code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Any=14 , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : int=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=0.0_2 , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_token_type_ids lowerCamelCase__ : Dict = use_input_mask lowerCamelCase__ : Any = use_labels lowerCamelCase__ : List[str] = use_mc_token_ids lowerCamelCase__ : str = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : Tuple = scope lowerCamelCase__ : str = self.vocab_size - 1 def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = None if self.use_input_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : int = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None if self.use_mc_token_ids: lowerCamelCase__ : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Tuple = self.get_config() lowerCamelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , *__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A__ = (CTRLLMHeadModel,) if is_torch_available() else () A__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A__ = True A__ = False A__ = False def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = CTRLModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCamelCase ) # Legal the president is lowerCamelCase__ : Optional[Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCamelCase__ : List[Any] = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : int = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A : List[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def lowercase_ ( _A : List[str] , _A : Any , _A : Union[str, Any]=None , _A : Tuple=None , _A : Union[str, Any]=None , _A : List[str]=None , _A : str=None , _A : Dict=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : Optional[Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: lowerCamelCase__ : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: lowerCamelCase__ : Dict = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : str = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : """simple docstring""" def __init__( self : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Optional[int]=7 , __lowerCamelCase : str=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Dict=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : str=2 , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : str=4 , __lowerCamelCase : int="gelu" , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=0 , __lowerCamelCase : Any=0.0_2 , ): '''simple docstring''' lowerCamelCase__ : List[str] = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : Tuple = seq_length lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : Tuple = num_hidden_layers lowerCamelCase__ : Tuple = num_attention_heads lowerCamelCase__ : Optional[Any] = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Dict = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : int = eos_token_id lowerCamelCase__ : Tuple = pad_token_id lowerCamelCase__ : Union[str, Any] = bos_token_id lowerCamelCase__ : List[str] = initializer_range def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Dict = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) lowerCamelCase__ : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) lowerCamelCase__ : int = shift_tokens_right(__lowerCamelCase , 1 , 2 ) lowerCamelCase__ : Tuple = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=__lowerCamelCase , ) lowerCamelCase__ : Tuple = prepare_blenderbot_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = 20 lowerCamelCase__ : Any = model_class_name(__lowerCamelCase ) lowerCamelCase__ : Tuple = model.encode(inputs_dict["input_ids"] ) lowerCamelCase__ , lowerCamelCase__ : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__ : str = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) lowerCamelCase__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Dict = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase__ : Union[str, Any] = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = model.decode(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = 20 lowerCamelCase__ : Optional[int] = model_class_name(__lowerCamelCase ) lowerCamelCase__ : List[str] = model.encode(inputs_dict["input_ids"] ) lowerCamelCase__ , lowerCamelCase__ : int = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) lowerCamelCase__ : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) lowerCamelCase__ : Tuple = model.init_cache(decoder_input_ids.shape[0] , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowerCamelCase__ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) lowerCamelCase__ : Dict = model.decode( decoder_input_ids[:, -1:] , __lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__lowerCamelCase , decoder_position_ids=__lowerCamelCase , ) lowerCamelCase__ : Dict = model.decode(__lowerCamelCase , __lowerCamelCase , decoder_attention_mask=__lowerCamelCase ) lowerCamelCase__ : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"Max diff is {diff}" ) @require_flax class _lowercase ( unittest.TestCase): """simple docstring""" A__ = 99 def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) lowerCamelCase__ : Optional[Any] = input_ids.shape[0] lowerCamelCase__ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = self._get_config_and_data() lowerCamelCase__ : Optional[Any] = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) lowerCamelCase__ : Any = lm_model(input_ids=__lowerCamelCase ) lowerCamelCase__ : str = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) lowerCamelCase__ : Optional[int] = FlaxBlenderbotForConditionalGeneration(__lowerCamelCase ) lowerCamelCase__ : str = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) lowerCamelCase__ : List[str] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) lowerCamelCase__ : int = lm_model(input_ids=__lowerCamelCase , decoder_input_ids=__lowerCamelCase ) lowerCamelCase__ : List[Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["logits"].shape , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) lowerCamelCase__ : int = shift_tokens_right(__lowerCamelCase , 1 , 2 ) lowerCamelCase__ : List[Any] = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() lowerCamelCase__ : Dict = np.equal(__lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(__lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( lowercase__ , unittest.TestCase , lowercase__): """simple docstring""" A__ = True A__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : int = FlaxBlenderbotModelTester(self ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) @jax.jit def encode_jitted(__lowerCamelCase : List[str] , __lowerCamelCase : Tuple=None , **__lowerCamelCase : int ): return model.encode(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ) with self.subTest("JIT Enabled" ): lowerCamelCase__ : Optional[Any] = encode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase__ : List[Any] = encode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) lowerCamelCase__ : str = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) lowerCamelCase__ : List[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : str ): return model.decode( decoder_input_ids=__lowerCamelCase , decoder_attention_mask=__lowerCamelCase , encoder_outputs=__lowerCamelCase , ) with self.subTest("JIT Enabled" ): lowerCamelCase__ : Optional[int] = decode_jitted(**__lowerCamelCase ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): lowerCamelCase__ : Any = decode_jitted(**__lowerCamelCase ).to_tuple() self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for jitted_output, output in zip(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' for model_class_name in self.all_model_classes: lowerCamelCase__ : str = model_class_name.from_pretrained("facebook/blenderbot-400M-distill" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids lowerCamelCase__ : int = np.ones((1, 1) ) * model.config.eos_token_id lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skipUnless(jax_device != "cpu" , "3B test too slow on CPU." ) @slow def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25} lowerCamelCase__ : Any = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True} lowerCamelCase__ : Dict = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B" , from_pt=__lowerCamelCase ) lowerCamelCase__ : Dict = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B" ) lowerCamelCase__ : Dict = ["Sam"] lowerCamelCase__ : List[Any] = tokenizer(__lowerCamelCase , return_tensors="jax" ) lowerCamelCase__ : Any = model.generate(**__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = "Sam is a great name. It means \"sun\" in Gaelic." lowerCamelCase__ : int = tokenizer.batch_decode(__lowerCamelCase , **__lowerCamelCase ) assert generated_txt[0].strip() == tgt_text
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if b == 0: return 1 if (b % 2) == 0: return actual_power(_A , int(b / 2 ) ) * actual_power(_A , int(b / 2 ) ) else: return a * actual_power(_A , int(b / 2 ) ) * actual_power(_A , int(b / 2 ) ) def lowercase_ ( _A : int , _A : int ): """simple docstring""" if b < 0: return 1 / actual_power(_A , _A ) return actual_power(_A , _A ) if __name__ == "__main__": print(power(-2, -3))
5
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Tuple = { "RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "mvp" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , __lowerCamelCase : Any=50267 , __lowerCamelCase : str=1024 , __lowerCamelCase : Dict=12 , __lowerCamelCase : Any=4096 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : List[Any]=4096 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Optional[int]=0.0 , __lowerCamelCase : str=False , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Tuple=2 , __lowerCamelCase : Any=True , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=2 , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=100 , __lowerCamelCase : Optional[Any]=800 , **__lowerCamelCase : List[str] , ): '''simple docstring''' lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : Optional[Any] = max_position_embeddings lowerCamelCase__ : List[Any] = d_model lowerCamelCase__ : Optional[Any] = encoder_ffn_dim lowerCamelCase__ : int = encoder_layers lowerCamelCase__ : List[Any] = encoder_attention_heads lowerCamelCase__ : Optional[Any] = decoder_ffn_dim lowerCamelCase__ : Tuple = decoder_layers lowerCamelCase__ : str = decoder_attention_heads lowerCamelCase__ : Optional[int] = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Any = activation_dropout lowerCamelCase__ : Dict = activation_function lowerCamelCase__ : Any = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Optional[int] = decoder_layerdrop lowerCamelCase__ : int = classifier_dropout lowerCamelCase__ : List[Any] = use_cache lowerCamelCase__ : Optional[Any] = encoder_layers lowerCamelCase__ : int = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ : Tuple = use_prompt lowerCamelCase__ : str = prompt_length lowerCamelCase__ : Dict = prompt_mid_dim super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , __lowerCamelCase ): lowerCamelCase__ : List[Any] = self.bos_token_id warnings.warn( f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. " "The config can simply be saved and uploaded again to be fixed." )
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int ): '''simple docstring''' self.assertEqual(len(__lowerCamelCase ) , len(__lowerCamelCase ) ) for a, b in zip(__lowerCamelCase , __lowerCamelCase ): self.assertAlmostEqual(__lowerCamelCase , __lowerCamelCase , delta=__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(__lowerCamelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = None ops.enable_eager_execution_internal() lowerCamelCase__ : Optional[Any] = tf.config.list_physical_devices("CPU" ) if len(__lowerCamelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowerCamelCase__ : Optional[Any] = tf.config.list_logical_devices(device_type="CPU" ) lowerCamelCase__ : str = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowerCamelCase__ : Tuple = GradientAccumulator() lowerCamelCase__ : Union[str, Any] = tf.Variable([4.0, 3.0] ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = create_optimizer(5E-5 , 10 , 5 ) lowerCamelCase__ : str = tf.Variable([0.0, 0.0] , trainable=__lowerCamelCase ) def accumulate_on_replica(__lowerCamelCase : Optional[int] ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(__lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] ): with strategy.scope(): lowerCamelCase__ : int = strategy.experimental_local_results(__lowerCamelCase ) local_variables[0].assign(__lowerCamelCase ) local_variables[1].assign(__lowerCamelCase ) strategy.run(__lowerCamelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(__lowerCamelCase ) def _check_local_values(__lowerCamelCase : str , __lowerCamelCase : Tuple ): lowerCamelCase__ : Optional[Any] = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , __lowerCamelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , __lowerCamelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
1
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowercase_ ( _A : List[str] ): """simple docstring""" if ( (cp >= 0x4_E_0_0 and cp <= 0x9_F_F_F) or (cp >= 0x3_4_0_0 and cp <= 0x4_D_B_F) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_A_6_D_F) # or (cp >= 0x2_A_7_0_0 and cp <= 0x2_B_7_3_F) # or (cp >= 0x2_B_7_4_0 and cp <= 0x2_B_8_1_F) # or (cp >= 0x2_B_8_2_0 and cp <= 0x2_C_E_A_F) # or (cp >= 0xF_9_0_0 and cp <= 0xF_A_F_F) or (cp >= 0x2_F_8_0_0 and cp <= 0x2_F_A_1_F) # ): # return True return False def lowercase_ ( _A : str ): """simple docstring""" for char in word: lowerCamelCase__ : Union[str, Any] = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : Any = set() for token in tokens: lowerCamelCase__ : Optional[int] = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) lowerCamelCase__ : Dict = list(_A ) return word_list def lowercase_ ( _A : List[str] , _A : set() ): """simple docstring""" if not chinese_word_set: return bert_tokens lowerCamelCase__ : List[str] = max([len(_A ) for w in chinese_word_set] ) lowerCamelCase__ : Tuple = bert_tokens lowerCamelCase__ , lowerCamelCase__ : Tuple = 0, len(_A ) while start < end: lowerCamelCase__ : Optional[Any] = True if is_chinese(bert_word[start] ): lowerCamelCase__ : Any = min(end - start , _A ) for i in range(_A , 1 , -1 ): lowerCamelCase__ : Tuple = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): lowerCamelCase__ : Dict = "##" + bert_word[j] lowerCamelCase__ : str = start + i lowerCamelCase__ : List[str] = False break if single_word: start += 1 return bert_word def lowercase_ ( _A : List[str] , _A : LTP , _A : BertTokenizer ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [] for i in range(0 , len(_A ) , 100 ): lowerCamelCase__ : Optional[Any] = ltp_tokenizer.seg(lines[i : i + 100] )[0] lowerCamelCase__ : int = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) lowerCamelCase__ : Union[str, Any] = [] for i in range(0 , len(_A ) , 100 ): lowerCamelCase__ : int = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_A , truncation=_A , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_A ) == len(_A ) lowerCamelCase__ : List[str] = [] for input_ids, chinese_word in zip(_A , _A ): lowerCamelCase__ : Union[str, Any] = [] for id in input_ids: lowerCamelCase__ : List[Any] = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) lowerCamelCase__ : int = add_sub_symbol(_A , _A ) lowerCamelCase__ : List[str] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": lowerCamelCase__ : Any = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def lowercase_ ( _A : Dict ): """simple docstring""" with open(args.file_name , "r" , encoding="utf-8" ) as f: lowerCamelCase__ : Dict = f.readlines() lowerCamelCase__ : List[Any] = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' lowerCamelCase__ : List[str] = LTP(args.ltp ) # faster in GPU device lowerCamelCase__ : Any = BertTokenizer.from_pretrained(args.bert ) lowerCamelCase__ : Dict = prepare_ref(_A , _A , _A ) with open(args.save_path , "w" , encoding="utf-8" ) as f: lowerCamelCase__ : List[str] = [json.dumps(_A ) + "\n" for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": A : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path" ) parser.add_argument("--bert", type=str, default="./resources/robert", help="resources for Bert tokenizer") parser.add_argument("--save_path", type=str, default="./resources/ref.txt", help="path to save res") A : Any = parser.parse_args() main(args)
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
import os import sys import unittest A : List[str] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) A : List[Any] = os.path.join("tests", "models", "bert", "test_modeling_bert.py") A : str = os.path.join("tests", "models", "blip", "test_modeling_blip.py") class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = get_test_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = get_test_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : int = {"BertModelTest": "BertModelTester"} lowerCamelCase__ : Dict = { "BlipModelTest": "BlipModelTester", "BlipTextImageModelTest": "BlipTextImageModelsModelTester", "BlipTextModelTest": "BlipTextModelTester", "BlipTextRetrievalModelTest": "BlipTextRetrievalModelTester", "BlipVQAModelTest": "BlipVQAModelTester", "BlipVisionModelTest": "BlipVisionModelTester", } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : str = get_model_to_test_mapping(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = get_model_to_test_mapping(__lowerCamelCase ) lowerCamelCase__ : List[Any] = { "BertForMaskedLM": ["BertModelTest"], "BertForMultipleChoice": ["BertModelTest"], "BertForNextSentencePrediction": ["BertModelTest"], "BertForPreTraining": ["BertModelTest"], "BertForQuestionAnswering": ["BertModelTest"], "BertForSequenceClassification": ["BertModelTest"], "BertForTokenClassification": ["BertModelTest"], "BertLMHeadModel": ["BertModelTest"], "BertModel": ["BertModelTest"], } lowerCamelCase__ : Dict = { "BlipForConditionalGeneration": ["BlipTextImageModelTest"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTest"], "BlipForQuestionAnswering": ["BlipVQAModelTest"], "BlipModel": ["BlipModelTest"], "BlipTextModel": ["BlipTextModelTest"], "BlipVisionModel": ["BlipVisionModelTest"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = get_model_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : List[str] = get_model_to_tester_mapping(__lowerCamelCase ) lowerCamelCase__ : List[Any] = { "BertForMaskedLM": ["BertModelTester"], "BertForMultipleChoice": ["BertModelTester"], "BertForNextSentencePrediction": ["BertModelTester"], "BertForPreTraining": ["BertModelTester"], "BertForQuestionAnswering": ["BertModelTester"], "BertForSequenceClassification": ["BertModelTester"], "BertForTokenClassification": ["BertModelTester"], "BertLMHeadModel": ["BertModelTester"], "BertModel": ["BertModelTester"], } lowerCamelCase__ : Optional[Any] = { "BlipForConditionalGeneration": ["BlipTextImageModelsModelTester"], "BlipForImageTextRetrieval": ["BlipTextRetrievalModelTester"], "BlipForQuestionAnswering": ["BlipVQAModelTester"], "BlipModel": ["BlipModelTester"], "BlipTextModel": ["BlipTextModelTester"], "BlipVisionModel": ["BlipVisionModelTester"], } self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(get_test_info.to_json(__lowerCamelCase ) , __lowerCamelCase )
