelCase__ : Dict = F"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
lowerCamelCase__ : Optional[int] = {
F"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
loaded[F"layers.{layer_i}.attention.wq.weight"] ),
F"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
loaded[F"layers.{layer_i}.attention.wk.weight"] ),
F"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[F"layers.{layer_i}.attention.wv.weight"],
F"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[F"layers.{layer_i}.attention.wo.weight"],
F"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w1.weight"],
F"model.layers.{layer_i}.mlp.down_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w2.weight"],
F"model.layers.{layer_i}.mlp.up_proj.weight": loaded[F"layers.{layer_i}.feed_forward.w3.weight"],
F"model.layers.{layer_i}.input_layernorm.weight": loaded[F"layers.{layer_i}.attention_norm.weight"],
F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[F"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
lowerCamelCase__ : Optional[Any] = {
F"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
F"layers.{layer_i}.attention_norm.weight"
].clone(),
F"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
F"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
lowerCamelCase__ : List[Any] = permute(
torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wq.weight"].view(_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) )
lowerCamelCase__ : List[Any] = permute(
torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wk.weight"].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , )
lowerCamelCase__ : Dict = torch.cat(
[
loaded[i][F"layers.{layer_i}.attention.wv.weight"].view(
_A , _A , _A )
for i in range(_A )
] , dim=0 , ).reshape(_A , _A )
lowerCamelCase__ : Union[str, Any] = torch.cat(
[loaded[i][F"layers.{layer_i}.attention.wo.weight"] for i in range(_A )] , dim=1 )
lowerCamelCase__ : Tuple = torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w1.weight"] for i in range(_A )] , dim=0 )
lowerCamelCase__ : Optional[Any] = torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w2.weight"] for i in range(_A )] , dim=1 )
lowerCamelCase__ : Any = torch.cat(
[loaded[i][F"layers.{layer_i}.feed_forward.w3.weight"] for i in range(_A )] , dim=0 )
lowerCamelCase__ : Optional[Any] = inv_freq
for k, v in state_dict.items():
lowerCamelCase__ : Optional[int] = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
lowerCamelCase__ : Tuple = F"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
lowerCamelCase__ : Union[str, Any] = {
"model.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
lowerCamelCase__ : Optional[Any] = {
"model.norm.weight": loaded[0]["norm.weight"],
"model.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(_A )] , dim=1 ),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(_A )] , dim=0 ),
}
for k, v in state_dict.items():
lowerCamelCase__ : Dict = filename
param_count += v.numel()
torch.save(_A , os.path.join(_A , _A ) )
# Write configs
lowerCamelCase__ : Optional[int] = {"total_size": param_count * 2}
write_json(_A , os.path.join(_A , "pytorch_model.bin.index.json" ) )
lowerCamelCase__ : List[Any] = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1
lowerCamelCase__ : Union[str, Any] = params["multiple_of"] if "multiple_of" in params else 256
lowerCamelCase__ : Optional[int] = LlamaConfig(
hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=_A , )
config.save_pretrained(_A )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print("Loading the checkpoint in a Llama model." )
lowerCamelCase__ : List[Any] = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A )
# Avoid saving this as part of the config.
del model.config._name_or_path
print("Saving in the Transformers format." )
model.save_pretrained(_A , safe_serialization=_A )
shutil.rmtree(_A )
def lowercase_ ( _A : Any , _A : Optional[int] ):
"""simple docstring"""
lowerCamelCase__ : List[str] = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(F"Saving a {tokenizer_class.__name__} to {tokenizer_path}." )
lowerCamelCase__ : str = tokenizer_class(_A )
tokenizer.save_pretrained(_A )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Dict = argparse.ArgumentParser()
parser.add_argument(
"--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , )
parser.add_argument(
"--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , )
parser.add_argument(
"--output_dir" , help="Location to write HF model and tokenizer" , )
parser.add_argument("--safe_serialization" , type=_A , help="Whether or not to save using `safetensors`." )
lowerCamelCase__ : List[str] = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , )
lowerCamelCase__ : Optional[int] = os.path.join(args.input_dir , "tokenizer.model" )
write_tokenizer(args.output_dir , _A )
if __name__ == "__main__":
main()
| 5 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import importlib.util
import os
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import (
is_accelerate_available,
is_flax_available,
is_safetensors_available,
is_tf_available,
is_torch_available,
)
from . import BaseTransformersCLICommand
def lowercase_ ( _A : Dict ):
"""simple docstring"""
return EnvironmentCommand()
def lowercase_ ( _A : List[Any] ):
"""simple docstring"""
return EnvironmentCommand(args.accelerate_config_file )
class _lowercase ( lowercase__):
"""simple docstring"""
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : ArgumentParser ):
'''simple docstring'''
lowerCamelCase__ : Any = parser.add_parser("env" )
download_parser.set_defaults(func=__lowerCamelCase )
download_parser.add_argument(
"--accelerate-config_file" , default=__lowerCamelCase , help="The accelerate config file to use for the default values in the launching script." , )
download_parser.set_defaults(func=__lowerCamelCase )
def __init__( self : Dict , __lowerCamelCase : int , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : int = accelerate_config_file
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = "not installed"
if is_safetensors_available():
import safetensors
lowerCamelCase__ : Tuple = safetensors.__version__
elif importlib.util.find_spec("safetensors" ) is not None:
import safetensors
lowerCamelCase__ : str = f"{safetensors.__version__} but is ignored because of PyTorch version too old."
lowerCamelCase__ : Tuple = "not installed"
lowerCamelCase__ : List[str] = "not found"
if is_accelerate_available():
import accelerate
from accelerate.commands.config import default_config_file, load_config_from_file
lowerCamelCase__ : Union[str, Any] = accelerate.__version__
# Get the default from the config file.
if self._accelerate_config_file is not None or os.path.isfile(__lowerCamelCase ):
lowerCamelCase__ : List[Any] = load_config_from_file(self._accelerate_config_file ).to_dict()
lowerCamelCase__ : Any = (
"\n".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] )
if isinstance(__lowerCamelCase , __lowerCamelCase )
else f"\t{accelerate_config}"
)
lowerCamelCase__ : List[Any] = "not installed"
lowerCamelCase__ : Optional[int] = "NA"
if is_torch_available():
import torch
lowerCamelCase__ : Tuple = torch.__version__
lowerCamelCase__ : Optional[Any] = torch.cuda.is_available()
lowerCamelCase__ : List[str] = "not installed"
lowerCamelCase__ : Dict = "NA"
if is_tf_available():
import tensorflow as tf
lowerCamelCase__ : List[str] = tf.__version__
try:
# deprecated in v2.1
lowerCamelCase__ : Union[str, Any] = tf.test.is_gpu_available()
except AttributeError:
# returns list of devices, convert to bool
lowerCamelCase__ : Union[str, Any] = bool(tf.config.list_physical_devices("GPU" ) )
lowerCamelCase__ : int = "not installed"
lowerCamelCase__ : List[Any] = "not installed"
lowerCamelCase__ : int = "not installed"
lowerCamelCase__ : Tuple = "NA"
if is_flax_available():
import flax
import jax
import jaxlib
lowerCamelCase__ : List[str] = flax.__version__
lowerCamelCase__ : Tuple = jax.__version__
lowerCamelCase__ : Tuple = jaxlib.__version__
lowerCamelCase__ : Any = jax.lib.xla_bridge.get_backend().platform
lowerCamelCase__ : Union[str, Any] = {
"`transformers` version": version,
"Platform": platform.platform(),
"Python version": platform.python_version(),
"Huggingface_hub version": huggingface_hub.__version__,
"Safetensors version": f"{safetensors_version}",
"Accelerate version": f"{accelerate_version}",
"Accelerate config": f"{accelerate_config_str}",
"PyTorch version (GPU?)": f"{pt_version} ({pt_cuda_available})",
"Tensorflow version (GPU?)": f"{tf_version} ({tf_cuda_available})",
"Flax version (CPU?/GPU?/TPU?)": f"{flax_version} ({jax_backend})",
"Jax version": f"{jax_version}",
"JaxLib version": f"{jaxlib_version}",
"Using GPU in script?": "<fill in>",
"Using distributed or parallel set-up in script?": "<fill in>",
}
print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" )
print(self.format_dict(__lowerCamelCase ) )
return info
@staticmethod
def lowerCAmelCase ( __lowerCamelCase : int ):
'''simple docstring'''
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()] ) + "\n"
| 5 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 1 |
from __future__ import annotations
from math import ceil, floor, sqrt
def lowercase_ ( _A : int = 2000000 ):
"""simple docstring"""
lowerCamelCase__ : list[int] = [0]
lowerCamelCase__ : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
lowerCamelCase__ : int = 0
# the area corresponding to the grid that gives the product closest to target
lowerCamelCase__ : int = 0
# an estimate of b, using the quadratic formula
lowerCamelCase__ : float
# the largest integer less than b_estimate
lowerCamelCase__ : int
# the largest integer less than b_estimate
lowerCamelCase__ : int
# the triangle number corresponding to b_floor
lowerCamelCase__ : int
# the triangle number corresponding to b_ceil
lowerCamelCase__ : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
lowerCamelCase__ : int = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
lowerCamelCase__ : Optional[int] = floor(_A )
lowerCamelCase__ : Tuple = ceil(_A )
lowerCamelCase__ : str = triangle_numbers[b_floor]
lowerCamelCase__ : List[Any] = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
lowerCamelCase__ : List[str] = triangle_b_first_guess * triangle_a
lowerCamelCase__ : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