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) A : Any = { "EleutherAI/gpt-neo-1.3B": "https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _lowercase ( lowercase__): """simple docstring""" A__ = "gpt_neo" A__ = ["past_key_values"] A__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : Union[str, Any] , __lowerCamelCase : List[Any]=50257 , __lowerCamelCase : Any=2048 , __lowerCamelCase : int=2048 , __lowerCamelCase : Optional[Any]=24 , __lowerCamelCase : Optional[int]=[[["global", "local"], 12]] , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : List[Any]=256 , __lowerCamelCase : Tuple="gelu_new" , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : int=True , __lowerCamelCase : int=50256 , __lowerCamelCase : int=50256 , **__lowerCamelCase : Dict , ): '''simple docstring''' lowerCamelCase__ : Optional[int] = vocab_size lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_layers lowerCamelCase__ : Dict = num_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : Dict = window_size lowerCamelCase__ : List[str] = activation_function lowerCamelCase__ : Tuple = resid_dropout lowerCamelCase__ : Tuple = embed_dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Any = classifier_dropout lowerCamelCase__ : str = layer_norm_epsilon lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : List[str] = use_cache lowerCamelCase__ : int = bos_token_id lowerCamelCase__ : Optional[Any] = eos_token_id lowerCamelCase__ : Tuple = attention_types lowerCamelCase__ : Union[str, Any] = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " f"`config.num_layers = {self.num_layers}`. " "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def lowerCAmelCase ( __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowercase_ ( _A : str , _A : List[Any] , _A : Optional[Any] , _A : Tuple ): """simple docstring""" import torch lowerCamelCase__ : Union[str, Any] = input.size() lowerCamelCase__ : Tuple = len(_A ) lowerCamelCase__ : Optional[Any] = shape[dimension] lowerCamelCase__ : int = torch.arange(0 , _A , _A ) lowerCamelCase__ : Optional[Any] = torch.div(sizedim - size , _A , rounding_mode="floor" ) + 1 lowerCamelCase__ : Union[str, Any] = torch.arange(_A ) + low_indices[:min_length][:, None] lowerCamelCase__ : Tuple = [slice(_A )] * rank lowerCamelCase__ : Tuple = indices lowerCamelCase__ : Optional[int] = input[s] lowerCamelCase__ : int = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(_A ) def lowercase_ ( _A : int , _A : Optional[Any] ): """simple docstring""" import torch lowerCamelCase__ : Optional[int] = torch.arange(1 , _A ) lowerCamelCase__ : Any = torch.remainder(_A , _A ) lowerCamelCase__ : int = remainders == 0 lowerCamelCase__ : Tuple = candidates[divisor_indices] lowerCamelCase__ : Optional[Any] = torch.max(_A ) return largest_divisor, torch.div(_A , _A , rounding_mode="floor" ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) lowerCamelCase__ : Tuple = {0: "batch", 1: "past_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "sequence"} return common_inputs @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self._config.num_heads def lowerCAmelCase ( self : str , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ : str = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : int = seqlen + 2 lowerCamelCase__ : List[str] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ : Dict = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ : int = common_inputs["attention_mask"] if self.use_past: lowerCamelCase__ : Optional[int] = ordered_inputs["attention_mask"].dtype lowerCamelCase__ : List[Any] = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 13
5
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : int = logging.get_logger(__name__) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Any = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowerCamelCase__ : List[str] = 1024 lowerCamelCase__ : Tuple = 4096 lowerCamelCase__ : List[str] = 24 lowerCamelCase__ : int = 16 lowerCamelCase__ : Optional[int] = [5, 11, 17, 23] lowerCamelCase__ : Dict = [256, 512, 1024, 1024] lowerCamelCase__ : int = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCamelCase__ : Dict = 768 lowerCamelCase__ : Tuple = [1, 1, 1, 0.5] lowerCamelCase__ : Optional[Any] = [256, 512, 768, 768] lowerCamelCase__ : List[Any] = 150 lowerCamelCase__ : Tuple = 16 lowerCamelCase__ : Any = (1, 384, 384) lowerCamelCase__ : Tuple = False lowerCamelCase__ : Optional[Any] = "project" if "ade" in checkpoint_url: lowerCamelCase__ : Tuple = True lowerCamelCase__ : Any = 768 lowerCamelCase__ : Union[str, Any] = [1, 1, 1, 0.5] lowerCamelCase__ : Optional[Any] = 150 lowerCamelCase__ : List[Any] = 16 lowerCamelCase__ : List[Any] = "huggingface/label-files" lowerCamelCase__ : Tuple = "ade20k-id2label.json" lowerCamelCase__ : Any = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type="dataset" ) ) , "r" ) ) lowerCamelCase__ : List[Any] = {int(_A ): v for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = idalabel lowerCamelCase__ : List[str] = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Optional[int] = [1, 150, 480, 480] return config, expected_shape def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(_A , _A ) def lowercase_ ( _A : Optional[Any] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCamelCase__ : Any = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowerCamelCase__ : int = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowerCamelCase__ : Dict = name.replace("patch_embed" , "" ) if "pos_embed" in name: lowerCamelCase__ : str = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowerCamelCase__ : Union[str, Any] = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowerCamelCase__ : str = name.replace("proj" , "projection" ) if "blocks" in name: lowerCamelCase__ : List[Any] = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowerCamelCase__ : Union[str, Any] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: lowerCamelCase__ : Optional[int] = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowerCamelCase__ : Optional[int] = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowerCamelCase__ : Tuple = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowerCamelCase__ : List[str] = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowerCamelCase__ : Union[str, Any] = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowerCamelCase__ : Tuple = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowerCamelCase__ : Any = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowerCamelCase__ : Any = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowerCamelCase__ : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCamelCase__ : List[Any] = name.replace(F"refinenet{layer_idx}" , F"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCamelCase__ : Dict = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowerCamelCase__ : Optional[Any] = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowerCamelCase__ : List[str] = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowerCamelCase__ : Union[str, Any] = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowerCamelCase__ : Optional[Any] = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCamelCase__ : List[Any] = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCamelCase__ : List[str] = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCamelCase__ : Optional[Any] = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCamelCase__ : str = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowerCamelCase__ : int = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowerCamelCase__ : Tuple = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowerCamelCase__ : Optional[Any] = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowerCamelCase__ : str = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowerCamelCase__ : Any = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowerCamelCase__ : int = name.replace("pretrained" , "dpt" ) if "bn" in name: lowerCamelCase__ : List[str] = name.replace("bn" , "batch_norm" ) if "head" in name: lowerCamelCase__ : Tuple = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowerCamelCase__ : Union[str, Any] = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowerCamelCase__ : List[Any] = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: lowerCamelCase__ : int = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: lowerCamelCase__ : int = name.replace(".." , "." ) if "stem.conv" in name: lowerCamelCase__ : Any = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowerCamelCase__ : Any = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: lowerCamelCase__ : Dict = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: lowerCamelCase__ : List[str] = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: lowerCamelCase__ : List[str] = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: lowerCamelCase__ : Optional[Any] = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowerCamelCase__ : str = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def lowercase_ ( _A : List[Any] , _A : Dict ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : str = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCamelCase__ : Any = state_dict.pop(F"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCamelCase__ : Tuple = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Dict = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : str = in_proj_bias[-config.hidden_size :] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : str = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowercase_ ( _A : List[str] , _A : str , _A : List[str] , _A : Optional[Any] , _A : List[str] ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Tuple = get_dpt_config(_A ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCamelCase__ : Dict = torch.load(_A , map_location="cpu" ) # remove certain keys remove_ignore_keys_(_A ) # rename keys for key in state_dict.copy().keys(): lowerCamelCase__ : Optional[Any] = state_dict.pop(_A ) lowerCamelCase__ : Optional[Any] = val # read in qkv matrices read_in_q_k_v(_A , _A ) # load HuggingFace model lowerCamelCase__ : Optional[int] = DPTForSemanticSegmentation(_A ) if "ade" in checkpoint_url else DPTForDepthEstimation(_A ) model.load_state_dict(_A ) model.eval() # Check outputs on an image lowerCamelCase__ : List[Any] = 480 if "ade" in checkpoint_url else 384 lowerCamelCase__ : int = DPTImageProcessor(size=_A ) lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : List[Any] = image_processor(_A , return_tensors="pt" ) # forward pass lowerCamelCase__ : str = model(**_A ).logits if "ade" in checkpoint_url else model(**_A ).predicted_depth if show_prediction: lowerCamelCase__ : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=_A , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_A ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) A : List[Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) A : List[Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ["CLIPFeatureExtractor"] A : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
1
from collections import defaultdict from math import ceil, sqrt def lowercase_ ( _A : int = 1000000 , _A : int = 10 ): """simple docstring""" lowerCamelCase__ : defaultdict = defaultdict(_A ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: lowerCamelCase__ : Optional[Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: lowerCamelCase__ : Dict = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_A , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'{solution() = }')
5
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
1
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" def __init__( self : Dict , __lowerCamelCase : Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() lowerCamelCase__ : List[str] = nn.ModuleList(__lowerCamelCase ) def lowerCAmelCase ( self : int , __lowerCamelCase : torch.FloatTensor , __lowerCamelCase : Union[torch.Tensor, float, int] , __lowerCamelCase : torch.Tensor , __lowerCamelCase : List[torch.tensor] , __lowerCamelCase : List[float] , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[torch.Tensor] = None , __lowerCamelCase : Optional[Dict[str, Any]] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = True , ): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCamelCase , __lowerCamelCase , self.nets ) ): lowerCamelCase__ , lowerCamelCase__ : int = controlnet( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , ) # merge samples if i == 0: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = down_samples, mid_sample else: lowerCamelCase__ : Tuple = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCamelCase , __lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, os.PathLike] , __lowerCamelCase : bool = True , __lowerCamelCase : Callable = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[str] = None , ): '''simple docstring''' lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCamelCase , is_main_process=__lowerCamelCase , save_function=__lowerCamelCase , safe_serialization=__lowerCamelCase , variant=__lowerCamelCase , ) idx += 1 lowerCamelCase__ : Optional[Any] = model_path_to_save + f"_{idx}" @classmethod def lowerCAmelCase ( cls : Dict , __lowerCamelCase : Optional[Union[str, os.PathLike]] , **__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... lowerCamelCase__ : int = pretrained_model_path while os.path.isdir(__lowerCamelCase ): lowerCamelCase__ : int = ControlNetModel.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) controlnets.append(__lowerCamelCase ) idx += 1 lowerCamelCase__ : int = pretrained_model_path + f"_{idx}" logger.info(f"{len(__lowerCamelCase )} controlnets loaded from {pretrained_model_path}." ) if len(__lowerCamelCase ) == 0: raise ValueError( f"No ControlNets found under {os.path.dirname(__lowerCamelCase )}. Expected at least {pretrained_model_path + '_0'}." ) return cls(__lowerCamelCase )
5
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
1
import functools def lowercase_ ( _A : list[int] , _A : list[int] ): """simple docstring""" if not isinstance(_A , _A ) or not all(isinstance(_A , _A ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(_A ) != 3 or not all(isinstance(_A , _A ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(_A ) == 0: return 0 if min(_A ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(_A ) >= 366: raise ValueError("All days elements should be less than 366" ) lowerCamelCase__ : str = set(_A ) @functools.cache def dynamic_programming(_A : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
1
def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : int = len(_A ) while cur > 1: # Find the maximum number in arr lowerCamelCase__ : Any = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi lowerCamelCase__ : Dict = arr[mi::-1] + arr[mi + 1 : len(_A )] # Reverse whole list lowerCamelCase__ : List[Any] = arr[cur - 1 :: -1] + arr[cur : len(_A )] cur -= 1 return arr if __name__ == "__main__": A : str = input("Enter numbers separated by a comma:\n").strip() A : Any = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
5
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : Dict = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging A : List[Any] = logging.get_logger(__name__) def lowercase_ ( _A : List[Any] , _A : List[Any] , _A : Optional[Any] , _A : Optional[int]=False ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise if not is_sharded: lowerCamelCase__ : Optional[Any] = os.path.abspath(_A ) logger.info(F"Loading PyTorch weights from {pt_path}" ) lowerCamelCase__ : Union[str, Any] = torch.load(_A , map_location="cpu" ) logger.info(F"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters." ) lowerCamelCase__ : str = convert_pytorch_state_dict_to_flax(_A , _A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files lowerCamelCase__ : List[str] = convert_pytorch_sharded_state_dict_to_flax(_A , _A ) return flax_state_dict def lowercase_ ( _A : Tuple[str] , _A : np.ndarray , _A : Dict[str, jnp.ndarray] , _A : str , ): """simple docstring""" def is_key_or_prefix_key_in_dict(_A : Tuple[str] ) -> bool: return len(set(_A ) & {key, (model_prefix,) + key} ) > 0 # layer norm lowerCamelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ("scale",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean lowerCamelCase__ : Optional[Any] = pt_tuple_key[:-1] + ("mean",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var lowerCamelCase__ : int = pt_tuple_key[:-1] + ("var",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # embedding lowerCamelCase__ : str = pt_tuple_key[:-1] + ("embedding",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # conv layer lowerCamelCase__ : Tuple = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_A ): lowerCamelCase__ : Optional[int] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_A ): lowerCamelCase__ : int = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowerCamelCase__ : Optional[int] = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowerCamelCase__ : Dict = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 lowerCamelCase__ : Optional[int] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): lowerCamelCase__ : Optional[Any] = pt_tuple_key[-2] + "_g" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): lowerCamelCase__ : Optional[int] = pt_tuple_key[-2] + "_v" if name is not None: lowerCamelCase__ : Optional[Any] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowercase_ ( _A : Tuple , _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : List[str] = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase__ : List[Any] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: lowerCamelCase__ : List[Any] = flax_model.params["params"] else: lowerCamelCase__ : List[str] = flax_model.params lowerCamelCase__ : int = flatten_dict(_A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase__ : Optional[int] = flatten_dict(flax_model.params["batch_stats"] ) random_flax_state_dict.update(_A ) lowerCamelCase__ : Any = {} lowerCamelCase__ : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase__ : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ : Any = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase__ : Tuple = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : List[str] = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ : List[Any] = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary lowerCamelCase__ : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: lowerCamelCase__ : str = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown lowerCamelCase__ : Optional[int] = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown lowerCamelCase__ : Tuple = jnp.asarray(_A ) return unflatten_dict(_A ) def lowercase_ ( _A : List[Any] , _A : Dict ): """simple docstring""" import torch # Load the index lowerCamelCase__ : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils lowerCamelCase__ : int = torch.load(_A ) lowerCamelCase__ : Tuple = {k: v.numpy() for k, v in pt_state_dict.items()} lowerCamelCase__ : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: lowerCamelCase__ : int = flax_model.params["params"] lowerCamelCase__ : int = flatten_dict(_A ) random_flax_state_dict.update(flatten_dict(flax_model.params["batch_stats"] ) ) else: lowerCamelCase__ : Union[str, Any] = flax_model.params lowerCamelCase__ : int = flatten_dict(_A ) lowerCamelCase__ : Optional[Any] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split("." )[0] for k in pt_state_dict.keys()} ) lowerCamelCase__ : Union[str, Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split("." )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowerCamelCase__ : Optional[Any] = tuple(pt_key.split("." ) ) # remove base model prefix if necessary lowerCamelCase__ : Dict = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : str = pt_tuple_key[1:] # Correctly rename weight parameters lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary lowerCamelCase__ : Optional[Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : Optional[int] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape " F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: lowerCamelCase__ : Dict = jnp.asarray(_A ) continue if "var" in flax_key[-1]: lowerCamelCase__ : int = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown lowerCamelCase__ : Tuple = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown lowerCamelCase__ : List[str] = jnp.asarray(_A ) return unflatten_dict(_A ) def lowercase_ ( _A : Union[str, Any] , _A : str ): """simple docstring""" lowerCamelCase__ : List[str] = os.path.abspath(_A ) logger.info(F"Loading Flax weights from {flax_checkpoint_path}" ) # import correct flax class lowerCamelCase__ : Tuple = getattr(_A , "Flax" + model.