lowerCamelCase__ : List[Any] = triangle_b_second_guess * triangle_a
lowerCamelCase__ : Union[str, Any] = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f'{solution() = }')
| 5 |
import os
from datetime import datetime as dt
from github import Github
A : Union[str, Any] = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A )
lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 5 | 1 |
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
)
from ...test_tokenization_common import TokenizerTesterMixin
A : List[str] = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.mbart.modeling_mbart import shift_tokens_right
A : int = 250004
A : Optional[int] = 250020
@require_sentencepiece
@require_tokenizers
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = MBartaaTokenizer
A__ = MBartaaTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : str ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowerCamelCase__ : Tuple = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = "<s>"
lowerCamelCase__ : Any = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : str = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 1054 )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1054 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = MBartaaTokenizer(__lowerCamelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=__lowerCamelCase )
lowerCamelCase__ : str = tokenizer.tokenize("This is a test" )
self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
lowerCamelCase__ : Dict = tokenizer.tokenize("I was born in 92000, and this is falsé." )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , )
lowerCamelCase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
] , )
lowerCamelCase__ : Tuple = tokenizer.convert_ids_to_tokens(__lowerCamelCase )
self.assertListEqual(
__lowerCamelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , )
@slow
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : str = {"input_ids": [[250004, 11062, 82772, 7, 15, 82772, 538, 51529, 237, 17198, 1290, 206, 9, 215175, 1314, 136, 17198, 1290, 206, 9, 56359, 42, 122009, 9, 16466, 16, 87344, 4537, 9, 4717, 78381, 6, 159958, 7, 15, 24480, 618, 4, 527, 22693, 5428, 4, 2777, 24480, 9874, 4, 43523, 594, 4, 803, 18392, 33189, 18, 4, 43523, 24447, 12399, 100, 24955, 83658, 9626, 144057, 15, 839, 22335, 16, 136, 24955, 83658, 83479, 15, 39102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 122009, 115774, 23, 805, 1328, 46876, 7, 136, 53894, 1940, 42227, 41159, 17721, 823, 425, 4, 27512, 98722, 206, 136, 5531, 4970, 919, 17336, 5, 2], [250004, 20080, 618, 83, 82775, 47, 479, 9, 1517, 73, 53894, 333, 80581, 110117, 18811, 5256, 1295, 51, 152526, 297, 7986, 390, 124416, 538, 35431, 214, 98, 15044, 25737, 136, 7108, 43701, 23, 756, 135355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250004, 581, 63773, 119455, 6, 147797, 88203, 7, 645, 70, 21, 3285, 10269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
lowerCamelCase__ : Dict = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ):
lowerCamelCase__ : int = self.rust_tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[str] = self.tokenizer_class.from_pretrained(__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = tempfile.mkdtemp()
lowerCamelCase__ : List[str] = tokenizer_r.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
lowerCamelCase__ : List[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f )
self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase )
# Checks everything loads correctly in the same way
lowerCamelCase__ : List[str] = tokenizer_r.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Any = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(__lowerCamelCase )
# Save tokenizer rust, legacy_format=True
lowerCamelCase__ : List[str] = tempfile.mkdtemp()
lowerCamelCase__ : Tuple = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase )
lowerCamelCase__ : str = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it save with the same files
self.assertSequenceEqual(__lowerCamelCase , __lowerCamelCase )
# Checks everything loads correctly in the same way
lowerCamelCase__ : Union[str, Any] = tokenizer_r.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : str = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
shutil.rmtree(__lowerCamelCase )
# Save tokenizer rust, legacy_format=False
lowerCamelCase__ : Optional[Any] = tempfile.mkdtemp()
lowerCamelCase__ : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCamelCase , legacy_format=__lowerCamelCase )
lowerCamelCase__ : str = tokenizer_p.save_pretrained(__lowerCamelCase )
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
lowerCamelCase__ : Optional[int] = tokenizer_r.from_pretrained(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = tokenizer_p.from_pretrained(__lowerCamelCase )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(__lowerCamelCase , __lowerCamelCase ) )
shutil.rmtree(__lowerCamelCase )
@require_torch
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
A__ = "facebook/mbart-large-50-one-to-many-mmt"
A__ = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.",
]
A__ = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
" pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor"
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
A__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2]
@classmethod
def lowerCAmelCase ( cls : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained(
cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" )
lowerCamelCase__ : Optional[int] = 1
return cls
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 250001 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 250004 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 250020 )
self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 250038 )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0]
self.assertListEqual(self.expected_src_tokens , __lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
self.assertIn(__lowerCamelCase , self.tokenizer.all_special_ids )
lowerCamelCase__ : List[Any] = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2]
lowerCamelCase__ : List[str] = self.tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCamelCase )
self.assertEqual(__lowerCamelCase , __lowerCamelCase )
self.assertNotIn(self.tokenizer.eos_token , __lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0] , __lowerCamelCase )
lowerCamelCase__ : Tuple = 10
lowerCamelCase__ : List[str] = self.tokenizer(__lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase ).input_ids[0]
self.assertEqual(ids[0] , __lowerCamelCase )
self.assertEqual(ids[-1] , 2 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [250053, 250001] )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = tempfile.mkdtemp()
lowerCamelCase__ : List[str] = self.tokenizer.fairseq_tokens_to_ids
self.tokenizer.save_pretrained(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = MBartaaTokenizer.from_pretrained(__lowerCamelCase )
self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCamelCase )
@require_torch
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , return_tensors="pt" )
lowerCamelCase__ : List[Any] = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
# fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4
assert batch.input_ids[1][0] == EN_CODE
assert batch.input_ids[1][-1] == 2
assert batch.labels[1][0] == RO_CODE
assert batch.labels[1][-1] == 2
assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE]
@require_torch
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.tokenizer(
self.src_text , text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , )
lowerCamelCase__ : Tuple = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 14) , batch.input_ids.shape )
self.assertEqual((2, 14) , batch.attention_mask.shape )
lowerCamelCase__ : str = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens , __lowerCamelCase )
self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] )
self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.tokenizer(self.src_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=3 , return_tensors="pt" )
lowerCamelCase__ : str = self.tokenizer(
text_target=self.tgt_text , padding=__lowerCamelCase , truncation=__lowerCamelCase , max_length=10 , return_tensors="pt" )
lowerCamelCase__ : Any = targets["input_ids"]
lowerCamelCase__ : Union[str, Any] = shift_tokens_right(__lowerCamelCase , self.tokenizer.pad_token_id )
self.assertEqual(batch.input_ids.shape[1] , 3 )
self.assertEqual(batch.decoder_input_ids.shape[1] , 10 )
@require_torch
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.tokenizer._build_translation_inputs(
"A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" )
self.assertEqual(
nested_simplify(__lowerCamelCase ) , {
# en_XX, A, test, EOS
"input_ids": [[250004, 62, 3034, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 250001,
} , )
| 5 |
from __future__ import annotations
def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ):
"""simple docstring"""
lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
lowerCamelCase__ : Dict = {
"a": 0.08_497,
"b": 0.01_492,
"c": 0.02_202,
"d": 0.04_253,
"e": 0.11_162,
"f": 0.02_228,
"g": 0.02_015,
"h": 0.06_094,
"i": 0.07_546,
"j": 0.00_153,
"k": 0.01_292,
"l": 0.04_025,
"m": 0.02_406,
"n": 0.06_749,
"o": 0.07_507,
"p": 0.01_929,
"q": 0.00_095,
"r": 0.07_587,
"s": 0.06_327,
"t": 0.09_356,
"u": 0.02_758,
"v": 0.00_978,
"w": 0.02_560,
"x": 0.00_150,
"y": 0.01_994,
"z": 0.00_077,
}
else:
# Custom frequencies dictionary
lowerCamelCase__ : Optional[int] = frequencies_dict
if not case_sensitive:
lowerCamelCase__ : str = ciphertext.lower()
# Chi squared statistic values
lowerCamelCase__ : dict[int, tuple[float, str]] = {}
# cycle through all of the shifts
for shift in range(len(_A ) ):
lowerCamelCase__ : Optional[Any] = ""
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len(
_A )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
lowerCamelCase__ : str = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
lowerCamelCase__ : List[str] = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
lowerCamelCase__ : Any = decrypted_with_shift.count(_A )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
lowerCamelCase__ : str = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
lowerCamelCase__ : Optional[int] = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
lowerCamelCase__ : int = min(
_A , key=_A , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : int = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 5 | 1 |
from __future__ import annotations
import numpy as np
from numpy import floataa
from numpy.typing import NDArray
def lowercase_ ( _A : NDArray[floataa] , _A : NDArray[floataa] , _A : list[int] , _A : int , ):
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = coefficient_matrix.shape
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = constant_matrix.shape
if rowsa != colsa:
lowerCamelCase__ : Dict = F"Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}"
raise ValueError(_A )
if colsa != 1:
lowerCamelCase__ : Optional[Any] = F"Constant matrix must be nx1 but received {rowsa}x{colsa}"
raise ValueError(_A )
if rowsa != rowsa:
lowerCamelCase__ : Union[str, Any] = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
F"received {rowsa}x{colsa} and {rowsa}x{colsa}"
)
raise ValueError(_A )
if len(_A ) != rowsa:
lowerCamelCase__ : Union[str, Any] = (
"Number of initial values must be equal to number of rows in coefficient "
F"matrix but received {len(_A )} and {rowsa}"
)
raise ValueError(_A )
if iterations <= 0:
raise ValueError("Iterations must be at least 1" )
lowerCamelCase__ : NDArray[floataa] = np.concatenate(
(coefficient_matrix, constant_matrix) , axis=1 )
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = table.shape
strictly_diagonally_dominant(_A )
# Iterates the whole matrix for given number of times
for _ in range(_A ):
lowerCamelCase__ : Tuple = []
for row in range(_A ):
lowerCamelCase__ : List[str] = 0
for col in range(_A ):
if col == row:
lowerCamelCase__ : Union[str, Any] = table[row][col]
elif col == cols - 1:
lowerCamelCase__ : Tuple = table[row][col]
else:
temp += (-1) * table[row][col] * init_val[col]
lowerCamelCase__ : str = (temp + val) / denom
new_val.append(_A )
lowerCamelCase__ : Optional[Any] = new_val
return [float(_A ) for i in new_val]
def lowercase_ ( _A : NDArray[floataa] ):
"""simple docstring"""
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = table.shape
lowerCamelCase__ : List[str] = True
for i in range(0 , _A ):
lowerCamelCase__ : Dict = 0
for j in range(0 , cols - 1 ):
if i == j:
continue
else:
total += table[i][j]
if table[i][i] <= total:
raise ValueError("Coefficient matrix is not strictly diagonally dominant" )
return is_diagonally_dominant
# Test Cases
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_A , _A ):
lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer"
raise TypeError(_A )
if number < 0:
return False
lowerCamelCase__ : Dict = number * number
while number > 0:
if number % 10 != number_square % 10:
return False
number //= 10
number_square //= 10
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowercase :
"""simple docstring"""
def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : int=13 , __lowerCamelCase : Optional[Any]=32 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Dict=[10, 20, 30, 40] , __lowerCamelCase : List[str]=[2, 2, 3, 2] , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : str=37 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=10 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : List[str]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : Any=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : Optional[Any] = batch_size
lowerCamelCase__ : str = image_size
lowerCamelCase__ : str = num_channels
lowerCamelCase__ : Optional[Any] = num_stages
lowerCamelCase__ : Optional[int] = hidden_sizes
lowerCamelCase__ : Union[str, Any] = depths
lowerCamelCase__ : Any = is_training
lowerCamelCase__ : List[Any] = use_labels
lowerCamelCase__ : Dict = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : Tuple = type_sequence_label_size
lowerCamelCase__ : Tuple = initializer_range
lowerCamelCase__ : Tuple = out_features
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = scope
lowerCamelCase__ : int = num_stages
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : List[str] = None
if self.use_labels:
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : str = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=__lowerCamelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=__lowerCamelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : Any = UperNetForSemanticSegmentation(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : int = model(__lowerCamelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Optional[int] = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
A__ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : int = UperNetModelTester(self )
lowerCamelCase__ : Any = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[Any] = model_class(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : Any = [*signature.parameters.keys()]
lowerCamelCase__ : List[Any] = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase )
@unittest.skip(reason="UperNet does not use inputs_embeds" )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not support input and output embeddings" )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
pass
@unittest.skip(reason="UperNet does not have a base model" )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason="UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
pass
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ):
lowerCamelCase__ : Dict = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ : Tuple = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
lowerCamelCase__ : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
lowerCamelCase__ : Optional[Any] = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : List[Any] = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ : Optional[int] = _config_zero_init(__lowerCamelCase )
lowerCamelCase__ : Any = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
lowerCamelCase__ : Tuple = model_class(config=__lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip(reason="UperNet does not have tied weights" )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
pass
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[Any] = UperNetForSemanticSegmentation.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = hf_hub_download(
repo_id="hf-internal-testing/fixtures_ade20k" , repo_type="dataset" , filename="ADE_val_00000001.jpg" )
lowerCamelCase__ : List[str] = Image.open(_A ).convert("RGB" )
return image
@require_torch
@require_vision
@slow
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-swin-tiny" )
lowerCamelCase__ : int = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-swin-tiny" ).to(__lowerCamelCase )
lowerCamelCase__ : str = prepare_img()
lowerCamelCase__ : Any = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
with torch.no_grad():
lowerCamelCase__ : str = model(**__lowerCamelCase )
lowerCamelCase__ : Any = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Optional[int] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-tiny" )
lowerCamelCase__ : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-tiny" ).to(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = prepare_img()
lowerCamelCase__ : str = processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
with torch.no_grad():
lowerCamelCase__ : Union[str, Any] = model(**__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
| 5 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
A : Optional[int] = {
"configuration_speecht5": [
"SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP",
"SpeechT5Config",
"SpeechT5HifiGanConfig",
],
"feature_extraction_speecht5": ["SpeechT5FeatureExtractor"],
"processing_speecht5": ["SpeechT5Processor"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = ["SpeechT5Tokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[str] = [
"SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST",
"SpeechT5ForSpeechToText",
"SpeechT5ForSpeechToSpeech",
"SpeechT5ForTextToSpeech",
"SpeechT5Model",
"SpeechT5PreTrainedModel",
"SpeechT5HifiGan",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def lowercase_ ( _A : str ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = 384
if "tiny" in model_name:
lowerCamelCase__ : str = [3, 3, 9, 3]
lowerCamelCase__ : Optional[int] = [96, 192, 384, 768]
if "small" in model_name:
lowerCamelCase__ : Union[str, Any] = [3, 3, 27, 3]
lowerCamelCase__ : Any = [96, 192, 384, 768]
if "base" in model_name:
lowerCamelCase__ : List[Any] = [3, 3, 27, 3]
lowerCamelCase__ : Optional[int] = [128, 256, 512, 1024]
lowerCamelCase__ : Optional[int] = 512
if "large" in model_name:
lowerCamelCase__ : Optional[int] = [3, 3, 27, 3]
lowerCamelCase__ : Optional[Any] = [192, 384, 768, 1536]
lowerCamelCase__ : Optional[Any] = 768
if "xlarge" in model_name:
lowerCamelCase__ : List[Any] = [3, 3, 27, 3]
lowerCamelCase__ : Tuple = [256, 512, 1024, 2048]
lowerCamelCase__ : int = 1024
# set label information
lowerCamelCase__ : Optional[Any] = 150
lowerCamelCase__ : int = "huggingface/label-files"
lowerCamelCase__ : Dict = "ade20k-id2label.json"
lowerCamelCase__ : Optional[int] = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) )
lowerCamelCase__ : List[str] = {int(_A ): v for k, v in idalabel.items()}
lowerCamelCase__ : Optional[int] = {v: k for k, v in idalabel.items()}
lowerCamelCase__ : Dict = ConvNextConfig(
depths=_A , hidden_sizes=_A , out_features=["stage1", "stage2", "stage3", "stage4"] )
lowerCamelCase__ : Optional[Any] = UperNetConfig(
backbone_config=_A , auxiliary_in_channels=_A , num_labels=_A , idalabel=_A , labelaid=_A , )
return config
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : int = []
# fmt: off
# stem
rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") )
rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") )
rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") )
rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((F"backbone.stages.{i}.{j}.gamma", F"backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter") )
rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.weight", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.weight") )
rename_keys.append((F"backbone.stages.{i}.{j}.depthwise_conv.bias", F"backbone.encoder.stages.{i}.layers.{j}.dwconv.bias") )