__class__.__name__ ) # load flax weight dict with open(_A , "rb" ) as state_f: try: lowerCamelCase__ : List[Any] = from_bytes(_A , state_f.read() ) except UnpicklingError: raise EnvironmentError(F"Unable to convert {flax_checkpoint_path} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(_A , _A ) def lowercase_ ( _A : Optional[int] , _A : Union[str, Any] ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights lowerCamelCase__ : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda _A : x.dtype == jnp.bfloataa , _A ) ).values() if any(_A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) lowerCamelCase__ : Any = jax.tree_util.tree_map( lambda _A : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _A ) lowerCamelCase__ : int = flatten_dict(_A ) lowerCamelCase__ : Tuple = pt_model.state_dict() lowerCamelCase__ : Dict = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split("." )[0] for k in pt_model_dict.keys()} ) lowerCamelCase__ : str = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split("." )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): lowerCamelCase__ : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix lowerCamelCase__ : List[Any] = ".".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: lowerCamelCase__ : Dict = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: lowerCamelCase__ : List[str] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_A ) not in pt_model_dict: # conv layer lowerCamelCase__ : Dict = flax_key_tuple[:-1] + ("weight",) lowerCamelCase__ : str = jnp.transpose(_A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ) not in pt_model_dict: # linear layer lowerCamelCase__ : Any = flax_key_tuple[:-1] + ("weight",) lowerCamelCase__ : Optional[Any] = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: lowerCamelCase__ : Optional[Any] = flax_key_tuple[:-1] + ("weight",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: lowerCamelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("running_mean",) elif "var" in flax_key_tuple[-1]: lowerCamelCase__ : Union[str, Any] = flax_key_tuple[:-1] + ("running_var",) if "batch_stats" in flax_state: lowerCamelCase__ : Optional[Any] = ".".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: lowerCamelCase__ : int = ".".join(_A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. lowerCamelCase__ : List[Any] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: lowerCamelCase__ : Optional[Any] = key.split("." ) lowerCamelCase__ : Optional[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: lowerCamelCase__ : str = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: lowerCamelCase__ : int = key_components[-2] + "_v" if name is not None: lowerCamelCase__ : Tuple = key_components[:-3] + [name] lowerCamelCase__ : str = ".".join(_A ) lowerCamelCase__ : Dict = key if flax_key in special_pt_names: lowerCamelCase__ : str = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " F"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict lowerCamelCase__ : Dict = np.asarray(_A ) if not isinstance(_A , np.ndarray ) else flax_tensor lowerCamelCase__ : Tuple = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list lowerCamelCase__ : Optional[int] = list(_A ) if len(_A ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" F" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) else: logger.warning(F"All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n" ) if len(_A ) > 0: logger.warning( F"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" F" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( F"All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " F"you can already use {pt_model.__class__.__name__} for predictions without further training." ) return pt_model
5
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
1
def lowercase_ ( ): """simple docstring""" for n in range(1 , 1000000 ): yield n * (n + 1) // 2 def lowercase_ ( _A : Dict ): """simple docstring""" lowerCamelCase__ : Any = 1 lowerCamelCase__ : str = 2 while i * i <= n: lowerCamelCase__ : Dict = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowercase_ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(_A ) > 500 ) if __name__ == "__main__": print(solution())
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
def lowercase_ ( _A : List[Any] , _A : int , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : int ): """simple docstring""" if index == r: for j in range(_A ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCamelCase__ : Optional[Any] = arr[i] combination_util(_A , _A , _A , index + 1 , _A , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_A , _A , _A , _A , _A , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowercase_ ( _A : List[Any] , _A : str , _A : int ): """simple docstring""" lowerCamelCase__ : Dict = [0] * r # Print all combination using temporary array 'data[]' combination_util(_A , _A , _A , 0 , _A , 0 ) if __name__ == "__main__": # Driver code to check the function above A : str = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
1
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = ["input_values", "padding_mask"] def __init__( self : Any , __lowerCamelCase : int = 1 , __lowerCamelCase : int = 24000 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : float = None , __lowerCamelCase : float = None , **__lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Tuple = chunk_length_s lowerCamelCase__ : List[str] = overlap @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : str , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[bool, str, PaddingStrategy]] = None , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[int] = None , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs lowerCamelCase__ : int = True lowerCamelCase__ : str = bool( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : List[str] = [np.asarray(__lowerCamelCase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): lowerCamelCase__ : Dict = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): lowerCamelCase__ : Any = raw_audio.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : Any = [np.asarray(__lowerCamelCase ).T] # verify inputs are valid for idx, example in enumerate(__lowerCamelCase ): if example.ndim > 2: raise ValueError(f"Expected input shape (channels, length) but got shape {example.shape}" ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f"Expected mono audio but example has {example.shape[-1]} channels" ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f"Expected stereo audio but example has {example.shape[-1]} channels" ) lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Union[str, Any] = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: lowerCamelCase__ : Optional[int] = min(array.shape[0] for array in raw_audio ) lowerCamelCase__ : Any = int(np.floor(max_length / self.chunk_stride ) ) lowerCamelCase__ : Any = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: lowerCamelCase__ : Optional[int] = max(array.shape[0] for array in raw_audio ) lowerCamelCase__ : Any = int(np.ceil(max_length / self.chunk_stride ) ) lowerCamelCase__ : Tuple = (nb_step - 1) * self.chunk_stride + self.chunk_length lowerCamelCase__ : Optional[Any] = "max_length" else: lowerCamelCase__ : Any = input_values # normal padding on batch if padded_inputs is None: lowerCamelCase__ : List[str] = self.pad( __lowerCamelCase , max_length=__lowerCamelCase , truncation=__lowerCamelCase , padding=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if padding: lowerCamelCase__ : Dict = padded_inputs.pop("attention_mask" ) lowerCamelCase__ : Any = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: lowerCamelCase__ : str = example[..., None] input_values.append(example.T ) lowerCamelCase__ : str = input_values if return_tensors is not None: lowerCamelCase__ : Dict = padded_inputs.convert_to_tensors(__lowerCamelCase ) return padded_inputs
5
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
1
from ....configuration_utils import PretrainedConfig from ....utils import logging A : Tuple = logging.get_logger(__name__) # TODO: upload to AWS A : List[Any] = { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "retribert" def __init__( self : List[str] , __lowerCamelCase : Tuple=30522 , __lowerCamelCase : List[Any]=768 , __lowerCamelCase : Dict=8 , __lowerCamelCase : Dict=12 , __lowerCamelCase : str=3072 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Dict=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=0.0_2 , __lowerCamelCase : Tuple=1E-1_2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple=128 , __lowerCamelCase : Optional[int]=0 , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : Dict = share_encoders lowerCamelCase__ : int = projection_dim
5
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = KandinskyVaaImgaImgPipeline A__ = ["image_embeds", "negative_image_embeds", "image"] A__ = [ "image_embeds", "negative_image_embeds", "image", ] A__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ = False @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.dummy_unet lowerCamelCase__ : Optional[Any] = self.dummy_movq lowerCamelCase__ : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase ) lowerCamelCase__ : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = "cpu" lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCamelCase__ : List[str] = output.images lowerCamelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase__ : Any = "A red cartoon frog, 4k" lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase__ : Optional[Any] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
5
1
from manim import * class _lowercase ( lowercase__): """simple docstring""" def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[str] = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase__ : List[str] = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : Dict = [mem.copy() for i in range(6 )] lowerCamelCase__ : Union[str, Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : Optional[Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : Optional[Any] = VGroup(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : Optional[Any] = Text("CPU" , font_size=24 ) lowerCamelCase__ : int = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(4 )] lowerCamelCase__ : List[Any] = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : Optional[Any] = Text("GPU" , font_size=24 ) lowerCamelCase__ : int = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = [mem.copy() for i in range(6 )] lowerCamelCase__ : int = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : Any = Text("Model" , font_size=24 ) lowerCamelCase__ : List[str] = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , buff=0.5 , aligned_edge=__lowerCamelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [] for i, rect in enumerate(__lowerCamelCase ): rect.set_stroke(__lowerCamelCase ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) lowerCamelCase__ : Union[str, Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(__lowerCamelCase , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=__lowerCamelCase ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__lowerCamelCase , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__lowerCamelCase , buff=0.0 ) self.add(__lowerCamelCase ) cpu_targs.append(__lowerCamelCase ) lowerCamelCase__ : Dict = [mem.copy() for i in range(6 )] lowerCamelCase__ : str = VGroup(*__lowerCamelCase ).arrange(__lowerCamelCase , buff=0 ) lowerCamelCase__ : List[Any] = Text("Loaded Checkpoint" , font_size=24 ) lowerCamelCase__ : Any = Group(__lowerCamelCase , __lowerCamelCase ).arrange(__lowerCamelCase , aligned_edge=__lowerCamelCase , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) lowerCamelCase__ : str = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase__ : Union[str, Any] = MarkupText( f"<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any = MarkupText( f"<span fgcolor='{BLUE}'>●</span> Checkpoint" , font_size=18 , ) blue_text.next_to(__lowerCamelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) lowerCamelCase__ : Optional[int] = MarkupText( f"Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>." , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCamelCase ) , Write(__lowerCamelCase ) ) self.play(Write(__lowerCamelCase , run_time=1 ) , Create(__lowerCamelCase , run_time=1 ) ) lowerCamelCase__ : str = [] lowerCamelCase__ : Tuple = [] for i, rect in enumerate(__lowerCamelCase ): lowerCamelCase__ : int = fill.copy().set_fill(__lowerCamelCase , opacity=0.7 ) target.move_to(__lowerCamelCase ) first_animations.append(GrowFromCenter(__lowerCamelCase , run_time=1 ) ) lowerCamelCase__ : Optional[int] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__lowerCamelCase , run_time=1.5 ) ) self.play(*__lowerCamelCase ) self.play(*__lowerCamelCase ) self.wait()
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
def lowercase_ ( _A : str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
5
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
1
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
import os def lowercase_ ( ): """simple docstring""" with open(os.path.dirname(_A ) + "/p022_names.txt" ) as file: lowerCamelCase__ : List[Any] = str(file.readlines()[0] ) lowerCamelCase__ : List[Any] = names.replace("\"" , "" ).split("," ) names.sort() lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Dict = 0 for i, name in enumerate(_A ): for letter in name: name_score += ord(_A ) - 64 total_score += (i + 1) * name_score lowerCamelCase__ : Optional[int] = 0 return total_score if __name__ == "__main__": print(solution())
5
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
1
from abc import ABC, abstractmethod from typing import List, Optional class _lowercase ( lowercase__): """simple docstring""" def __init__( self : Optional[int] ): '''simple docstring''' self.test() def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : List[Any] = False while not completed: if counter == 1: self.reset() lowerCamelCase__ : List[str] = self.advance() if not self.does_advance(__lowerCamelCase ): raise Exception( "Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true." ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = self.update(__lowerCamelCase ) counter += 1 if counter > 10000: raise Exception("update() does not fulfill the constraint." ) if self.remaining() != 0: raise Exception("Custom Constraint is not defined correctly." ) @abstractmethod def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any=False ): '''simple docstring''' raise NotImplementedError( f"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class _lowercase ( lowercase__): """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : List[int] ): '''simple docstring''' super(__lowerCamelCase , self ).__init__() if not isinstance(__lowerCamelCase , __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError(f"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(__lowerCamelCase , __lowerCamelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) lowerCamelCase__ : Optional[Any] = token_ids lowerCamelCase__ : int = len(self.token_ids ) lowerCamelCase__ : Tuple = -1 # the index of the currently fulfilled step lowerCamelCase__ : Any = False def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : int ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCamelCase )}" ) lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = False if self.does_advance(__lowerCamelCase ): self.fulfilled_idx += 1 lowerCamelCase__ : Dict = True if self.fulfilled_idx == (self.seqlen - 1): lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Any = completed else: # failed to make progress. lowerCamelCase__ : Dict = True self.reset() return stepped, completed, reset def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Optional[int] = False lowerCamelCase__ : int = 0 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return self.seqlen - (self.fulfilled_idx + 1) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any]=False ): '''simple docstring''' lowerCamelCase__ : Dict = PhrasalConstraint(self.token_ids ) if stateful: lowerCamelCase__ : Any = self.seqlen lowerCamelCase__ : str = self.fulfilled_idx lowerCamelCase__ : List[Any] = self.completed return new_constraint class _lowercase : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : List[List[int]] , __lowerCamelCase : Optional[int]=True ): '''simple docstring''' lowerCamelCase__ : Tuple = max([len(__lowerCamelCase ) for one in nested_token_ids] ) lowerCamelCase__ : Optional[int] = {} for token_ids in nested_token_ids: lowerCamelCase__ : int = root for tidx, token_id in enumerate(__lowerCamelCase ): if token_id not in level: lowerCamelCase__ : List[str] = {} lowerCamelCase__ : Any = level[token_id] if no_subsets and self.has_subsets(__lowerCamelCase , __lowerCamelCase ): raise ValueError( "Each list in `nested_token_ids` can't be a complete subset of another list, but is" f" {nested_token_ids}." ) lowerCamelCase__ : str = root def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Dict = self.trie for current_token in current_seq: lowerCamelCase__ : List[str] = start[current_token] lowerCamelCase__ : List[Any] = list(start.keys() ) return next_tokens def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.next_tokens(__lowerCamelCase ) return len(__lowerCamelCase ) == 0 def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Any = list(root.values() ) if len(__lowerCamelCase ) == 0: return 1 else: return sum([self.count_leaves(__lowerCamelCase ) for nn in next_nodes] ) def lowerCAmelCase ( self : int , __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Any = self.count_leaves(__lowerCamelCase ) return len(__lowerCamelCase ) != leaf_count class _lowercase ( lowercase__): """simple docstring""" def __init__( self : str , __lowerCamelCase : List[List[int]] ): '''simple docstring''' super(__lowerCamelCase , self ).