rename_keys.append((F"backbone.stages.{i}.{j}.norm.weight", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.weight") )
rename_keys.append((F"backbone.stages.{i}.{j}.norm.bias", F"backbone.encoder.stages.{i}.layers.{j}.layernorm.bias") )
rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight") )
rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv1.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias") )
rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.weight", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight") )
rename_keys.append((F"backbone.stages.{i}.{j}.pointwise_conv2.bias", F"backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias") )
if i > 0:
rename_keys.append((F"backbone.downsample_layers.{i}.0.weight", F"backbone.encoder.stages.{i}.downsampling_layer.0.weight") )
rename_keys.append((F"backbone.downsample_layers.{i}.0.bias", F"backbone.encoder.stages.{i}.downsampling_layer.0.bias") )
rename_keys.append((F"backbone.downsample_layers.{i}.1.weight", F"backbone.encoder.stages.{i}.downsampling_layer.1.weight") )
rename_keys.append((F"backbone.downsample_layers.{i}.1.bias", F"backbone.encoder.stages.{i}.downsampling_layer.1.bias") )
rename_keys.append((F"backbone.norm{i}.weight", F"backbone.hidden_states_norms.stage{i+1}.weight") )
rename_keys.append((F"backbone.norm{i}.bias", F"backbone.hidden_states_norms.stage{i+1}.bias") )
# decode head
rename_keys.extend(
[
("decode_head.conv_seg.weight", "decode_head.classifier.weight"),
("decode_head.conv_seg.bias", "decode_head.classifier.bias"),
("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"),
("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"),
] )
# fmt: on
return rename_keys
def lowercase_ ( _A : Optional[int] , _A : List[str] , _A : int ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = dct.pop(_A )
lowerCamelCase__ : Dict = val
def lowercase_ ( _A : Tuple , _A : Optional[int] , _A : int ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = {
"upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth",
"upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth",
"upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth",
"upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth",
"upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth",
}
lowerCamelCase__ : Union[str, Any] = model_name_to_url[model_name]
lowerCamelCase__ : Tuple = torch.hub.load_state_dict_from_url(_A , map_location="cpu" )["state_dict"]
lowerCamelCase__ : Dict = get_upernet_config(_A )
lowerCamelCase__ : Dict = UperNetForSemanticSegmentation(_A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
lowerCamelCase__ : Optional[int] = state_dict.pop(_A )
if "bn" in key:
lowerCamelCase__ : Optional[int] = key.replace("bn" , "batch_norm" )
lowerCamelCase__ : List[str] = val
# rename keys
lowerCamelCase__ : int = create_rename_keys(_A )
for src, dest in rename_keys:
rename_key(_A , _A , _A )
model.load_state_dict(_A )
# verify on image
lowerCamelCase__ : int = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"
lowerCamelCase__ : List[Any] = Image.open(requests.get(_A , stream=_A ).raw ).convert("RGB" )
lowerCamelCase__ : Tuple = SegformerImageProcessor()
lowerCamelCase__ : List[Any] = processor(_A , return_tensors="pt" ).pixel_values
with torch.no_grad():
lowerCamelCase__ : Optional[int] = model(_A )
if model_name == "upernet-convnext-tiny":
lowerCamelCase__ : Optional[int] = torch.tensor(
[[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] )
elif model_name == "upernet-convnext-small":
lowerCamelCase__ : Tuple = torch.tensor(
[[-8.8_236, -8.8_236, -8.6_771], [-8.8_236, -8.8_236, -8.6_771], [-8.7_638, -8.7_638, -8.6_240]] )
elif model_name == "upernet-convnext-base":
lowerCamelCase__ : str = torch.tensor(
[[-8.8_558, -8.8_558, -8.6_905], [-8.8_558, -8.8_558, -8.6_905], [-8.7_669, -8.7_669, -8.6_021]] )
elif model_name == "upernet-convnext-large":
lowerCamelCase__ : Union[str, Any] = torch.tensor(
[[-8.6_660, -8.6_660, -8.6_210], [-8.6_660, -8.6_660, -8.6_210], [-8.6_310, -8.6_310, -8.5_964]] )
elif model_name == "upernet-convnext-xlarge":
lowerCamelCase__ : Tuple = torch.tensor(
[[-8.4_980, -8.4_980, -8.3_977], [-8.4_980, -8.4_980, -8.3_977], [-8.4_379, -8.4_379, -8.3_412]] )
print("Logits:" , outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3] , _A , atol=1E-4 )
print("Looks ok!" )
if pytorch_dump_folder_path is not None:
print(F"Saving model {model_name} to {pytorch_dump_folder_path}" )
model.save_pretrained(_A )
print(F"Saving processor to {pytorch_dump_folder_path}" )
processor.save_pretrained(_A )
if push_to_hub:
print(F"Pushing model and processor for {model_name} to hub" )
model.push_to_hub(F"openmmlab/{model_name}" )
processor.push_to_hub(F"openmmlab/{model_name}" )
if __name__ == "__main__":
A : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-convnext-tiny",
type=str,
choices=[f'upernet-convnext-{size}' for size in ["tiny", "small", "base", "large", "xlarge"]],
help="Name of the ConvNext UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
A : Union[str, Any] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 5 |
from __future__ import annotations
import time
import numpy as np
A : Dict = [8, 5, 9, 7]
A : Optional[Any] = [
[2, 0, 1, 1],
[0, 1, 2, 1],
[4, 0, 0, 3],
[0, 2, 1, 0],
[1, 0, 3, 0],
]
A : Any = [
[3, 2, 1, 4],
[0, 2, 5, 2],
[5, 1, 0, 5],
[1, 5, 3, 0],
[3, 0, 3, 3],
]
class _lowercase :
"""simple docstring"""
def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ):
'''simple docstring'''
lowerCamelCase__ : int = claim_vector
lowerCamelCase__ : str = allocated_resources_table
lowerCamelCase__ : int = maximum_claim_table
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return [
sum(p_item[i] for p_item in self.__allocated_resources_table )
for i in range(len(self.__allocated_resources_table[0] ) )
]
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return np.array(self.__claim_vector ) - np.array(
self.__processes_resource_summation() )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return [
list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) )
for i, allocated_resource in enumerate(self.__allocated_resources_table )
]
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return {self.__need().index(__lowerCamelCase ): i for i in self.__need()}
def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.__need()
lowerCamelCase__ : str = self.__allocated_resources_table
lowerCamelCase__ : List[Any] = self.__available_resources()
lowerCamelCase__ : str = self.__need_index_manager()
for kw, val in kwargs.items():
if kw and val is True:
self.__pretty_data()
print("_" * 50 + "\n" )
while need_list:
lowerCamelCase__ : int = False
for each_need in need_list:
lowerCamelCase__ : Dict = True
for index, need in enumerate(__lowerCamelCase ):
if need > available_resources[index]:
lowerCamelCase__ : str = False
break
if execution:
lowerCamelCase__ : Tuple = True
# get the original index of the process from ind_ctrl db
for original_need_index, need_clone in need_index_manager.items():
if each_need == need_clone:
lowerCamelCase__ : Any = original_need_index
print(f"Process {process_number + 1} is executing." )
# remove the process run from stack
need_list.remove(__lowerCamelCase )
# update available/freed resources stack
lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array(
alloc_resources_table[process_number] )
print(
"Updated available resource stack for processes: "
+ " ".join([str(__lowerCamelCase ) for x in available_resources] ) )
break
if safe:
print("The process is in a safe state.\n" )
else:
print("System in unsafe state. Aborting...\n" )
break
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
print(" " * 9 + "Allocated Resource Table" )
for item in self.__allocated_resources_table:
print(
f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(" " * 9 + "System Resource Table" )
for item in self.__maximum_claim_table:
print(
f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}"
+ " ".join(f"{it:>8}" for it in item )
+ "\n" )
print(
"Current Usage by Active Processes: "
+ " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) )
print(
"Initial Available Resources: "
+ " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) )
time.sleep(1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import _LazyModule
A : List[str] = {"processing_wav2vec2_with_lm": ["Wav2Vec2ProcessorWithLM"]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
import unittest
from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
@require_sentencepiece
@slow # see https://github.com/huggingface/transformers/issues/11457
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = BarthezTokenizer
A__ = BarthezTokenizerFast
A__ = True
A__ = True
def lowerCAmelCase ( self : int ):
'''simple docstring'''
super().setUp()
lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" )
tokenizer.save_pretrained(self.tmpdirname )
tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Any = "<pad>"
lowerCamelCase__ : Tuple = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , "<s>" )
self.assertEqual(vocab_keys[1] , "<pad>" )
self.assertEqual(vocab_keys[-1] , "<mask>" )
self.assertEqual(len(__lowerCamelCase ) , 101122 )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 101122 )
@require_torch
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."]
lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2]
lowerCamelCase__ : Tuple = self.tokenizer(
__lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" )
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertEqual((2, 6) , batch.input_ids.shape )
self.assertEqual((2, 6) , batch.attention_mask.shape )
lowerCamelCase__ : Any = batch.input_ids.tolist()[0]
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
if not self.test_rust_tokenizer:
return
lowerCamelCase__ : Any = self.get_tokenizer()
lowerCamelCase__ : Tuple = self.get_rust_tokenizer()
lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé."
lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : List[str] = self.get_rust_tokenizer()
lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase )
lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase )
self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
@slow
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# moussaKam/mbarthez is a french model. So we also use french texts.
lowerCamelCase__ : List[str] = [
"Le transformeur est un modèle d'apprentissage profond introduit en 2017, "
"utilisé principalement dans le domaine du traitement automatique des langues (TAL).",
"À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus "
"pour gérer des données séquentielles, telles que le langage naturel, pour des tâches "
"telles que la traduction et la synthèse de texte.",
]
self.tokenizer_integration_test_util(
expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
| 5 | 1 |
import math
import unittest
def lowercase_ ( _A : int ):
"""simple docstring"""
assert isinstance(_A , _A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(_A ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
with self.assertRaises(__lowerCamelCase ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , )
self.assertFalse(
is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main()
| 5 |
import cva
import numpy as np
class _lowercase :
"""simple docstring"""
def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ):
'''simple docstring'''
if k in (0.0_4, 0.0_6):
lowerCamelCase__ : int = k
lowerCamelCase__ : List[str] = window_size
else:
raise ValueError("invalid k value" )
def __str__( self : str ):
'''simple docstring'''
return str(self.k )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 )
lowerCamelCase__ , lowerCamelCase__ : Any = img.shape
lowerCamelCase__ : list[list[int]] = []
lowerCamelCase__ : List[Any] = img.copy()
lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB )
lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase )
lowerCamelCase__ : Dict = dx**2
lowerCamelCase__ : Optional[Any] = dy**2
lowerCamelCase__ : int = dx * dy
lowerCamelCase__ : Union[str, Any] = 0.0_4
lowerCamelCase__ : Any = self.window_size // 2
for y in range(__lowerCamelCase , h - offset ):
for x in range(__lowerCamelCase , w - offset ):
lowerCamelCase__ : Optional[Any] = ixx[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = iyy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : str = ixy[
y - offset : y + offset + 1, x - offset : x + offset + 1
].sum()
lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2)
lowerCamelCase__ : List[str] = wxx + wyy
lowerCamelCase__ : List[Any] = det - k * (trace**2)
# Can change the value
if r > 0.5:
corner_list.append([x, y, r] )
color_img.itemset((y, x, 0) , 0 )
color_img.itemset((y, x, 1) , 0 )
color_img.itemset((y, x, 2) , 255 )
return color_img, corner_list
if __name__ == "__main__":
A : Tuple = HarrisCorner(0.0_4, 3)
A, A : Optional[int] = edge_detect.detect("path_to_image")
cva.imwrite("detect.png", color_img)
| 5 | 1 |
import warnings
from ...utils import logging
from .image_processing_donut import DonutImageProcessor
A : Union[str, Any] = logging.get_logger(__name__)
class _lowercase ( lowercase__):
"""simple docstring"""
def __init__( self : Optional[int] , *__lowerCamelCase : Dict , **__lowerCamelCase : List[str] ):
'''simple docstring'''
warnings.warn(
"The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use DonutImageProcessor instead." , __lowerCamelCase , )
super().__init__(*__lowerCamelCase , **__lowerCamelCase )
| 5 |
import unittest
from transformers import AlbertConfig, is_torch_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_PRETRAINING_MAPPING,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForPreTraining,
AlbertForQuestionAnswering,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertModel,
)
from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowercase :
"""simple docstring"""
def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ):
'''simple docstring'''
lowerCamelCase__ : Dict = parent
lowerCamelCase__ : List[Any] = batch_size
lowerCamelCase__ : Any = seq_length
lowerCamelCase__ : List[str] = is_training
lowerCamelCase__ : int = use_input_mask
lowerCamelCase__ : List[str] = use_token_type_ids
lowerCamelCase__ : int = use_labels
lowerCamelCase__ : Dict = vocab_size
lowerCamelCase__ : List[Any] = embedding_size
lowerCamelCase__ : Dict = hidden_size
lowerCamelCase__ : Any = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_hidden_groups
lowerCamelCase__ : Optional[int] = num_attention_heads
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob
lowerCamelCase__ : Optional[int] = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = type_sequence_label_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Any = scope
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[int] = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Tuple = None
lowerCamelCase__ : List[str] = None
lowerCamelCase__ : int = None
if self.use_labels:
lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase ( self : str ):
'''simple docstring'''
return AlbertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , )
self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) )
def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : str = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.num_labels
lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.num_choices
lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : int = model(
__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : int = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Union[str, Any] = config_and_inputs
lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(
AlbertModel,
AlbertForPreTraining,
AlbertForMaskedLM,
AlbertForMultipleChoice,
AlbertForSequenceClassification,
AlbertForTokenClassification,
AlbertForQuestionAnswering,
)
if is_torch_available()
else ()
)
A__ = (
{
"feature-extraction": AlbertModel,
"fill-mask": AlbertForMaskedLM,
"question-answering": AlbertForQuestionAnswering,
"text-classification": AlbertForSequenceClassification,
"token-classification": AlbertForTokenClassification,
"zero-shot": AlbertForSequenceClassification,
}
if is_torch_available()
else {}
)
A__ = True
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class in get_values(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase )
lowerCamelCase__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = AlbertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
lowerCamelCase__ : Dict = type
self.model_tester.create_and_check_model(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" )
lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] )
lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
with torch.no_grad():
lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0]
lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
lowerCamelCase__ : Dict = torch.tensor(
[[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] )
self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
| 5 | 1 |
import os
from collections.abc import Iterator
def lowercase_ ( _A : str = "." ):
"""simple docstring"""
for dir_path, dir_names, filenames in os.walk(_A ):
lowerCamelCase__ : Union[str, Any] = [d for d in dir_names if d != "scripts" and d[0] not in "._"]
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_A )[1] in (".py", ".ipynb"):
yield os.path.join(_A , _A ).lstrip("./" )
def lowercase_ ( _A : Union[str, Any] ):
"""simple docstring"""
return F"{i * ' '}*" if i else "\n##"
def lowercase_ ( _A : str , _A : str ):
"""simple docstring"""
lowerCamelCase__ : str = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_A ) or old_parts[i] != new_part) and new_part:
print(F"{md_prefix(_A )} {new_part.replace('_' , ' ' ).title()}" )
return new_path
def lowercase_ ( _A : str = "." ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = ""
for filepath in sorted(good_file_paths(_A ) ):
lowerCamelCase__ , lowerCamelCase__ : List[str] = os.path.split(_A )
if filepath != old_path:
lowerCamelCase__ : List[Any] = print_path(_A , _A )
lowerCamelCase__ : Tuple = (filepath.count(os.sep ) + 1) if filepath else 0
lowerCamelCase__ : Union[str, Any] = F"{filepath}/{filename}".replace(" " , "%20" )
lowerCamelCase__ : str = os.path.splitext(filename.replace("_" , " " ).title() )[0]
print(F"{md_prefix(_A )} [{filename}]({url})" )
if __name__ == "__main__":
print_directory_md(".")
| 5 |
import os
def lowercase_ ( _A : str = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file:
lowerCamelCase__ : List[Any] = [
[int(_A ) for element in line.split("," )]
for line in input_file.readlines()
]
lowerCamelCase__ : Optional[Any] = len(_A )
lowerCamelCase__ : Union[str, Any] = len(matrix[0] )
lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )]
for i in range(_A ):
lowerCamelCase__ : Optional[Any] = matrix[i][0]
for j in range(1 , _A ):
for i in range(_A ):
lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 , _A ):
lowerCamelCase__ : Tuple = min(
minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 , -1 , -1 ):
lowerCamelCase__ : str = min(
minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 | 1 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 |
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"
A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"
A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class _lowercase ( datasets.Metric):
"""simple docstring"""
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ):
'''simple docstring'''
lowerCamelCase__ : str = compute_bleu(
reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase )
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 5 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
A : List[str] = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Tuple = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
import sys
import webbrowser
import requests
from bsa import BeautifulSoup
from fake_useragent import UserAgent
if __name__ == "__main__":
print("Googling.....")