__init__() if not isinstance(__lowerCamelCase , __lowerCamelCase ) or len(__lowerCamelCase ) == 0: raise ValueError(f"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(__lowerCamelCase , __lowerCamelCase ) for token_ids in nested_token_ids ): raise ValueError(f"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(__lowerCamelCase , __lowerCamelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) lowerCamelCase__ : int = DisjunctiveTrie(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = nested_token_ids lowerCamelCase__ : Tuple = self.trie.max_height lowerCamelCase__ : str = [] lowerCamelCase__ : Optional[int] = False def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.trie.next_tokens(self.current_seq ) if len(__lowerCamelCase ) == 0: return None else: return token_list def lowerCAmelCase ( self : Dict , __lowerCamelCase : int ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}" ) lowerCamelCase__ : Union[str, Any] = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCamelCase )}" ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Optional[Any] = False if self.does_advance(__lowerCamelCase ): self.current_seq.append(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = True else: lowerCamelCase__ : Tuple = True self.reset() lowerCamelCase__ : int = self.trie.reached_leaf(self.current_seq ) lowerCamelCase__ : Tuple = completed return stepped, completed, reset def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = False lowerCamelCase__ : List[str] = [] def lowerCAmelCase ( self : int ): '''simple docstring''' if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCamelCase__ : List[str] = self.seqlen lowerCamelCase__ : List[str] = self.current_seq lowerCamelCase__ : Optional[Any] = self.completed return new_constraint class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[Constraint] ): '''simple docstring''' lowerCamelCase__ : Dict = constraints # max # of steps required to fulfill a given constraint lowerCamelCase__ : List[Any] = max([c.seqlen for c in constraints] ) lowerCamelCase__ : List[str] = len(__lowerCamelCase ) lowerCamelCase__ : List[str] = False self.init_state() def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = [] lowerCamelCase__ : List[str] = None lowerCamelCase__ : Tuple = [constraint.copy(stateful=__lowerCamelCase ) for constraint in self.constraints] def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : str = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCamelCase__ : List[Any] = constraint.advance() if isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.append(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.extend(__lowerCamelCase ) else: lowerCamelCase__ : List[Any] = self.inprogress_constraint.advance() if isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.append(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): token_list.extend(__lowerCamelCase ) if len(__lowerCamelCase ) == 0: return None else: return token_list def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[List[int]] ): '''simple docstring''' self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCamelCase__ , lowerCamelCase__ : str = self.add(__lowerCamelCase ) # the entire list of constraints are fulfilled if self.completed: break def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError(f"`token_id` should be an `int`, but is `{token_id}`." ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = False, False if self.completed: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.inprogress_constraint.update(__lowerCamelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCamelCase ) ) lowerCamelCase__ : Optional[int] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCamelCase__ : Any = None if len(self.pending_constraints ) == 0: # we're done! lowerCamelCase__ : Any = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = pending_constraint.update(__lowerCamelCase ) if not stepped: raise Exception( "`constraint.update(token_id)` is not yielding incremental progress, " "even though `constraint.does_advance(token_id)` is true." ) if complete: self.complete_constraints.append(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = None if not complete and stepped: lowerCamelCase__ : Dict = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCamelCase__ : List[Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCamelCase__ : Union[str, Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[Any]=True ): '''simple docstring''' lowerCamelCase__ : List[Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCamelCase__ : Any = [ constraint.copy(stateful=__lowerCamelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCamelCase__ : List[Any] = self.inprogress_constraint.copy(stateful=__lowerCamelCase ) lowerCamelCase__ : Any = [constraint.copy() for constraint in self.pending_constraints] return new_state
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class _lowercase ( unittest.TestCase , lowercase__): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = load_tool("text-to-speech" ) self.tool.setup() def lowerCAmelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Any = self.tool("hey" ) lowerCamelCase__ : List[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = self.tool("hey" ) lowerCamelCase__ : Optional[Any] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = VideoToVideoSDPipeline A__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"}) - {"image", "width", "height"} A__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"}) - {"image"} A__ = PipelineTesterMixin.required_optional_params - {"latents"} A__ = False # No `output_type`. A__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ]) def lowerCAmelCase ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : str = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCamelCase__ : Optional[Any] = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) lowerCamelCase__ : Optional[int] = CLIPTextModel(__lowerCamelCase ) lowerCamelCase__ : int = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCamelCase__ : Optional[Any] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def lowerCAmelCase ( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple=0 ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : str = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : List[str] = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Any = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__ : Any = self.get_dummy_components() lowerCamelCase__ : List[Any] = VideoToVideoSDPipeline(**__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : int = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ : int = "np" lowerCamelCase__ : Tuple = sd_pipe(**__lowerCamelCase ).frames lowerCamelCase__ : Union[str, Any] = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCamelCase__ : int = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__lowerCamelCase , expected_max_diff=5E-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Any = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCamelCase__ : Optional[int] = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ : Optional[int] = torch.randn((1, 10, 3, 1024, 576) , generator=__lowerCamelCase ) lowerCamelCase__ : Dict = video.to("cuda" ) lowerCamelCase__ : Union[str, Any] = "Spiderman is surfing" lowerCamelCase__ : Optional[Any] = pipe(__lowerCamelCase , video=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=3 , output_type="pt" ).frames lowerCamelCase__ : Dict = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging A : str = logging.get_logger(__name__) A : Optional[Any] = { "kakaobrain/align-base": "https://huggingface.co/kakaobrain/align-base/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "align_text_model" def __init__( self : Tuple , __lowerCamelCase : Optional[Any]=30522 , __lowerCamelCase : str=768 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : int="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Union[str, Any]=1E-1_2 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Union[str, Any]="absolute" , __lowerCamelCase : Optional[Any]=True , **__lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Any = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : Optional[Any] = pad_token_id @classmethod def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Tuple = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCamelCase__ : Union[str, Any] = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _lowercase ( lowercase__): """simple docstring""" A__ = "align_vision_model" def __init__( self : Any , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 600 , __lowerCamelCase : float = 2.0 , __lowerCamelCase : float = 3.1 , __lowerCamelCase : int = 8 , __lowerCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , __lowerCamelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , __lowerCamelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , __lowerCamelCase : List[int] = [] , __lowerCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , __lowerCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , __lowerCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , __lowerCamelCase : float = 0.2_5 , __lowerCamelCase : str = "swish" , __lowerCamelCase : int = 2560 , __lowerCamelCase : str = "mean" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 0.0_0_1 , __lowerCamelCase : float = 0.9_9 , __lowerCamelCase : float = 0.2 , **__lowerCamelCase : List[str] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : Optional[int] = image_size lowerCamelCase__ : Tuple = width_coefficient lowerCamelCase__ : Dict = depth_coefficient lowerCamelCase__ : List[str] = depth_divisor lowerCamelCase__ : Tuple = kernel_sizes lowerCamelCase__ : Dict = in_channels lowerCamelCase__ : Any = out_channels lowerCamelCase__ : Dict = depthwise_padding lowerCamelCase__ : str = strides lowerCamelCase__ : List[Any] = num_block_repeats lowerCamelCase__ : Any = expand_ratios lowerCamelCase__ : Optional[Any] = squeeze_expansion_ratio lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Tuple = hidden_dim lowerCamelCase__ : str = pooling_type lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[Any] = batch_norm_eps lowerCamelCase__ : Optional[Any] = batch_norm_momentum lowerCamelCase__ : Optional[Any] = drop_connect_rate lowerCamelCase__ : Optional[Any] = sum(__lowerCamelCase ) * 4 @classmethod def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : Union[str, os.PathLike] , **__lowerCamelCase : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = cls.get_config_dict(__lowerCamelCase , **__lowerCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("model_type" ) == "align": lowerCamelCase__ : Optional[int] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__lowerCamelCase , **__lowerCamelCase ) class _lowercase ( lowercase__): """simple docstring""" A__ = "align" A__ = True def __init__( self : List[Any] , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Union[str, Any]=640 , __lowerCamelCase : int=1.0 , __lowerCamelCase : List[str]=0.0_2 , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if text_config is None: lowerCamelCase__ : Union[str, Any] = {} logger.info("text_config is None. Initializing the AlignTextConfig with default values." ) if vision_config is None: lowerCamelCase__ : Tuple = {} logger.info("vision_config is None. Initializing the AlignVisionConfig with default values." ) lowerCamelCase__ : Optional[int] = AlignTextConfig(**__lowerCamelCase ) lowerCamelCase__ : int = AlignVisionConfig(**__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = projection_dim lowerCamelCase__ : int = temperature_init_value lowerCamelCase__ : Optional[Any] = initializer_range @classmethod def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : AlignTextConfig , __lowerCamelCase : AlignVisionConfig , **__lowerCamelCase : Optional[Any] ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Any = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Union[str, Any] = self.text_config.to_dict() lowerCamelCase__ : Tuple = self.vision_config.to_dict() lowerCamelCase__ : Union[str, Any] = self.__class__.model_type return output
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
from itertools import product def lowercase_ ( _A : int , _A : int ): """simple docstring""" lowerCamelCase__ : List[str] = sides_number lowerCamelCase__ : Union[str, Any] = max_face_number * dice_number lowerCamelCase__ : str = [0] * (max_total + 1) lowerCamelCase__ : Any = 1 lowerCamelCase__ : List[Any] = range(_A , max_face_number + 1 ) for dice_numbers in product(_A , repeat=_A ): lowerCamelCase__ : Union[str, Any] = sum(_A ) totals_frequencies[total] += 1 return totals_frequencies def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) lowerCamelCase__ : str = total_frequency_distribution( sides_number=6 , dice_number=6 ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = 9 lowerCamelCase__ : Tuple = 4 * 9 lowerCamelCase__ : Tuple = 6 for peter_total in range(_A , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) lowerCamelCase__ : Any = (4**9) * (6**6) lowerCamelCase__ : Tuple = peter_wins_count / total_games_number lowerCamelCase__ : Optional[Any] = round(_A , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'{solution() = }')
5
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[str] = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : int , __lowerCamelCase : Any ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"] ): lowerCamelCase__ : List[Any] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = "sshleifer/tiny-gpt2" lowerCamelCase__ : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : List[Any] = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : int = "sgugger/tiny-distilbert-classification" lowerCamelCase__ : List[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) lowerCamelCase__ : Optional[Any] = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[str] = "sshleifer/tiny-gpt2" lowerCamelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : str = "sshleifer/tiny-gpt2" lowerCamelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Optional[int] = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = "sshleifer/tiny-gpt2" lowerCamelCase__ : Any = AutoConfig.from_pretrained(__lowerCamelCase ) # set architectures equal to `None` lowerCamelCase__ : Any = None lowerCamelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Optional[int] = PyTorchBenchmark(__lowerCamelCase , configs=[config] ) lowerCamelCase__ : Any = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : str = "sshleifer/tiny-gpt2" lowerCamelCase__ : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Optional[Any] = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision" ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = "sshleifer/tiny-gpt2" lowerCamelCase__ : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Any = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = "sshleifer/tiny-gpt2" lowerCamelCase__ : List[Any] = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : List[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config] ) lowerCamelCase__ : str = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = "sshleifer/tinier_bart" lowerCamelCase__ : Dict = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase , configs=[config] ) lowerCamelCase__ : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = "sshleifer/tiny-gpt2" lowerCamelCase__ : Optional[int] = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Dict = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Any = PyTorchBenchmark(__lowerCamelCase , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "sshleifer/tinier_bart" lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config] ) lowerCamelCase__ : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : List[str] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv" ) , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv" ) , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv" ) , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv" ) , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv" ) , multi_process=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv" ) ).exists() ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv" ) ).exists() ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase : str ): self.assertTrue(hasattr(__lowerCamelCase , "sequential" ) ) self.assertTrue(hasattr(__lowerCamelCase , "cumulative" ) ) self.assertTrue(hasattr(__lowerCamelCase , "current" ) ) self.assertTrue(hasattr(__lowerCamelCase , "total" ) ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCamelCase__ : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt" ) , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) lowerCamelCase__ : str = PyTorchBenchmark(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt" ) ).exists() )
5
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
1
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
1