A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:])
A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random})
# res.raise_for_status()
with open("project1a.html", "wb") as out_file: # only for knowing the class
for data in res.iter_content(10000):
out_file.write(data)
A : int = BeautifulSoup(res.text, "html.parser")
A : Any = list(soup.select(".eZt8xd"))[:5]
print(len(links))
for link in links:
if link.text == "Maps":
webbrowser.open(link.get("href"))
else:
webbrowser.open(f'https://google.com{link.get("href")}')
| 5 | 1 |
def lowercase_ ( _A : int , _A : list ):
"""simple docstring"""
_enforce_args(_A , _A )
if n == 0:
return 0
lowerCamelCase__ : Any = float("-inf" )
for i in range(1 , n + 1 ):
lowerCamelCase__ : List[str] = max(
_A , prices[i - 1] + naive_cut_rod_recursive(n - i , _A ) )
return max_revue
def lowercase_ ( _A : int , _A : list ):
"""simple docstring"""
_enforce_args(_A , _A )
lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(_A , _A , _A )
def lowercase_ ( _A : int , _A : list , _A : list ):
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
lowerCamelCase__ : Optional[Any] = float("-inf" )
for i in range(1 , n + 1 ):
lowerCamelCase__ : int = max(
_A , prices[i - 1] + _top_down_cut_rod_recursive(n - i , _A , _A ) , )
lowerCamelCase__ : List[Any] = max_revenue
return max_rev[n]
def lowercase_ ( _A : int , _A : list ):
"""simple docstring"""
_enforce_args(_A , _A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
lowerCamelCase__ : int = [float("-inf" ) for _ in range(n + 1 )]
lowerCamelCase__ : List[Any] = 0
for i in range(1 , n + 1 ):
lowerCamelCase__ : Tuple = max_rev[i]
for j in range(1 , i + 1 ):
lowerCamelCase__ : List[str] = max(_A , prices[j - 1] + max_rev[i - j] )
lowerCamelCase__ : Any = max_revenue_i
return max_rev[n]
def lowercase_ ( _A : int , _A : list ):
"""simple docstring"""
if n < 0:
lowerCamelCase__ : str = F"n must be greater than or equal to 0. Got n = {n}"
raise ValueError(_A )
if n > len(_A ):
lowerCamelCase__ : List[Any] = (
"Each integral piece of rod must have a corresponding price. "
F"Got n = {n} but length of prices = {len(_A )}"
)
raise ValueError(_A )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Optional[Any] = [6, 10, 12, 15, 20, 23]
lowerCamelCase__ : Tuple = len(_A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
lowerCamelCase__ : Any = 36
lowerCamelCase__ : Optional[Any] = top_down_cut_rod(_A , _A )
lowerCamelCase__ : int = bottom_up_cut_rod(_A , _A )
lowerCamelCase__ : Union[str, Any] = naive_cut_rod_recursive(_A , _A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 5 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" )
lowerCamelCase__ : str = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"]
lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) )
self.assertEqual(output.shape , __lowerCamelCase )
# compare the actual values for a slice.
lowerCamelCase__ : str = tf.convert_to_tensor(
[[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 5 | 1 |
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
A : List[Any] = logging.getLogger()
def lowercase_ ( _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : Optional[int] = {}
lowerCamelCase__ : Optional[Any] = os.path.join(_A , "all_results.json" )
if os.path.exists(_A ):
with open(_A , "r" ) as f:
lowerCamelCase__ : Optional[Any] = json.load(_A )
else:
raise ValueError(F"can't find {path}" )
return results
A : Tuple = logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class _lowercase ( lowercase__):
"""simple docstring"""
def lowerCAmelCase ( self : int ):
'''simple docstring'''
import xla_spawn
lowerCamelCase__ : Optional[int] = self.get_auto_remove_tmp_dir()
lowerCamelCase__ : str = f"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split()
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
lowerCamelCase__ : List[str] = time()
xla_spawn.main()
lowerCamelCase__ : int = time()
lowerCamelCase__ : int = get_results(__lowerCamelCase )
self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500 )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
import xla_spawn
lowerCamelCase__ : List[Any] = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split()
with patch.object(__lowerCamelCase , "argv" , __lowerCamelCase ):
xla_spawn.main()
| 5 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...file_utils import TensorType, is_torch_available
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import logging
A : List[Any] = logging.get_logger(__name__)
A : Any = {
"facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json",
# See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "blenderbot-small"
A__ = ["past_key_values"]
A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ):
'''simple docstring'''
lowerCamelCase__ : str = vocab_size
lowerCamelCase__ : Union[str, Any] = max_position_embeddings
lowerCamelCase__ : Union[str, Any] = d_model
lowerCamelCase__ : Optional[int] = encoder_ffn_dim
lowerCamelCase__ : Dict = encoder_layers
lowerCamelCase__ : Any = encoder_attention_heads
lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim
lowerCamelCase__ : str = decoder_layers
lowerCamelCase__ : Optional[Any] = decoder_attention_heads
lowerCamelCase__ : List[str] = dropout
lowerCamelCase__ : List[Any] = attention_dropout
lowerCamelCase__ : Dict = activation_dropout
lowerCamelCase__ : Optional[Any] = activation_function
lowerCamelCase__ : Dict = init_std
lowerCamelCase__ : List[str] = encoder_layerdrop
lowerCamelCase__ : Dict = decoder_layerdrop
lowerCamelCase__ : int = use_cache
lowerCamelCase__ : List[Any] = encoder_layers
lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , )
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : int = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ : Union[str, Any] = {0: "batch"}
lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"}
else:
lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"}
lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ : Tuple = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"}
else:
lowerCamelCase__ : Any = OrderedDict(
[
("input_ids", {0: "batch", 1: "encoder_sequence"}),
("attention_mask", {0: "batch", 1: "encoder_sequence"}),
("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}),
("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}),
] )
return common_inputs
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Union[str, Any] = super().outputs
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers
for i in range(__lowerCamelCase ):
lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"}
lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"}
return common_outputs
def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Generate decoder inputs
lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1
lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape
lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1]
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads
lowerCamelCase__ : str = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Optional[int] = decoder_seq_length + 3
lowerCamelCase__ : Dict = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ : List[Any] = torch.cat(
[common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Optional[Any] = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers
lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers
lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder"
for _ in range(__lowerCamelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
torch.zeros(__lowerCamelCase ),
) )
# TODO: test this.
lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape
for _ in range(__lowerCamelCase , __lowerCamelCase ):
common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) )
return common_inputs
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape
# Not using the same length for past_key_values
lowerCamelCase__ : str = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers
lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads
lowerCamelCase__ : Tuple = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype
lowerCamelCase__ : List[str] = torch.cat(
[common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 )
lowerCamelCase__ : Tuple = [
(torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase )
]
return common_inputs
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase )
lowerCamelCase__ : Dict = compute_effective_axis_dimension(
__lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
elif self.task == "causal-lm":
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
else:
lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase )
return common_inputs
def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
else:
lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
from __future__ import annotations
from math import gcd
def lowercase_ ( _A : int , _A : int = 2 , _A : int = 1 , _A : int = 3 , ):
"""simple docstring"""
if num < 2:
raise ValueError("The input value cannot be less than 2" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(_A : int , _A : int , _A : int ) -> int:
return (pow(_A , 2 ) + step) % modulus
for _ in range(_A ):
# These track the position within the cycle detection logic.
lowerCamelCase__ : Dict = seed
lowerCamelCase__ : Optional[Any] = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
lowerCamelCase__ : int = rand_fn(_A , _A , _A )
lowerCamelCase__ : Dict = rand_fn(_A , _A , _A )
lowerCamelCase__ : Optional[Any] = rand_fn(_A , _A , _A )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
lowerCamelCase__ : Union[str, Any] = gcd(hare - tortoise , _A )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
lowerCamelCase__ : List[str] = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
A : Tuple = argparse.ArgumentParser()
parser.add_argument(
"num",
type=int,
help="The value to find a divisor of",
)
parser.add_argument(
"--attempts",
type=int,
default=3,
help="The number of attempts before giving up",
)
A : int = parser.parse_args()
A : Optional[int] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(f'{args.num} is probably prime')
else:
A : Any = args.num // divisor
print(f'{args.num} = {divisor} * {quotient}')
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : int = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json",
"facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json",
"facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json",
"facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json",
"facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json",
"facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json",
"facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json",
"facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json",
"facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "xmod"
def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : List[Any] = num_attention_heads
lowerCamelCase__ : Union[str, Any] = hidden_act
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : List[Any] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : List[Any] = type_vocab_size
lowerCamelCase__ : int = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : str = use_cache
lowerCamelCase__ : Union[str, Any] = classifier_dropout
lowerCamelCase__ : Any = pre_norm
lowerCamelCase__ : Tuple = adapter_reduction_factor
lowerCamelCase__ : Tuple = adapter_layer_norm
lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm
lowerCamelCase__ : Dict = ln_before_adapter
lowerCamelCase__ : List[Any] = list(__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = default_language
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : List[str] = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : int = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 5 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 | 1 |
import pytest
A : Tuple = "__dummy_dataset1__"
A : str = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def lowercase_ ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowercase_ ( ):
"""simple docstring"""
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowercase_ ( _A : Optional[Any] , _A : List[str] , _A : Dict ):
"""simple docstring"""
lowerCamelCase__ : int = dataset_loading_script_name
lowerCamelCase__ : Optional[Any] = tmp_path / "datasets" / script_name
script_dir.mkdir(parents=_A )
lowerCamelCase__ : int = script_dir / F"{script_name}.py"
with open(_A , "w" ) as f:
f.write(_A )
return str(_A )
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Union[str, Any] = logging.get_logger(__name__)
A : Dict = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "ibert"
def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Optional[Any] = hidden_size
lowerCamelCase__ : Optional[int] = num_hidden_layers
lowerCamelCase__ : int = num_attention_heads
lowerCamelCase__ : List[str] = hidden_act
lowerCamelCase__ : List[str] = intermediate_size
lowerCamelCase__ : Optional[int] = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : Any = type_vocab_size
lowerCamelCase__ : Optional[int] = initializer_range
lowerCamelCase__ : Tuple = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : List[str] = quant_mode
lowerCamelCase__ : int = force_dequant
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Any = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
A : str = get_tests_dir("fixtures")
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = mock.Mock()
lowerCamelCase__ : Optional[Any] = 500
lowerCamelCase__ : Optional[Any] = {}
lowerCamelCase__ : List[str] = HTTPError
lowerCamelCase__ : Tuple = {}
# Download this model to make sure it's in the cache.
lowerCamelCase__ : Dict = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request" , return_value=__lowerCamelCase ) as mock_head:
lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2" )
# This check we did call the fake head request
mock_head.assert_called()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(
"https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json" )
@is_staging_test
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@classmethod
def lowerCAmelCase ( cls : Dict ):
'''simple docstring'''
lowerCamelCase__ : Tuple = TOKEN
HfFolder.save_token(__lowerCamelCase )
@classmethod
def lowerCAmelCase ( cls : List[str] ):
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id="test-feature-extractor" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-feature-extractor-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-feature-extractor" )
except HTTPError:
pass
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-feature-extractor" , use_auth_token=self._token )
lowerCamelCase__ : str = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="test-feature-extractor" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(f"{USER}/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("valid_org/test-feature-extractor" , use_auth_token=self._token )
lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-feature-extractor" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
feature_extractor.save_pretrained(
__lowerCamelCase , repo_id="valid_org/test-feature-extractor-org" , push_to_hub=__lowerCamelCase , use_auth_token=self._token )
lowerCamelCase__ : int = WavaVecaFeatureExtractor.from_pretrained("valid_org/test-feature-extractor-org" )
for k, v in feature_extractor.__dict__.items():
self.assertEqual(__lowerCamelCase , getattr(__lowerCamelCase , __lowerCamelCase ) )
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
lowerCamelCase__ : Optional[Any] = CustomFeatureExtractor.from_pretrained(__lowerCamelCase )
feature_extractor.push_to_hub("test-dynamic-feature-extractor" , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(
feature_extractor.auto_map , {"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"} , )
lowerCamelCase__ : Any = AutoFeatureExtractor.from_pretrained(
f"{USER}/test-dynamic-feature-extractor" , trust_remote_code=__lowerCamelCase )
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
self.assertEqual(new_feature_extractor.__class__.__name__ , "CustomFeatureExtractor" )
| 5 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
A : Union[str, Any] = {
"roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json",
"roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json",
"roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json",
"distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json",
"roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json",
"roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "roberta"
def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : List[Any] = vocab_size
lowerCamelCase__ : str = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[Any] = hidden_act
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : Tuple = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = max_position_embeddings
lowerCamelCase__ : int = type_vocab_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : Dict = layer_norm_eps
lowerCamelCase__ : int = position_embedding_type
lowerCamelCase__ : Any = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _lowercase :
"""simple docstring"""
def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ):
'''simple docstring'''
lowerCamelCase__ : Tuple = parent
lowerCamelCase__ : int = batch_size
lowerCamelCase__ : List[Any] = seq_length
lowerCamelCase__ : Union[str, Any] = is_training
lowerCamelCase__ : Any = use_token_type_ids
lowerCamelCase__ : Union[str, Any] = use_labels
lowerCamelCase__ : List[str] = vocab_size
lowerCamelCase__ : Union[str, Any] = hidden_size
lowerCamelCase__ : List[Any] = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Any = intermediate_size
lowerCamelCase__ : str = hidden_act
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : Any = attention_probs_dropout_prob
lowerCamelCase__ : List[str] = max_position_embeddings
lowerCamelCase__ : Optional[int] = type_vocab_size
lowerCamelCase__ : List[Any] = type_sequence_label_size
lowerCamelCase__ : List[str] = initializer_range
lowerCamelCase__ : List[str] = num_labels
lowerCamelCase__ : List[Any] = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : List[Any] = self.vocab_size - 1
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Optional[Any] = None
if self.use_token_type_ids:
lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowerCamelCase__ : Any = None
lowerCamelCase__ : str = None
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase )
lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = self.num_labels
lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
lowerCamelCase__ : str = self.prepare_config_and_inputs()
(
(
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) , (
lowerCamelCase__
) ,
) : Any = config_and_inputs
lowerCamelCase__ : Union[str, Any] = {
"input_ids": input_ids,
"token_type_ids": token_type_ids,
"head_mask": head_mask,
}
return config, inputs_dict
@require_torch
class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A__ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A__ = (
{
"feature-extraction": OpenAIGPTModel,
"text-classification": OpenAIGPTForSequenceClassification,
"text-generation": OpenAIGPTLMHeadModel,
"zero-shot": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ):
'''simple docstring'''
lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
lowerCamelCase__ : Optional[Any] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Tuple = inputs_dict["labels"]
lowerCamelCase__ : Any = inputs_dict["labels"]
lowerCamelCase__ : Any = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , )
lowerCamelCase__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase )
return inputs_dict
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self )
lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase )
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@require_torch
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@slow
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" )
model.to(__lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is
lowerCamelCase__ : Union[str, Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase )
self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
| 5 |
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
A : Union[str, Any] = logging.get_logger(__name__)
A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _lowercase :
"""simple docstring"""
A__ = field(
default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)})
A__ = field(
default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."})
A__ = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A__ = field(
default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
A__ = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
A__ = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
A__ = field(
default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"})
A__ = field(
default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."})
A__ = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."})
A__ = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"})
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "train"
A__ = "dev"
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = 42
A__ = 42
A__ = 42
A__ = 42
def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ):
'''simple docstring'''
lowerCamelCase__ : List[str] = args
lowerCamelCase__ : Tuple = is_language_sensitive
lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__lowerCamelCase , __lowerCamelCase ):
try:
lowerCamelCase__ : List[str] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
lowerCamelCase__ : str = mode
# Load data features from cache or dataset file
lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1"
lowerCamelCase__ : List[str] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase__ : List[str] = cached_features_file + ".lock"
with FileLock(__lowerCamelCase ):
if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache:
lowerCamelCase__ : str = time.time()
lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
lowerCamelCase__ : Optional[Any] = self.old_features["features"]
lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase )
lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase )
logger.info(
f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
" future run" )
else:
if mode == Split.dev:
lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir )
else:
lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir )
lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features(
examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , )
lowerCamelCase__ : int = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self : List[Any] ):
'''simple docstring'''
return len(self.features )
def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
lowerCamelCase__ : Tuple = self.features[i]
lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long )
lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float )
lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
lowerCamelCase__ : List[str] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long )
lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs
| 5 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
A : Tuple = logging.get_logger(__name__)
A : Optional[int] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = "data2vec-text"
def __init__( self : Optional[Any] , __lowerCamelCase : Dict=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Dict=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Any=2 , __lowerCamelCase : Optional[Any]=0.0_2 , __lowerCamelCase : Union[str, Any]=1E-1_2 , __lowerCamelCase : Tuple=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : List[str]="absolute" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = vocab_size
lowerCamelCase__ : List[str] = hidden_size
lowerCamelCase__ : Tuple = num_hidden_layers
lowerCamelCase__ : Union[str, Any] = num_attention_heads
lowerCamelCase__ : Tuple = hidden_act
lowerCamelCase__ : Union[str, Any] = intermediate_size
lowerCamelCase__ : Union[str, Any] = hidden_dropout_prob
lowerCamelCase__ : Tuple = attention_probs_dropout_prob
lowerCamelCase__ : str = max_position_embeddings
lowerCamelCase__ : Optional[Any] = type_vocab_size
lowerCamelCase__ : Optional[Any] = initializer_range
lowerCamelCase__ : str = layer_norm_eps
lowerCamelCase__ : Union[str, Any] = position_embedding_type
lowerCamelCase__ : List[Any] = use_cache
lowerCamelCase__ : int = classifier_dropout
class _lowercase ( lowercase__):
"""simple docstring"""
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
if self.task == "multiple-choice":
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"}
else:
lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 5 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
A : Tuple = logging.get_logger(__name__)
A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all LED models at https://huggingface.co/models?filter=LED
A : int = {
"vocab_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json",
},
"merges_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt",
},
"tokenizer_file": {
"allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json",
},
}
A : Union[str, Any] = {
"allenai/led-base-16384": 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : str = (
list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) )
)
lowerCamelCase__ : Any = bs[:]
lowerCamelCase__ : Union[str, Any] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
lowerCamelCase__ : Any = [chr(_A ) for n in cs]
return dict(zip(_A , _A ) )
def lowercase_ ( _A : Any ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = set()
lowerCamelCase__ : Optional[int] = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase__ : Any = char