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging A : List[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = ["audio_values", "audio_mask"] def __init__( self : List[str] , __lowerCamelCase : Tuple=2048 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : Optional[int]=[16, 16] , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : List[Any]=44100 , __lowerCamelCase : Any=86 , __lowerCamelCase : Dict=2048 , __lowerCamelCase : List[Any]=0.0 , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( feature_size=__lowerCamelCase , sampling_rate=__lowerCamelCase , padding_value=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : Dict = spectrogram_length lowerCamelCase__ : List[str] = num_channels lowerCamelCase__ : str = patch_size lowerCamelCase__ : Dict = feature_size // self.patch_size[1] lowerCamelCase__ : List[Any] = n_fft lowerCamelCase__ : str = sampling_rate // hop_length_to_sampling_rate lowerCamelCase__ : Optional[int] = sampling_rate lowerCamelCase__ : Tuple = padding_value lowerCamelCase__ : Dict = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__lowerCamelCase , min_frequency=0.0 , max_frequency=2_2_0_5_0.0 , sampling_rate=__lowerCamelCase , norm="slaney" , mel_scale="slaney" , ).T def lowerCAmelCase ( self : str , __lowerCamelCase : np.array ): '''simple docstring''' lowerCamelCase__ : Optional[int] = spectrogram( __lowerCamelCase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="dB" , db_range=8_0.0 , ) lowerCamelCase__ : str = log_spec[:, :-1] lowerCamelCase__ : str = log_spec - 2_0.0 lowerCamelCase__ : int = np.clip(log_spec / 4_0.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self : Optional[int] , __lowerCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[bool] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : bool = False , **__lowerCamelCase : Tuple , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( "This feature extractor is set to support sampling rate" f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled" f" with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowerCamelCase__ : str = isinstance(__lowerCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) lowerCamelCase__ : Any = is_batched_numpy or ( isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase__ : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(__lowerCamelCase , np.ndarray ): lowerCamelCase__ : Optional[Any] = np.asarray(__lowerCamelCase , dtype=np.floataa ) elif isinstance(__lowerCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase__ : List[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase__ : int = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase__ : str = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __lowerCamelCase ): lowerCamelCase__ : int = [np.asarray(__lowerCamelCase , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase__ : Any = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase__ : Optional[Any] = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase__ : Tuple = np.array(__lowerCamelCase ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase__ : Tuple = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase__ : List[str] = np.ones([len(__lowerCamelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase__ : Optional[Any] = padded_audio_features * self.padding_value for i in range(len(__lowerCamelCase ) ): lowerCamelCase__ : Tuple = audio_features[i] lowerCamelCase__ : Tuple = feature # return as BatchFeature if return_attention_mask: lowerCamelCase__ : Any = {"audio_values": padded_audio_features, "audio_mask": audio_mask} else: lowerCamelCase__ : List[str] = {"audio_values": padded_audio_features} lowerCamelCase__ : Any = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase ) return encoded_inputs
5
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) A : Tuple = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _A : Optional[int] , _A : int , _A : Optional[int]=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, F"{torch_layer} layer.weight does not match" lowerCamelCase__ : List[Any] = nn.Parameter(_A ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"{torch_layer} layer.bias does not match" lowerCamelCase__ : Any = nn.Parameter(_A ) def lowercase_ ( _A : List[Any] , _A : Union[str, Any] , _A : str ): """simple docstring""" lowerCamelCase__ : List[Any] = np.asarray(weights[0] ) lowerCamelCase__ : Dict = np.asarray(weights[1] ) lowerCamelCase__ : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _A : Dict , _A : Tuple , _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Tuple = np.asarray(weights[0] ) lowerCamelCase__ : List[Any] = np.asarray(weights[1] ) lowerCamelCase__ : str = np.asarray(weights[2] ) lowerCamelCase__ : Optional[int] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.key , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.self_attention.value , torch.tensor(_A ).transpose(1 , 2 ).contiguous().view(-1 , _A ) , ) set_param( torch_layer.output.dense , torch.tensor(_A ).view(-1 , _A ).contiguous().transpose(0 , 1 ) , ) def lowercase_ ( _A : Tuple , _A : str , _A : Dict ): """simple docstring""" lowerCamelCase__ : List[Any] = weights[0][0][0] lowerCamelCase__ : str = np.asarray(layer_norm_a[0] ) lowerCamelCase__ : Any = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # lsh weights + output lowerCamelCase__ : Union[str, Any] = weights[0][1] if len(_A ) < 4: set_layer_weights_in_torch_lsh(_A , torch_block.attention , _A ) else: set_layer_weights_in_torch_local(_A , torch_block.attention , _A ) # intermediate weighs lowerCamelCase__ : Dict = weights[2][0][1][2] # Chunked Feed Forward if len(_A ) == 4: lowerCamelCase__ : Optional[int] = intermediate_weights[2] # layernorm 2 lowerCamelCase__ : List[str] = np.asarray(intermediate_weights[0][0] ) lowerCamelCase__ : Union[str, Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # intermediate dense lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[1][0] ) lowerCamelCase__ : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) # intermediate out lowerCamelCase__ : str = np.asarray(intermediate_weights[4][0] ) lowerCamelCase__ : Tuple = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def lowercase_ ( _A : List[Any] , _A : List[str] , _A : List[str] ): """simple docstring""" lowerCamelCase__ : Optional[int] = torch_model.reformer # word embeds lowerCamelCase__ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(_A ) , ) if isinstance(weights[3] , _A ): lowerCamelCase__ : Union[str, Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCamelCase__ : Optional[int] = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"{position_embeddings[emb_idx]} emb does not match" lowerCamelCase__ : str = nn.Parameter(torch.tensor(_A ) ) lowerCamelCase__ : Optional[int] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( _A ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCamelCase__ : Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(_A , _A , _A ) # output layer norm lowerCamelCase__ : Dict = np.asarray(weights[7][0] ) lowerCamelCase__ : Any = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(_A ) , torch.tensor(_A ) , ) # output embeddings lowerCamelCase__ : List[Any] = np.asarray(weights[9][0] ) lowerCamelCase__ : Union[str, Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(_A ).transpose(0 , 1 ).contiguous() , torch.tensor(_A ) , ) def lowercase_ ( _A : Any , _A : Union[str, Any] , _A : Optional[int] ): """simple docstring""" lowerCamelCase__ : Any = ReformerConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) lowerCamelCase__ : List[Any] = ReformerModelWithLMHead(_A ) with open(_A , "rb" ) as f: lowerCamelCase__ : Tuple = pickle.load(_A )["weights"] set_model_weights_in_torch(_A , _A , config.hidden_size ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
5
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
1
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : int = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "efficientformer" def __init__( self : str , __lowerCamelCase : List[int] = [3, 2, 6, 4] , __lowerCamelCase : List[int] = [48, 96, 224, 448] , __lowerCamelCase : List[bool] = [True, True, True, True] , __lowerCamelCase : int = 448 , __lowerCamelCase : int = 32 , __lowerCamelCase : int = 4 , __lowerCamelCase : int = 7 , __lowerCamelCase : int = 5 , __lowerCamelCase : int = 8 , __lowerCamelCase : int = 4 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 16 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 3 , __lowerCamelCase : int = 2 , __lowerCamelCase : int = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 1 , __lowerCamelCase : bool = True , __lowerCamelCase : bool = True , __lowerCamelCase : float = 1E-5 , __lowerCamelCase : str = "gelu" , __lowerCamelCase : float = 0.0_2 , __lowerCamelCase : float = 1E-1_2 , __lowerCamelCase : int = 224 , __lowerCamelCase : float = 1E-0_5 , **__lowerCamelCase : int , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : List[Any] = hidden_dropout_prob lowerCamelCase__ : str = hidden_sizes lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : Optional[int] = layer_norm_eps lowerCamelCase__ : Union[str, Any] = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : str = depths lowerCamelCase__ : Tuple = mlp_expansion_ratio lowerCamelCase__ : Dict = downsamples lowerCamelCase__ : Union[str, Any] = dim lowerCamelCase__ : List[Any] = key_dim lowerCamelCase__ : Optional[Any] = attention_ratio lowerCamelCase__ : int = resolution lowerCamelCase__ : int = pool_size lowerCamelCase__ : Optional[int] = downsample_patch_size lowerCamelCase__ : List[Any] = downsample_stride lowerCamelCase__ : Union[str, Any] = downsample_pad lowerCamelCase__ : List[str] = drop_path_rate lowerCamelCase__ : str = num_metaad_blocks lowerCamelCase__ : str = distillation lowerCamelCase__ : Dict = use_layer_scale lowerCamelCase__ : Optional[Any] = layer_scale_init_value lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : int = batch_norm_eps
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from __future__ import annotations def lowercase_ ( _A : str ): """simple docstring""" return [ord(_A ) - 96 for elem in plain] def lowercase_ ( _A : list[int] ): """simple docstring""" return "".join(chr(elem + 96 ) for elem in encoded ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = encode(input("-> " ).strip().lower() ) print("Encoded: " , _A ) print("Decoded:" , decode(_A ) ) if __name__ == "__main__": main()
5
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
1
def lowercase_ ( _A : int ): """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") A : int = int(input("Enter number: ").strip()) print(f'{number} is {"" if perfect(number) else "not "}a Perfect Number.')
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowercase_ ( _A : Optional[Any] ): """simple docstring""" if isinstance(_A , collections.abc.Iterable ): return x return (x, x) @require_tf class _lowercase : """simple docstring""" def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : str ): '''simple docstring''' pass def lowerCAmelCase ( self : int ): '''simple docstring''' pass def lowerCAmelCase ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=None , **__lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderConfig.from_vision_text_configs(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : List[Any]=None , **__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = {"vision_model": vision_model, "text_model": text_model} lowerCamelCase__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**__lowerCamelCase ) lowerCamelCase__ : Any = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) self.assertEqual(output["text_embeds"].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["image_embeds"].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[str]=None , **__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[int] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCamelCase__ : Tuple = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowerCamelCase__ : List[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : List[str] = model(input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase ) lowerCamelCase__ : List[str] = after_output[0].numpy() lowerCamelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int]=None , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : int = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCamelCase__ : List[str] = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowerCamelCase__ : Dict = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Optional[int] = to_atuple(vision_model.config.image_size ) lowerCamelCase__ : Dict = to_atuple(vision_model.config.patch_size ) lowerCamelCase__ : Optional[int] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase__ : Optional[Any] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase__ : List[Any] = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : str , __lowerCamelCase : np.ndarray , __lowerCamelCase : np.ndarray , __lowerCamelCase : float ): '''simple docstring''' lowerCamelCase__ : str = np.abs((a - b) ).max() self.assertLessEqual(__lowerCamelCase , __lowerCamelCase , f"Difference between torch and flax is {diff} (>= {tol})." ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = self.prepare_config_and_inputs() self.check_save_load(**__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**__lowerCamelCase ) @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Any = self.get_pretrained_model_and_inputs() lowerCamelCase__ : Tuple = model_a(**__lowerCamelCase ) lowerCamelCase__ : int = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(__lowerCamelCase ) lowerCamelCase__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Tuple = model_a(**__lowerCamelCase ) lowerCamelCase__ : Optional[int] = after_outputs[0].numpy() lowerCamelCase__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowerCamelCase , 1E-5 ) @require_tf class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "hf-internal-testing/tiny-random-vit" , "hf-internal-testing/tiny-random-bert" ) lowerCamelCase__ : Optional[int] = 13 lowerCamelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase__ : List[Any] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase__ : List[Any] = random_attention_mask([batch_size, 4] ) lowerCamelCase__ : List[Any] = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : Any ): '''simple docstring''' lowerCamelCase__ : str = TFViTModel(__lowerCamelCase , name="vision_model" ) lowerCamelCase__ : int = TFBertModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = TFViTModelTester(self ) lowerCamelCase__ : int = TFBertModelTester(self ) lowerCamelCase__ : Union[str, Any] = vit_model_tester.prepare_config_and_inputs() lowerCamelCase__ : str = bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = vision_config_and_inputs ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Tuple = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-deit-tf" , "hf-internal-testing/tiny-random-roberta" ) lowerCamelCase__ : List[Any] = 13 lowerCamelCase__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase__ : Tuple = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase__ : Optional[Any] = random_attention_mask([batch_size, 4] ) lowerCamelCase__ : Dict = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Any=None , **__lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : int = self.get_vision_text_model(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[Any] = TFVisionTextDualEncoderModel(vision_model=__lowerCamelCase , text_model=__lowerCamelCase ) lowerCamelCase__ : List[Any] = model( input_ids=__lowerCamelCase , pixel_values=__lowerCamelCase , attention_mask=__lowerCamelCase , output_attentions=__lowerCamelCase ) lowerCamelCase__ : List[str] = output.vision_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) lowerCamelCase__ : Tuple = to_atuple(vision_model.config.image_size ) lowerCamelCase__ : Tuple = to_atuple(vision_model.config.patch_size ) lowerCamelCase__ : Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) lowerCamelCase__ : List[Any] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) lowerCamelCase__ : Optional[int] = output.text_model_output.attentions self.assertEqual(len(__lowerCamelCase ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = TFDeiTModel(__lowerCamelCase , name="vision_model" ) lowerCamelCase__ : Optional[int] = TFRobertaModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Any = TFDeiTModelTester(self ) lowerCamelCase__ : List[Any] = TFRobertaModelTester(self ) lowerCamelCase__ : int = vit_model_tester.prepare_config_and_inputs() lowerCamelCase__ : Dict = bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = vision_config_and_inputs ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( "Rocketknight1/tiny-random-clip-tf" , "hf-internal-testing/tiny-random-bert" ) lowerCamelCase__ : Any = 13 lowerCamelCase__ : int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) lowerCamelCase__ : Dict = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) lowerCamelCase__ : int = random_attention_mask([batch_size, 4] ) lowerCamelCase__ : Any = {"pixel_values": pixel_values, "input_ids": input_ids, "attention_mask": attention_mask} return model, inputs def lowerCAmelCase ( self : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = TFCLIPVisionModel(__lowerCamelCase , name="vision_model" ) lowerCamelCase__ : Union[str, Any] = TFBertModel(__lowerCamelCase , name="text_model" ) return vision_model, text_model def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TFCLIPVisionModelTester(self ) lowerCamelCase__ : Optional[int] = TFBertModelTester(self ) lowerCamelCase__ : List[str] = clip_model_tester.prepare_config_and_inputs() lowerCamelCase__ : List[Any] = bert_model_tester.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = vision_config_and_inputs ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Optional[int] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Any = TFVisionTextDualEncoderModel.from_pretrained( "clip-italian/clip-italian" , logit_scale_init_value=1.0 , from_pt=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained("clip-italian/clip-italian" ) lowerCamelCase__ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase__ : int = processor( text=["una foto di un gatto", "una foto di un cane"] , images=__lowerCamelCase , padding=__lowerCamelCase , return_tensors="np" ) lowerCamelCase__ : Tuple = model(**__lowerCamelCase ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) lowerCamelCase__ : Optional[Any] = np.array([[1.2_2_8_4_7_2_7, 0.3_1_0_4_1_2_2]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , __lowerCamelCase , atol=1E-3 ) )
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : List[str] = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _lowercase ( lowercase__): """simple docstring""" A__ = "decision_transformer" A__ = ["past_key_values"] A__ = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , __lowerCamelCase : List[Any]=17 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : Tuple=4096 , __lowerCamelCase : Dict=True , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : Optional[int]=1024 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str="relu" , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[Any]=1E-5 , __lowerCamelCase : Optional[int]=0.0_2 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Dict=True , __lowerCamelCase : str=50256 , __lowerCamelCase : List[str]=50256 , __lowerCamelCase : List[str]=False , __lowerCamelCase : Union[str, Any]=False , **__lowerCamelCase : Tuple , ): '''simple docstring''' lowerCamelCase__ : List[str] = state_dim lowerCamelCase__ : Optional[Any] = act_dim lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[int] = max_ep_len lowerCamelCase__ : List[Any] = action_tanh lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Any = n_positions lowerCamelCase__ : Optional[int] = n_layer lowerCamelCase__ : int = n_head lowerCamelCase__ : Dict = n_inner lowerCamelCase__ : List[Any] = activation_function lowerCamelCase__ : List[Any] = resid_pdrop lowerCamelCase__ : Dict = embd_pdrop lowerCamelCase__ : Any = attn_pdrop lowerCamelCase__ : List[str] = layer_norm_epsilon lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : int = scale_attn_weights lowerCamelCase__ : List[Any] = use_cache lowerCamelCase__ : Optional[int] = scale_attn_by_inverse_layer_idx lowerCamelCase__ : int = reorder_and_upcast_attn lowerCamelCase__ : Any = bos_token_id lowerCamelCase__ : Tuple = eos_token_id super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
5
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _lowercase ( lowercase__): """simple docstring""" A__ = (DDPMScheduler,) def lowerCAmelCase ( self : List[Any] , **__lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : List[Any] = { "num_train_timesteps": 1000, "beta_start": 0.0_0_0_1, "beta_end": 0.0_2, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**__lowerCamelCase ) return config def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCamelCase , beta_end=__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__lowerCamelCase ) def lowerCAmelCase ( self : int ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__lowerCamelCase , prediction_type=__lowerCamelCase , sample_max_value=__lowerCamelCase , ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' for t in [0, 500, 999]: self.check_over_forward(time_step=__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Tuple = self.scheduler_classes[0] lowerCamelCase__ : Optional[int] = self.get_scheduler_config() lowerCamelCase__ : int = scheduler_class(**__lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1E-5 def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : str = len(__lowerCamelCase ) lowerCamelCase__ : List[Any] = self.dummy_model() lowerCamelCase__ : Any = self.dummy_sample_deter lowerCamelCase__ : Any = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : str = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase__ : List[Any] = pred_prev_sample lowerCamelCase__ : Dict = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCamelCase__ : int = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1E-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1E-3 def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Any = self.scheduler_classes[0] lowerCamelCase__ : int = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase__ : Union[str, Any] = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = len(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = self.dummy_model() lowerCamelCase__ : List[Any] = self.dummy_sample_deter lowerCamelCase__ : int = torch.manual_seed(0 ) for t in reversed(range(__lowerCamelCase ) ): # 1. predict noise residual lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , __lowerCamelCase ) # 2. predict previous mean of sample x_t-1 lowerCamelCase__ : Dict = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , generator=__lowerCamelCase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCamelCase__ : Union[str, Any] = pred_prev_sample lowerCamelCase__ : Any = torch.sum(torch.abs(__lowerCamelCase ) ) lowerCamelCase__ : Union[str, Any] = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1E-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1E-3 def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.scheduler_classes[0] lowerCamelCase__ : List[str] = self.get_scheduler_config() lowerCamelCase__ : List[str] = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = scheduler.timesteps for i, timestep in enumerate(__lowerCamelCase ): if i == len(__lowerCamelCase ) - 1: lowerCamelCase__ : Dict = -1 else: lowerCamelCase__ : Tuple = timesteps[i + 1] lowerCamelCase__ : Dict = scheduler.previous_timestep(__lowerCamelCase ) lowerCamelCase__ : Dict = prev_t.item() self.assertEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : Union[str, Any] = self.get_scheduler_config() lowerCamelCase__ : List[Any] = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = [100, 87, 50, 51, 0] with self.assertRaises(__lowerCamelCase , msg="`custom_timesteps` must be in descending order." ): scheduler.set_timesteps(timesteps=__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.scheduler_classes[0] lowerCamelCase__ : Dict = self.get_scheduler_config() lowerCamelCase__ : Dict = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : Any = [100, 87, 50, 1, 0] lowerCamelCase__ : List[Any] = len(__lowerCamelCase ) with self.assertRaises(__lowerCamelCase , msg="Can only pass one of `num_inference_steps` or `custom_timesteps`." ): scheduler.set_timesteps(num_inference_steps=__lowerCamelCase , timesteps=__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.scheduler_classes[0] lowerCamelCase__ : Tuple = self.get_scheduler_config() lowerCamelCase__ : Dict = scheduler_class(**__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = [scheduler.config.num_train_timesteps] with self.assertRaises( __lowerCamelCase , msg="`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}" , ): scheduler.set_timesteps(timesteps=__lowerCamelCase )
5
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Dict = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = KandinskyVaaImgaImgPipeline A__ = ["image_embeds", "negative_image_embeds", "image"] A__ = [ "image_embeds", "negative_image_embeds", "image", ] A__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ = False @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.dummy_unet lowerCamelCase__ : Optional[Any] = self.dummy_movq lowerCamelCase__ : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase ) lowerCamelCase__ : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = "cpu" lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCamelCase__ : List[str] = output.images lowerCamelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase__ : Any = "A red cartoon frog, 4k" lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase__ : Optional[Any] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
5
1
import os def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Dict = os.path.join(os.path.dirname(_A ) , "num.txt" ) with open(_A ) as file_hand: return str(sum(int(_A ) for line in file_hand ) )[:10] if __name__ == "__main__": print(solution())
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A : Optional[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = XLMProphetNetTokenizer A__ = False A__ = True def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : int = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Any = "[PAD]" lowerCamelCase__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__lowerCamelCase ) , 1012 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = XLMProphetNetTokenizer(__lowerCamelCase , keep_accents=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.tokenize("This is a test" ) self.assertListEqual(__lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase__ : List[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) lowerCamelCase__ : List[str] = tokenizer.convert_tokens_to_ids(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) lowerCamelCase__ : str = tokenizer.convert_ids_to_tokens(__lowerCamelCase ) self.assertListEqual( __lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : str = "Hello World!" lowerCamelCase__ : str = [35389, 6672, 49, 2] self.assertListEqual(__lowerCamelCase , self.big_tokenizer.encode(__lowerCamelCase ) ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
5
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
1
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase_ ( _A : List[str] , _A : str , _A : str , _A : Path , _A : str = None , _A : str = None , _A : str = None , ): """simple docstring""" if config_name_or_path is None: lowerCamelCase__ : List[str] = "facebook/rag-token-base" if model_type == "rag_token" else "facebook/rag-sequence-base" if generator_tokenizer_name_or_path is None: lowerCamelCase__ : List[Any] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: lowerCamelCase__ : Optional[Any] = question_encoder_name_or_path lowerCamelCase__ : Optional[Any] = RagTokenForGeneration if model_type == "rag_token" else RagSequenceForGeneration # Save model. lowerCamelCase__ : str = RagConfig.from_pretrained(_A ) lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(_A ) lowerCamelCase__ : Tuple = AutoConfig.from_pretrained(_A ) lowerCamelCase__ : Dict = gen_config lowerCamelCase__ : Dict = question_encoder_config lowerCamelCase__ : List[Any] = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. lowerCamelCase__ : Any = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / "generator_tokenizer/" ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / "question_encoder_tokenizer/" ) if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) A : Tuple = parser.parse_args() A : str = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class _lowercase : """simple docstring""" A__ = MBartConfig A__ = {} A__ = "gelu" def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : str=True , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : List[Any]=37 , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=20 , __lowerCamelCase : Dict=2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=0 , ): '''simple docstring''' lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Optional[int] = seq_length lowerCamelCase__ : Dict = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : int = intermediate_size lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : str = eos_token_id lowerCamelCase__ : Any = pad_token_id lowerCamelCase__ : List[str] = bos_token_id def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase__ : str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase__ : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCamelCase__ : Any = prepare_mbart_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def lowerCAmelCase ( self : int , __lowerCamelCase : Dict , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = TFMBartModel(config=__lowerCamelCase ).get_decoder() lowerCamelCase__ : Any = inputs_dict["input_ids"] lowerCamelCase__ : Optional[int] = input_ids[:1, :] lowerCamelCase__ : Any = inputs_dict["attention_mask"][:1, :] lowerCamelCase__ : List[str] = inputs_dict["head_mask"] lowerCamelCase__ : Dict = 1 # first forward pass lowerCamelCase__ : str = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = outputs.to_tuple() lowerCamelCase__ : Optional[int] = past_key_values[1] def lowercase_ ( _A : Any , _A : Dict , _A : Any , _A : List[Any]=None , _A : str=None , _A : Any=None , _A : List[Any]=None , _A : Optional[Any]=None , ): """simple docstring""" if attention_mask is None: lowerCamelCase__ : List[str] = tf.cast(tf.math.not_equal(_A , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCamelCase__ : int = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCamelCase__ : Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () A__ = (TFMBartForConditionalGeneration,) if is_tf_available() else () A__ = ( { "conversational": TFMBartForConditionalGeneration, "feature-extraction": TFMBartModel, "summarization": TFMBartForConditionalGeneration, "text2text-generation": TFMBartForConditionalGeneration, "translation": TFMBartForConditionalGeneration, } if is_tf_available() else {} ) A__ = True A__ = False A__ = False def lowerCAmelCase ( self : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple ): '''simple docstring''' if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = TFMBartModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowercase ( unittest.TestCase): """simple docstring""" A__ = [ " UN Chief Says There Is No Military Solution in Syria", ] A__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", ] A__ = "facebook/mbart-large-en-ro" @cached_property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Dict = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase ( self : Any , **__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = self.translate_src_text(**__lowerCamelCase ) self.assertListEqual(self.expected_text , __lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.tokenizer(self.src_text , **__lowerCamelCase , return_tensors="tf" ) lowerCamelCase__ : Tuple = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) lowerCamelCase__ : List[Any] = self.tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) return generated_words @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self._assert_generated_batch_equal_expected()
5
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
1
import copy from typing import TYPE_CHECKING, Any, Mapping, Optional, OrderedDict from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto.configuration_auto import AutoConfig if TYPE_CHECKING: from ... import PreTrainedTokenizerBase, TensorType A : Optional[Any] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = "vision-encoder-decoder" A__ = True def __init__( self : int , **__lowerCamelCase : List[str] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if "encoder" not in kwargs or "decoder" not in kwargs: raise ValueError( f"A configuraton of type {self.model_type} cannot be instantiated because " f"not both `encoder` and `decoder` sub-configurations are passed, but only {kwargs}" ) lowerCamelCase__ : Dict = kwargs.pop("encoder" ) lowerCamelCase__ : Union[str, Any] = encoder_config.pop("model_type" ) lowerCamelCase__ : Tuple = kwargs.pop("decoder" ) lowerCamelCase__ : List[Any] = decoder_config.pop("model_type" ) lowerCamelCase__ : Dict = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : int = AutoConfig.for_model(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[int] = True @classmethod def lowerCAmelCase ( cls : Tuple , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , **__lowerCamelCase : int ): '''simple docstring''' logger.info("Setting `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config" ) lowerCamelCase__ : Tuple = True lowerCamelCase__ : str = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : str = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Dict = self.encoder.to_dict() lowerCamelCase__ : List[Any] = self.decoder.to_dict() lowerCamelCase__ : Optional[Any] = self.__class__.model_type return output class _lowercase ( lowercase__): """simple docstring""" A__ = version.parse("1.11") @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def lowerCAmelCase ( self : Any ): '''simple docstring''' return 1E-4 @property def lowerCAmelCase ( self : str ): '''simple docstring''' return OrderedDict({"last_hidden_state": {0: "batch", 1: "encoder_sequence"}} ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OrderedDict() lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "past_decoder_sequence + sequence"} lowerCamelCase__ : List[str] = {0: "batch", 1: "past_decoder_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 1: "encoder_sequence"} return common_inputs def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : "PreTrainedTokenizerBase" , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional["TensorType"] = None , ): '''simple docstring''' import torch lowerCamelCase__ : str = OrderedDict() lowerCamelCase__ : Optional[int] = super().generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Any = dummy_input["input_ids"].shape lowerCamelCase__ : Optional[int] = (batch, encoder_sequence, self._config.encoder_hidden_size) lowerCamelCase__ : Optional[int] = dummy_input.pop("input_ids" ) lowerCamelCase__ : Dict = dummy_input.pop("attention_mask" ) lowerCamelCase__ : Union[str, Any] = torch.zeros(__lowerCamelCase ) return common_inputs class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' pass def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : PretrainedConfig ): '''simple docstring''' return VisionEncoderDecoderEncoderOnnxConfig(__lowerCamelCase ) def lowerCAmelCase ( self : str , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : PretrainedConfig , __lowerCamelCase : str = "default" ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = encoder_config.hidden_size return VisionEncoderDecoderDecoderOnnxConfig(__lowerCamelCase , __lowerCamelCase )
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
1
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class _lowercase ( lowercase__): """simple docstring""" def __get__( self : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) lowerCamelCase__ : Optional[int] = "__cached_" + self.fget.__name__ lowerCamelCase__ : Optional[Any] = getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if cached is None: lowerCamelCase__ : List[Any] = self.fget(__lowerCamelCase ) setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return cached def lowercase_ ( _A : List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F"invalid truth value {val!r}" ) def lowercase_ ( _A : str ): """simple docstring""" if is_torch_fx_proxy(_A ): return True if is_torch_available(): import torch if isinstance(_A , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(_A , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(_A , (jnp.ndarray, Tracer) ): return True return isinstance(_A , np.ndarray ) def lowercase_ ( _A : int ): """simple docstring""" return isinstance(_A , np.ndarray ) def lowercase_ ( _A : Dict ): """simple docstring""" return _is_numpy(_A ) def lowercase_ ( _A : List[str] ): """simple docstring""" import torch return isinstance(_A , torch.Tensor ) def lowercase_ ( _A : Any ): """simple docstring""" return False if not is_torch_available() else _is_torch(_A ) def lowercase_ ( _A : str ): """simple docstring""" import torch return isinstance(_A , torch.device ) def lowercase_ ( _A : Any ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(_A ) def lowercase_ ( _A : int ): """simple docstring""" import torch if isinstance(_A , _A ): if hasattr(_A , _A ): lowerCamelCase__ : List[Any] = getattr(_A , _A ) else: return False return isinstance(_A , torch.dtype ) def lowercase_ ( _A : Tuple ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(_A ) def lowercase_ ( _A : str ): """simple docstring""" import tensorflow as tf return isinstance(_A , tf.Tensor ) def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(_A ) def lowercase_ ( _A : Dict ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(_A , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(_A ) return type(_A ) == tf.Tensor def lowercase_ ( _A : Optional[Any] ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(_A ) def lowercase_ ( _A : Optional[int] ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(_A , jnp.ndarray ) def lowercase_ ( _A : List[Any] ): """simple docstring""" return False if not is_flax_available() else _is_jax(_A ) def lowercase_ ( _A : Any ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_py_obj(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return [to_py_obj(_A ) for o in obj] elif is_tf_tensor(_A ): return obj.numpy().tolist() elif is_torch_tensor(_A ): return obj.detach().cpu().tolist() elif is_jax_tensor(_A ): return np.asarray(_A ).tolist() elif isinstance(_A , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def lowercase_ ( _A : List[Any] ): """simple docstring""" if isinstance(_A , (dict, UserDict) ): return {k: to_numpy(_A ) for k, v in obj.items()} elif isinstance(_A , (list, tuple) ): return np.array(_A ) elif is_tf_tensor(_A ): return obj.numpy() elif is_torch_tensor(_A ): return obj.detach().cpu().numpy() elif is_jax_tensor(_A ): return np.asarray(_A ) else: return obj class _lowercase ( lowercase__): """simple docstring""" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[int] = fields(self ) # Safety and consistency checks if not len(__lowerCamelCase ): raise ValueError(f"{self.__class__.__name__} has no fields." ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f"{self.__class__.