return pairs
class _lowercase ( lowercase__):
"""simple docstring"""
A__ = VOCAB_FILES_NAMES
A__ = PRETRAINED_VOCAB_FILES_MAP
A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A__ = ["input_ids", "attention_mask"]
def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token
lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token
lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token
lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token
lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token
super().__init__(
errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , )
with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle:
lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase )
lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()}
lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding
lowerCamelCase__ : List[Any] = bytes_to_unicode()
lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()}
with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle:
lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1]
lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) )
lowerCamelCase__ : List[Any] = {}
lowerCamelCase__ : Dict = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return len(self.encoder )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase )
lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase )
if not pairs:
return token
while True:
lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram
lowerCamelCase__ : int = []
lowerCamelCase__ : int = 0
while i < len(__lowerCamelCase ):
try:
lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase__ : List[str] = j
if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase__ : Dict = tuple(__lowerCamelCase )
lowerCamelCase__ : str = new_word
if len(__lowerCamelCase ) == 1:
break
else:
lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase )
lowerCamelCase__ : Dict = word
return word
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = []
for token in re.findall(self.pat , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) )
return bpe_tokens
def lowerCAmelCase ( self : Any , __lowerCamelCase : int ):
'''simple docstring'''
return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
return self.decoder.get(__lowerCamelCase )
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase )
lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors )
return text
def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
'''simple docstring'''
if not os.path.isdir(__lowerCamelCase ):
logger.error(f"Vocabulary path ({save_directory}) should be a directory" )
return
lowerCamelCase__ : List[Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase__ : Union[str, Any] = os.path.join(
__lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" )
lowerCamelCase__ : Tuple = 0
with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ):
if index != token_index:
logger.warning(
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
" Please check that the tokenizer is not corrupted!" )
lowerCamelCase__ : List[Any] = token_index
writer.write(" ".join(__lowerCamelCase ) + "\n" )
index += 1
return vocab_file, merge_file
def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCamelCase__ : List[str] = [self.cls_token_id]
lowerCamelCase__ : int = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(__lowerCamelCase )) + [1]
return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1]
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ):
'''simple docstring'''
lowerCamelCase__ : Any = [self.sep_token_id]
lowerCamelCase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()):
lowerCamelCase__ : Dict = " " + text
return (text, kwargs)
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ):
'''simple docstring'''
lowerCamelCase__ : str = super()._pad(
encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , )
# Load from model defaults
if return_attention_mask is None:
lowerCamelCase__ : str = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase )
if needs_to_be_padded:
lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCamelCase__ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 5 | 1 |
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def lowercase_ ( _A : dict ):
"""simple docstring"""
return (data["data"], data["target"])
def lowercase_ ( _A : np.ndarray , _A : np.ndarray ):
"""simple docstring"""
lowerCamelCase__ : Union[str, Any] = XGBClassifier()
classifier.fit(_A , _A )
return classifier
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : int = load_iris()
lowerCamelCase__ , lowerCamelCase__ : List[str] = data_handling(_A )
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = train_test_split(
_A , _A , test_size=0.25 )
lowerCamelCase__ : List[Any] = iris["target_names"]
# Create an XGBoost Classifier from the training data
lowerCamelCase__ : str = xgboost(_A , _A )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
_A , _A , _A , display_labels=_A , cmap="Blues" , normalize="true" , )
plt.title("Normalized Confusion Matrix - IRIS Dataset" )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 5 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaImgaImgPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class _lowercase ( lowercase__ , unittest.TestCase):
"""simple docstring"""
A__ = KandinskyVaaImgaImgPipeline
A__ = ["image_embeds", "negative_image_embeds", "image"]
A__ = [
"image_embeds",
"negative_image_embeds",
"image",
]
A__ = [
"generator",
"height",
"width",
"strength",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
A__ = False
@property
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : Optional[Any] = {
"in_channels": 4,
# Out channels is double in channels because predicts mean and variance
"out_channels": 8,
"addition_embed_type": "image",
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
"block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2),
"layers_per_block": 1,
"encoder_hid_dim": self.text_embedder_hidden_size,
"encoder_hid_dim_type": "image_proj",
"cross_attention_dim": self.cross_attention_dim,
"attention_head_dim": 4,
"resnet_time_scale_shift": "scale_shift",
"class_embed_type": None,
}
lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase )
return model
@property
def lowerCAmelCase ( self : int ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
torch.manual_seed(0 )
lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = self.dummy_unet
lowerCamelCase__ : Optional[Any] = self.dummy_movq
lowerCamelCase__ : Optional[int] = {
"num_train_timesteps": 1000,
"beta_schedule": "linear",
"beta_start": 0.0_0_0_8_5,
"beta_end": 0.0_1_2,
"clip_sample": False,
"set_alpha_to_one": False,
"steps_offset": 0,
"prediction_type": "epsilon",
"thresholding": False,
}
lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"unet": unet,
"scheduler": scheduler,
"movq": movq,
}
return components
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ):
'''simple docstring'''
lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
__lowerCamelCase )
# create init_image
lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) )
if str(__lowerCamelCase ).startswith("mps" ):
lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase )
else:
lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase )
lowerCamelCase__ : Tuple = {
"image": init_image,
"image_embeds": image_embeds,
"negative_image_embeds": negative_image_embeds,
"generator": generator,
"height": 64,
"width": 64,
"num_inference_steps": 10,
"guidance_scale": 7.0,
"strength": 0.2,
"output_type": "np",
}
return inputs
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = "cpu"
lowerCamelCase__ : str = self.get_dummy_components()
lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase )
lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase )
pipe.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) )
lowerCamelCase__ : List[str] = output.images
lowerCamelCase__ : Optional[Any] = pipe(
**self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0]
lowerCamelCase__ : int = image[0, -3:, -3:, -1]
lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
lowerCamelCase__ : str = np.array(
[0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
@slow
@require_torch_gpu
class _lowercase ( unittest.TestCase):
"""simple docstring"""
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase ( self : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : List[str] = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/kandinskyv22/kandinskyv22_img2img_frog.npy" )
lowerCamelCase__ : Tuple = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" )
lowerCamelCase__ : Any = "A red cartoon frog, 4k"
lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa )
pipe_prior.to(__lowerCamelCase )
lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained(
"kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa )
lowerCamelCase__ : str = pipeline.to(__lowerCamelCase )
pipeline.set_progress_bar_config(disable=__lowerCamelCase )
lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 )
lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior(
__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple()
lowerCamelCase__ : Optional[Any] = pipeline(
image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , )
lowerCamelCase__ : Union[str, Any] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
| 5 | 1 |
from math import factorial
A : Tuple = {str(d): factorial(d) for d in range(10)}
def lowercase_ ( _A : int ):
"""simple docstring"""
return sum(DIGIT_FACTORIAL[d] for d in str(_A ) )
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Any = 7 * factorial(9 ) + 1
return sum(i for i in range(3 , _A ) if sum_of_digit_factorial(_A ) == i )
if __name__ == "__main__":
print(f'{solution() = }')
| 5 |
def lowercase_ ( _A : int , _A : int ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("the value of both inputs must be positive" )
lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b"
lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class _lowercase :
"""simple docstring"""
A__ = 42
A__ = 42
class _lowercase :
"""simple docstring"""
def __init__( self : Tuple , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : list[list[Edge]] = [[] for _ in range(__lowerCamelCase )]
lowerCamelCase__ : int = size
def __getitem__( self : Dict , __lowerCamelCase : int ):
'''simple docstring'''
return iter(self._graph[vertex] )
@property
def lowerCAmelCase ( self : List[str] ):
'''simple docstring'''
return self._size
def lowerCAmelCase ( self : Dict , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int ):
'''simple docstring'''
if weight not in (0, 1):
raise ValueError("Edge weight must be either 0 or 1." )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("Vertex indexes must be in [0; size)." )
self._graph[from_vertex].append(Edge(__lowerCamelCase , __lowerCamelCase ) )
def lowerCAmelCase ( self : int , __lowerCamelCase : int , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : int = deque([start_vertex] )
lowerCamelCase__ : list[int | None] = [None] * self.size
lowerCamelCase__ : Union[str, Any] = 0
while queue:
lowerCamelCase__ : str = queue.popleft()
lowerCamelCase__ : str = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
lowerCamelCase__ : int = current_distance + edge.weight
lowerCamelCase__ : int = distances[edge.destination_vertex]
if (
isinstance(__lowerCamelCase , __lowerCamelCase )
and new_distance >= dest_vertex_distance
):
continue
lowerCamelCase__ : List[str] = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("No path from start_vertex to finish_vertex." )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 5 |
import os
from pathlib import Path
def lowercase_ ( ):
"""simple docstring"""
from torch.utils.cpp_extension import load
lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr"
lowerCamelCase__ : Optional[int] = [
root / filename
for filename in [
"vision.cpp",
os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ),
os.path.join("cuda" , "ms_deform_attn_cuda.cu" ),
]
]
load(
"MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[
"-DCUDA_HAS_FP16=1",
"-D__CUDA_NO_HALF_OPERATORS__",
"-D__CUDA_NO_HALF_CONVERSIONS__",
"-D__CUDA_NO_HALF2_OPERATORS__",
] , )
import MultiScaleDeformableAttention as MSDA
return MSDA
| 5 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.