__name__} should not have more than one required field." ) lowerCamelCase__ : str = getattr(self , class_fields[0].name ) lowerCamelCase__ : List[Any] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowerCamelCase ): if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Dict = first_field.items() lowerCamelCase__ : List[str] = True else: try: lowerCamelCase__ : Dict = iter(__lowerCamelCase ) lowerCamelCase__ : Dict = True except TypeError: lowerCamelCase__ : Optional[int] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowerCamelCase ): if ( not isinstance(__lowerCamelCase , (list, tuple) ) or not len(__lowerCamelCase ) == 2 or not isinstance(element[0] , __lowerCamelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute lowerCamelCase__ : int = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f"Cannot set key/value for {element}. It needs to be a tuple (key, value)." ) break setattr(self , element[0] , element[1] ) if element[1] is not None: lowerCamelCase__ : Optional[int] = element[1] elif first_field is not None: lowerCamelCase__ : str = first_field else: for field in class_fields: lowerCamelCase__ : str = getattr(self , field.name ) if v is not None: lowerCamelCase__ : Any = v def __delitem__( self : Tuple , *__lowerCamelCase : str , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Tuple , **__lowerCamelCase : Optional[int] ): '''simple docstring''' raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): '''simple docstring''' raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance." ) def lowerCAmelCase ( self : str , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : str ): '''simple docstring''' raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance." ) def __getitem__( self : int , __lowerCamelCase : Any ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : List[str] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowerCamelCase , __lowerCamelCase ) super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def __setitem__( self : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] ): '''simple docstring''' super().__setitem__(__lowerCamelCase , __lowerCamelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class _lowercase ( lowercase__ , lowercase__): """simple docstring""" @classmethod def lowerCAmelCase ( cls : List[Any] , __lowerCamelCase : List[str] ): '''simple docstring''' raise ValueError( f"{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}" ) class _lowercase ( lowercase__): """simple docstring""" A__ = "longest" A__ = "max_length" A__ = "do_not_pad" class _lowercase ( lowercase__): """simple docstring""" A__ = "pt" A__ = "tf" A__ = "np" A__ = "jax" class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : List[ContextManager] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = context_managers lowerCamelCase__ : Dict = ExitStack() def __enter__( self : Dict ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(__lowerCamelCase ) def __exit__( self : List[str] , *__lowerCamelCase : Any , **__lowerCamelCase : int ): '''simple docstring''' self.stack.__exit__(*__lowerCamelCase , **__lowerCamelCase ) def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : str = infer_framework(_A ) if framework == "tf": lowerCamelCase__ : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Union[str, Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Any = model_class.__name__ lowerCamelCase__ : Optional[Any] = infer_framework(_A ) if framework == "tf": lowerCamelCase__ : Optional[int] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.forward ) # PyTorch models else: lowerCamelCase__ : Optional[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def lowercase_ ( _A : MutableMapping , _A : str = "" , _A : str = "." ): """simple docstring""" def _flatten_dict(_A : Optional[int] , _A : Any="" , _A : Any="." ): for k, v in d.items(): lowerCamelCase__ : List[str] = str(_A ) + delimiter + str(_A ) if parent_key else k if v and isinstance(_A , _A ): yield from flatten_dict(_A , _A , delimiter=_A ).items() else: yield key, v return dict(_flatten_dict(_A , _A , _A ) ) @contextmanager def lowercase_ ( _A : Dict , _A : bool = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def lowercase_ ( _A : Optional[int] , _A : Optional[int]=None ): """simple docstring""" if is_numpy_array(_A ): return np.transpose(_A , axes=_A ) elif is_torch_tensor(_A ): return array.T if axes is None else array.permute(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.transpose(_A , perm=_A ) elif is_jax_tensor(_A ): return jnp.transpose(_A , axes=_A ) else: raise ValueError(F"Type not supported for transpose: {type(_A )}." ) def lowercase_ ( _A : Any , _A : Any ): """simple docstring""" if is_numpy_array(_A ): return np.reshape(_A , _A ) elif is_torch_tensor(_A ): return array.reshape(*_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.reshape(_A , _A ) elif is_jax_tensor(_A ): return jnp.reshape(_A , _A ) else: raise ValueError(F"Type not supported for reshape: {type(_A )}." ) def lowercase_ ( _A : Dict , _A : int=None ): """simple docstring""" if is_numpy_array(_A ): return np.squeeze(_A , axis=_A ) elif is_torch_tensor(_A ): return array.squeeze() if axis is None else array.squeeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.squeeze(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.squeeze(_A , axis=_A ) else: raise ValueError(F"Type not supported for squeeze: {type(_A )}." ) def lowercase_ ( _A : Any , _A : Union[str, Any] ): """simple docstring""" if is_numpy_array(_A ): return np.expand_dims(_A , _A ) elif is_torch_tensor(_A ): return array.unsqueeze(dim=_A ) elif is_tf_tensor(_A ): import tensorflow as tf return tf.expand_dims(_A , axis=_A ) elif is_jax_tensor(_A ): return jnp.expand_dims(_A , axis=_A ) else: raise ValueError(F"Type not supported for expand_dims: {type(_A )}." ) def lowercase_ ( _A : int ): """simple docstring""" if is_numpy_array(_A ): return np.size(_A ) elif is_torch_tensor(_A ): return array.numel() elif is_tf_tensor(_A ): import tensorflow as tf return tf.size(_A ) elif is_jax_tensor(_A ): return array.size else: raise ValueError(F"Type not supported for expand_dims: {type(_A )}." ) def lowercase_ ( _A : Tuple , _A : Tuple ): """simple docstring""" for key, value in auto_map.items(): if isinstance(_A , (tuple, list) ): lowerCamelCase__ : Optional[Any] = [F"{repo_id}--{v}" if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: lowerCamelCase__ : Tuple = F"{repo_id}--{value}" return auto_map def lowercase_ ( _A : Dict ): """simple docstring""" for base_class in inspect.getmro(_A ): lowerCamelCase__ : Optional[int] = base_class.__module__ lowerCamelCase__ : List[str] = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F"Could not infer framework from class {model_class}." )
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
def lowercase_ ( _A : float , _A : list[float] ): """simple docstring""" if discount_rate < 0: raise ValueError("Discount rate cannot be negative" ) if not cash_flows: raise ValueError("Cash flows list cannot be empty" ) lowerCamelCase__ : int = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_A ) ) return round(_A , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
import argparse import struct import unittest class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : bytes ): '''simple docstring''' lowerCamelCase__ : Optional[int] = data # Initialize hash values lowerCamelCase__ : Any = [ 0x6A_09_E6_67, 0xBB_67_AE_85, 0x3C_6E_F3_72, 0xA5_4F_F5_3A, 0x51_0E_52_7F, 0x9B_05_68_8C, 0x1F_83_D9_AB, 0x5B_E0_CD_19, ] # Initialize round constants lowerCamelCase__ : Optional[int] = [ 0x42_8A_2F_98, 0x71_37_44_91, 0xB5_C0_FB_CF, 0xE9_B5_DB_A5, 0x39_56_C2_5B, 0x59_F1_11_F1, 0x92_3F_82_A4, 0xAB_1C_5E_D5, 0xD8_07_AA_98, 0x12_83_5B_01, 0x24_31_85_BE, 0x55_0C_7D_C3, 0x72_BE_5D_74, 0x80_DE_B1_FE, 0x9B_DC_06_A7, 0xC1_9B_F1_74, 0xE4_9B_69_C1, 0xEF_BE_47_86, 0x0F_C1_9D_C6, 0x24_0C_A1_CC, 0x2D_E9_2C_6F, 0x4A_74_84_AA, 0x5C_B0_A9_DC, 0x76_F9_88_DA, 0x98_3E_51_52, 0xA8_31_C6_6D, 0xB0_03_27_C8, 0xBF_59_7F_C7, 0xC6_E0_0B_F3, 0xD5_A7_91_47, 0x06_CA_63_51, 0x14_29_29_67, 0x27_B7_0A_85, 0x2E_1B_21_38, 0x4D_2C_6D_FC, 0x53_38_0D_13, 0x65_0A_73_54, 0x76_6A_0A_BB, 0x81_C2_C9_2E, 0x92_72_2C_85, 0xA2_BF_E8_A1, 0xA8_1A_66_4B, 0xC2_4B_8B_70, 0xC7_6C_51_A3, 0xD1_92_E8_19, 0xD6_99_06_24, 0xF4_0E_35_85, 0x10_6A_A0_70, 0x19_A4_C1_16, 0x1E_37_6C_08, 0x27_48_77_4C, 0x34_B0_BC_B5, 0x39_1C_0C_B3, 0x4E_D8_AA_4A, 0x5B_9C_CA_4F, 0x68_2E_6F_F3, 0x74_8F_82_EE, 0x78_A5_63_6F, 0x84_C8_78_14, 0x8C_C7_02_08, 0x90_BE_FF_FA, 0xA4_50_6C_EB, 0xBE_F9_A3_F7, 0xC6_71_78_F2, ] lowerCamelCase__ : Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def lowerCAmelCase ( __lowerCamelCase : bytes ): '''simple docstring''' lowerCamelCase__ : Dict = b"\x80" + (b"\x00" * (63 - (len(__lowerCamelCase ) + 8) % 64)) lowerCamelCase__ : List[Any] = struct.pack(">Q" , (len(__lowerCamelCase ) * 8) ) return data + padding + big_endian_integer def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers lowerCamelCase__ : List[str] = list(struct.unpack(">16L" , __lowerCamelCase ) ) # add 48 0-ed integers words += [0] * 48 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array lowerCamelCase__ : List[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) lowerCamelCase__ : List[Any] = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) lowerCamelCase__ : Tuple = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x1_00_00_00_00 # Compression lowerCamelCase__ : Tuple = self.ror(__lowerCamelCase , 6 ) ^ self.ror(__lowerCamelCase , 11 ) ^ self.ror(__lowerCamelCase , 25 ) lowerCamelCase__ : Optional[Any] = (e & f) ^ ((~e & 0xFF_FF_FF_FF) & g) lowerCamelCase__ : Union[str, Any] = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x1_00_00_00_00 lowerCamelCase__ : Any = self.ror(__lowerCamelCase , 2 ) ^ self.ror(__lowerCamelCase , 13 ) ^ self.ror(__lowerCamelCase , 22 ) lowerCamelCase__ : Any = (a & b) ^ (a & c) ^ (b & c) lowerCamelCase__ : Tuple = (sa + maj) % 0x1_00_00_00_00 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = ( g, f, e, ((d + tempa) % 0x1_00_00_00_00), c, b, a, ((tempa + tempa) % 0x1_00_00_00_00), ) lowerCamelCase__ : List[str] = [a, b, c, d, e, f, g, h] # Modify final values lowerCamelCase__ : Any = [ ((element + mutated_hash_values[index]) % 0x1_00_00_00_00) for index, element in enumerate(self.hashes ) ] lowerCamelCase__ : List[str] = "".join([hex(__lowerCamelCase )[2:].zfill(8 ) for value in self.hashes] ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : int ): '''simple docstring''' return 0xFF_FF_FF_FF & (value << (32 - rotations)) | (value >> rotations) class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' import hashlib lowerCamelCase__ : Union[str, Any] = bytes("Test String" , "utf-8" ) self.assertEqual(SHAaaa(__lowerCamelCase ).hash , hashlib.shaaaa(__lowerCamelCase ).hexdigest() ) def lowercase_ ( ): """simple docstring""" import doctest doctest.testmod() lowerCamelCase__ : List[str] = argparse.ArgumentParser() parser.add_argument( "-s" , "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument( "-f" , "--file" , dest="input_file" , help="Hash contents of a file" ) lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : List[str] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: lowerCamelCase__ : List[str] = f.read() else: lowerCamelCase__ : int = bytes(_A , "utf-8" ) print(SHAaaa(_A ).hash ) if __name__ == "__main__": main()
5
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
1
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A : Optional[int] = logging.get_logger(__name__) class _lowercase ( lowercase__): """simple docstring""" A__ = ["pixel_values"] def __init__( self : Dict , __lowerCamelCase : bool = True , __lowerCamelCase : int = 32 , __lowerCamelCase : int=PILImageResampling.BILINEAR , __lowerCamelCase : bool = True , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : List[str] = do_resize lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : int = size_divisor lowerCamelCase__ : Any = resample super().__init__(**__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[ChannelDimension] = None , **__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = get_image_size(__lowerCamelCase ) # Rounds the height and width down to the closest multiple of size_divisor lowerCamelCase__ : Tuple = height // size_divisor * size_divisor lowerCamelCase__ : Dict = width // size_divisor * size_divisor lowerCamelCase__ : Tuple = resize(__lowerCamelCase , (new_h, new_w) , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) return image def lowerCAmelCase ( self : Any , __lowerCamelCase : np.ndarray , __lowerCamelCase : float , __lowerCamelCase : Optional[ChannelDimension] = None , **__lowerCamelCase : Tuple ): '''simple docstring''' return rescale(image=__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[TensorType, str]] = None , __lowerCamelCase : ChannelDimension = ChannelDimension.FIRST , **__lowerCamelCase : Tuple , ): '''simple docstring''' lowerCamelCase__ : Dict = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Dict = size_divisor if size_divisor is not None else self.size_divisor lowerCamelCase__ : List[str] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) lowerCamelCase__ : Union[str, Any] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. lowerCamelCase__ : Dict = [to_numpy_array(__lowerCamelCase ) for img in images] if do_resize: lowerCamelCase__ : Optional[Any] = [self.resize(__lowerCamelCase , size_divisor=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : Any = [self.rescale(__lowerCamelCase , scale=1 / 255 ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] lowerCamelCase__ : Dict = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser A : Union[str, Any] = re.compile(r"\s+") def lowercase_ ( _A : Any ): """simple docstring""" return {"hash": hashlib.mda(re.sub(_A , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : str = [len(_A ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_A ), "line_max": max(_A )} def lowercase_ ( _A : int ): """simple docstring""" lowerCamelCase__ : int = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowercase_ ( _A : Optional[int] , _A : Optional[Any] ): """simple docstring""" if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowercase_ ( _A : Optional[Any] , _A : Dict=5 ): """simple docstring""" lowerCamelCase__ : List[str] = ["auto-generated", "autogenerated", "automatically generated"] lowerCamelCase__ : Tuple = example["content"].splitlines() for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowercase_ ( _A : Optional[int] , _A : Optional[int]=5 , _A : Optional[int]=0.05 ): """simple docstring""" lowerCamelCase__ : Optional[int] = ["unit tests", "test file", "configuration file"] lowerCamelCase__ : int = example["content"].splitlines() lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : Optional[int] = 0 # first test for _, line in zip(range(_A ) , _A ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test lowerCamelCase__ : Any = example["content"].count("\n" ) lowerCamelCase__ : List[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowercase_ ( _A : List[Any] ): """simple docstring""" lowerCamelCase__ : List[Any] = ["def ", "class ", "for ", "while "] lowerCamelCase__ : str = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowercase_ ( _A : Tuple , _A : List[str]=4 ): """simple docstring""" lowerCamelCase__ : int = example["content"].splitlines() lowerCamelCase__ : List[str] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowercase_ ( _A : Union[str, Any] ): """simple docstring""" lowerCamelCase__ : Tuple = tokenizer(example["content"] , truncation=_A )["input_ids"] lowerCamelCase__ : List[str] = len(example["content"] ) / len(_A ) return {"ratio": ratio} def lowercase_ ( _A : int ): """simple docstring""" lowerCamelCase__ : List[Any] = {} results.update(get_hash(_A ) ) results.update(line_stats(_A ) ) results.update(alpha_stats(_A ) ) results.update(char_token_ratio(_A ) ) results.update(is_autogenerated(_A ) ) results.update(is_config_or_test(_A ) ) results.update(has_no_keywords(_A ) ) results.update(has_few_assignments(_A ) ) return results def lowercase_ ( _A : List[Any] , _A : Dict , _A : int ): """simple docstring""" if not check_uniques(_A , _A ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowercase_ ( _A : Dict ): """simple docstring""" with open(_A , "rb" ) as f_in: with gzip.open(str(_A ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_A , _A ) os.unlink(_A ) # Settings A : str = HfArgumentParser(PreprocessingArguments) A : List[str] = parser.parse_args() if args.num_workers is None: A : Union[str, Any] = multiprocessing.cpu_count() A : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset A : str = time.time() A : str = load_dataset(args.dataset_name, split="train") print(f'Time to load dataset: {time.time()-t_start:.2f}') # Run preprocessing A : List[str] = time.time() A : Dict = ds.map(preprocess, num_proc=args.num_workers) print(f'Time to preprocess dataset: {time.time()-t_start:.2f}') # Deduplicate hashes A : List[str] = set(ds.unique("hash")) A : int = len(uniques) / len(ds) print(f'Fraction of duplicates: {1-frac:.2%}') # Deduplicate data and apply heuristics A : List[str] = time.time() A : List[Any] = ds.filter(filter, fn_kwargs={"uniques": uniques, "args": args}) print(f'Time to filter dataset: {time.time()-t_start:.2f}') print(f'Size of filtered dataset: {len(ds_filter)}') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: A : str = time.time() A, A : List[str] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'Time to deduplicate dataset: {time.time()-t_start:.2f}') print(f'Size of deduplicate dataset: {len(ds_filter)}') # Save data in batches of samples_per_file A : Optional[int] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / "duplicate_clusters.json", "w") as f: json.dump(duplicate_clusters, f) A : str = output_dir / "data" data_dir.mkdir(exist_ok=True) A : Optional[Any] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): A : Any = str(data_dir / f'file-{file_number+1:012}.json') A : List[str] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'Time to save dataset: {time.time()-t_start:.2f}')
5
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
1
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A : int = logging.get_logger(__name__) A : List[str] = { "microsoft/wavlm-base": "https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json", # See all WavLM models at https://huggingface.co/models?filter=wavlm } class _lowercase ( lowercase__): """simple docstring""" A__ = "wavlm" def __init__( self : str , __lowerCamelCase : Tuple=32 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : List[str]=0.0 , __lowerCamelCase : str=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : List[str]=1E-5 , __lowerCamelCase : Optional[Any]="group" , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : List[Any]=(512, 512, 512, 512, 512, 512, 512) , __lowerCamelCase : Union[str, Any]=(5, 2, 2, 2, 2, 2, 2) , __lowerCamelCase : int=(10, 3, 3, 3, 3, 2, 2) , __lowerCamelCase : str=False , __lowerCamelCase : Union[str, Any]=128 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Optional[Any]=320 , __lowerCamelCase : int=800 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[Any]=0.0_5 , __lowerCamelCase : int=10 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Tuple=0.0 , __lowerCamelCase : List[str]=10 , __lowerCamelCase : List[Any]=320 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Union[str, Any]=100 , __lowerCamelCase : Any=256 , __lowerCamelCase : Dict=256 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int="mean" , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Dict=256 , __lowerCamelCase : Dict=(512, 512, 512, 512, 1500) , __lowerCamelCase : List[Any]=(5, 3, 3, 1, 1) , __lowerCamelCase : Any=(1, 2, 3, 1, 1) , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=80 , __lowerCamelCase : Dict=0 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : int=False , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : int=None , **__lowerCamelCase : Any , ): '''simple docstring''' super().__init__(**__lowerCamelCase , pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase ) lowerCamelCase__ : List[Any] = hidden_size lowerCamelCase__ : Union[str, Any] = feat_extract_norm lowerCamelCase__ : List[Any] = feat_extract_activation lowerCamelCase__ : Any = list(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = list(__lowerCamelCase ) lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Tuple = conv_bias lowerCamelCase__ : Union[str, Any] = num_buckets lowerCamelCase__ : Dict = max_bucket_distance lowerCamelCase__ : Optional[Any] = num_conv_pos_embeddings lowerCamelCase__ : str = num_conv_pos_embedding_groups lowerCamelCase__ : int = len(self.conv_dim ) lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_dropout lowerCamelCase__ : Union[str, Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Dict = feat_proj_dropout lowerCamelCase__ : Any = final_dropout lowerCamelCase__ : List[Any] = layerdrop lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Tuple = num_ctc_classes lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = do_stable_layer_norm lowerCamelCase__ : int = use_weighted_layer_sum lowerCamelCase__ : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ : Union[str, Any] = apply_spec_augment lowerCamelCase__ : Optional[int] = mask_time_prob lowerCamelCase__ : List[str] = mask_time_length lowerCamelCase__ : int = mask_time_min_masks lowerCamelCase__ : Optional[int] = mask_feature_prob lowerCamelCase__ : List[Any] = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCamelCase__ : int = num_codevectors_per_group lowerCamelCase__ : List[Any] = num_codevector_groups lowerCamelCase__ : List[str] = contrastive_logits_temperature lowerCamelCase__ : str = num_negatives lowerCamelCase__ : Optional[Any] = codevector_dim lowerCamelCase__ : str = proj_codevector_dim lowerCamelCase__ : List[Any] = diversity_loss_weight # ctc loss lowerCamelCase__ : List[Any] = ctc_loss_reduction lowerCamelCase__ : Optional[int] = ctc_zero_infinity # adapter lowerCamelCase__ : Tuple = add_adapter lowerCamelCase__ : Tuple = adapter_kernel_size lowerCamelCase__ : Optional[Any] = adapter_stride lowerCamelCase__ : Dict = num_adapter_layers lowerCamelCase__ : Any = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase__ : Any = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase__ : Optional[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Dict = list(__lowerCamelCase ) lowerCamelCase__ : int = list(__lowerCamelCase ) lowerCamelCase__ : Tuple = xvector_output_dim @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
5
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
1
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = DiTPipeline A__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS A__ = PipelineTesterMixin.required_optional_params - { "latents", "num_images_per_prompt", "callback", "callback_steps", } A__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS A__ = False def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Dict = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=__lowerCamelCase , activation_fn="gelu-approximate" , num_embeds_ada_norm=1000 , norm_type="ada_norm_zero" , norm_elementwise_affine=__lowerCamelCase , ) lowerCamelCase__ : int = AutoencoderKL() lowerCamelCase__ : int = DDIMScheduler() lowerCamelCase__ : str = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any]=0 ): '''simple docstring''' if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Dict = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Any = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Tuple = "cpu" lowerCamelCase__ : int = self.get_dummy_components() lowerCamelCase__ : Any = self.pipeline_class(**__lowerCamelCase ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = self.get_dummy_inputs(__lowerCamelCase ) lowerCamelCase__ : Dict = pipe(**__lowerCamelCase ).images lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) lowerCamelCase__ : List[Any] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) lowerCamelCase__ : List[Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__lowerCamelCase , 1E-3 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=__lowerCamelCase , expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : int ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Dict = torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) lowerCamelCase__ : Tuple = ["vase", "umbrella", "white shark", "white wolf"] lowerCamelCase__ : List[str] = pipe.get_label_ids(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=40 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Any = load_numpy( f"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy" ) assert np.abs((expected_image - image).max() ) < 1E-2 def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) lowerCamelCase__ : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) lowerCamelCase__ : Any = ["vase", "umbrella"] lowerCamelCase__ : int = pipe.get_label_ids(__lowerCamelCase ) lowerCamelCase__ : int = torch.manual_seed(0 ) lowerCamelCase__ : Optional[int] = pipe(__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=25 , output_type="np" ).images for word, image in zip(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f"/dit/{word}_512.npy" ) assert np.abs((expected_image - image).max() ) < 1E-1
5
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
1
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Any=13 , __lowerCamelCase : List[Any]=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : int=32 , __lowerCamelCase : Dict=2 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Union[str, Any]=16 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : str=None , ): '''simple docstring''' lowerCamelCase__ : Any = parent lowerCamelCase__ : List[str] = 13 lowerCamelCase__ : Any = 7 lowerCamelCase__ : Dict = True lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[str] = True lowerCamelCase__ : Union[str, Any] = 99 lowerCamelCase__ : Optional[int] = 384 lowerCamelCase__ : Any = 2 lowerCamelCase__ : Union[str, Any] = 4 lowerCamelCase__ : Optional[Any] = 37 lowerCamelCase__ : Tuple = "gelu" lowerCamelCase__ : Dict = 0.1 lowerCamelCase__ : Union[str, Any] = 0.1 lowerCamelCase__ : List[str] = 512 lowerCamelCase__ : Tuple = 16 lowerCamelCase__ : List[str] = 2 lowerCamelCase__ : Dict = 0.0_2 lowerCamelCase__ : Dict = 3 lowerCamelCase__ : List[Any] = 4 lowerCamelCase__ : Optional[Any] = 128 lowerCamelCase__ : Optional[Any] = 2 lowerCamelCase__ : Any = 9 lowerCamelCase__ : Tuple = 1 lowerCamelCase__ : Union[str, Any] = None def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Any = None if self.use_input_mask: lowerCamelCase__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : int = None lowerCamelCase__ : Any = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = TFConvBertModel(config=__lowerCamelCase ) lowerCamelCase__ : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowerCamelCase__ : Any = [input_ids, input_mask] lowerCamelCase__ : Any = model(__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : Tuple = TFConvBertForMaskedLM(config=__lowerCamelCase ) lowerCamelCase__ : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : int , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = TFConvBertForSequenceClassification(config=__lowerCamelCase ) lowerCamelCase__ : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : List[str] = TFConvBertForMultipleChoice(config=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : List[str] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : Any = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : Optional[int] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowerCamelCase__ : str = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : str = self.num_labels lowerCamelCase__ : List[Any] = TFConvBertForTokenClassification(config=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) lowerCamelCase__ : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } lowerCamelCase__ : int = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : List[str] = config_and_inputs lowerCamelCase__ : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A__ = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False A__ = False def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = TFConvBertModelTester(self ) lowerCamelCase__ : List[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] = True lowerCamelCase__ : List[Any] = True if hasattr(__lowerCamelCase , "use_cache" ): lowerCamelCase__ : Tuple = True lowerCamelCase__ : str = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase__ : List[str] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: lowerCamelCase__ : Dict = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : int = model_class(__lowerCamelCase ) lowerCamelCase__ : int = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) lowerCamelCase__ : Any = os.path.join(__lowerCamelCase , "saved_model" , "1" ) lowerCamelCase__ : List[Any] = tf.keras.models.load_model(__lowerCamelCase ) lowerCamelCase__ : List[str] = model(__lowerCamelCase ) if self.is_encoder_decoder: lowerCamelCase__ : Tuple = outputs["encoder_hidden_states"] lowerCamelCase__ : Tuple = outputs["encoder_attentions"] else: lowerCamelCase__ : List[str] = outputs["hidden_states"] lowerCamelCase__ : Optional[int] = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) lowerCamelCase__ : Optional[int] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Dict = True lowerCamelCase__ : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase__ : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) lowerCamelCase__ : str = getattr(self.model_tester , "key_length" , __lowerCamelCase ) lowerCamelCase__ : Tuple = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase : Optional[int] ): lowerCamelCase__ : Dict = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase__ : Optional[int] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase : int ): lowerCamelCase__ : Union[str, Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Tuple = False lowerCamelCase__ : str = model_class(__lowerCamelCase ) lowerCamelCase__ : Tuple = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) lowerCamelCase__ : List[str] = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: lowerCamelCase__ : Union[str, Any] = model_class(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase__ : Any = True lowerCamelCase__ : int = model_class(__lowerCamelCase ) lowerCamelCase__ : List[Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Any = True lowerCamelCase__ : Tuple = model_class(__lowerCamelCase ) lowerCamelCase__ : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) lowerCamelCase__ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase )[0] lowerCamelCase__ : List[Any] = [1, 6, 768] self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : int = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
5
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from __future__ import annotations class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[str] = text, pattern lowerCamelCase__ , lowerCamelCase__ : int = len(__lowerCamelCase ), len(__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : int ): '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase__ : Union[str, Any] = self.mismatch_in_text(__lowerCamelCase ) if mismatch_index == -1: positions.append(__lowerCamelCase ) else: lowerCamelCase__ : Optional[Any] = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase__ : List[str] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A : Any = "ABAABA" A : List[Any] = "AB" A : Tuple = BoyerMooreSearch(text, pattern) A : Tuple = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
5
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
1
A : Optional[Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" A : Tuple = [{"type": "code", "content": INSTALL_CONTENT}] A : List[Any] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from __future__ import annotations from collections.abc import Callable A : Dict = list[list[float | int]] def lowercase_ ( _A : Matrix , _A : Matrix ): """simple docstring""" lowerCamelCase__ : int = len(_A ) lowerCamelCase__ : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_A )] lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : float for row in range(_A ): for col in range(_A ): lowerCamelCase__ : Tuple = matrix[row][col] lowerCamelCase__ : List[str] = vector[row][0] lowerCamelCase__ : int = 0 lowerCamelCase__ : List[Any] = 0 while row < size and col < size: # pivoting lowerCamelCase__ : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_A , _A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: lowerCamelCase__ , lowerCamelCase__ : List[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _A ): lowerCamelCase__ : Union[str, Any] = augmented[rowa][col] / augmented[row][col] lowerCamelCase__ : int = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _A ): for row in range(_A ): lowerCamelCase__ : Any = augmented[row][col] / augmented[col][col] for cola in range(_A , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_A ) ] def lowercase_ ( _A : list[int] ): """simple docstring""" lowerCamelCase__ : int = len(_A ) lowerCamelCase__ : Matrix = [[0 for _ in range(_A )] for _ in range(_A )] lowerCamelCase__ : Matrix = [[0] for _ in range(_A )] lowerCamelCase__ : Matrix lowerCamelCase__ : int lowerCamelCase__ : int lowerCamelCase__ : int for x_val, y_val in enumerate(_A ): for col in range(_A ): lowerCamelCase__ : List[Any] = (x_val + 1) ** (size - col - 1) lowerCamelCase__ : str = y_val lowerCamelCase__ : Optional[int] = solve(_A , _A ) def interpolated_func(_A : int ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_A ) ) return interpolated_func def lowercase_ ( _A : int ): """simple docstring""" return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowercase_ ( _A : Callable[[int], int] = question_function , _A : int = 10 ): """simple docstring""" lowerCamelCase__ : list[int] = [func(_A ) for x_val in range(1 , order + 1 )] lowerCamelCase__ : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] lowerCamelCase__ : int = 0 lowerCamelCase__ : Callable[[int], int] lowerCamelCase__ : int for poly in polynomials: lowerCamelCase__ : Any = 1 while func(_A ) == poly(_A ): x_val += 1 ret += poly(_A ) return ret if __name__ == "__main__": print(f'{solution() = }')
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
import math A : Optional[Any] = 10 A : Optional[Any] = 7 A : Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS def lowercase_ ( _A : int = 20 ): """simple docstring""" lowerCamelCase__ : List[Any] = math.comb(_A , _A ) lowerCamelCase__ : str = math.comb(NUM_BALLS - BALLS_PER_COLOUR , _A ) lowerCamelCase__ : str = NUM_COLOURS * (1 - missing_colour / total) return F"{result:.9f}" if __name__ == "__main__": print(solution(20))
5
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
1
import argparse import os import re import packaging.version A : Optional[int] = "examples/" A : int = { "examples": (re.compile(r"^check_min_version\(\"[^\"]+\"\)\s*$", re.MULTILINE), "check_min_version(\"VERSION\")\n"), "init": (re.compile(r"^__version__\s+=\s+\"([^\"]+)\"\s*$", re.MULTILINE), "__version__ = \"VERSION\"\n"), "setup": (re.compile(r"^(\s*)version\s*=\s*\"[^\"]+\",", re.MULTILINE), r"\1version=\"VERSION\","), "doc": (re.compile(r"^(\s*)release\s*=\s*\"[^\"]+\"$", re.MULTILINE), "release = \"VERSION\"\n"), } A : int = { "init": "src/diffusers/__init__.py", "setup": "setup.py", } A : Dict = "README.md" def lowercase_ ( _A : List[str] , _A : Any , _A : Dict ): """simple docstring""" with open(_A , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase__ : Tuple = f.read() lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = REPLACE_PATTERNS[pattern] lowerCamelCase__ : Optional[Any] = replace.replace("VERSION" , _A ) lowerCamelCase__ : Optional[int] = re_pattern.sub(_A , _A ) with open(_A , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(_A ) def lowercase_ ( _A : int ): """simple docstring""" for folder, directories, fnames in os.walk(_A ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(_A , _A ) , _A , pattern="examples" ) def lowercase_ ( _A : Tuple , _A : Union[str, Any]=False ): """simple docstring""" for pattern, fname in REPLACE_FILES.items(): update_version_in_file(_A , _A , _A ) if not patch: update_version_in_examples(_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = "🤗 Transformers currently provides the following architectures" lowerCamelCase__ : Optional[int] = "1. Want to contribute a new model?" with open(_A , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase__ : Any = f.readlines() # Find the start of the list. lowerCamelCase__ : Optional[int] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCamelCase__ : Union[str, Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowerCamelCase__ : int = lines[index].replace( "https://huggingface.co/docs/diffusers/main/model_doc" , "https://huggingface.co/docs/diffusers/model_doc" , ) index += 1 with open(_A , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(_A ) def lowercase_ ( ): """simple docstring""" with open(REPLACE_FILES["init"] , "r" ) as f: lowerCamelCase__ : List[str] = f.read() lowerCamelCase__ : List[Any] = REPLACE_PATTERNS["init"][0].search(_A ).groups()[0] return packaging.version.parse(_A ) def lowercase_ ( _A : Tuple=False ): """simple docstring""" lowerCamelCase__ : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowerCamelCase__ : List[str] = default_version.base_version elif patch: lowerCamelCase__ : Any = F"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCamelCase__ : Any = F"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCamelCase__ : str = input(F"Which version are you releasing? [{default_version}]" ) if len(_A ) == 0: lowerCamelCase__ : str = default_version print(F"Updating version to {version}." ) global_version_update(_A , patch=_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = get_version() lowerCamelCase__ : Tuple = F"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCamelCase__ : List[str] = current_version.base_version # Check with the user we got that right. lowerCamelCase__ : Tuple = input(F"Which version are we developing now? [{dev_version}]" ) if len(_A ) == 0: lowerCamelCase__ : int = dev_version print(F"Updating version to {version}." ) global_version_update(_A ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": A : int = argparse.ArgumentParser() parser.add_argument("--post_release", action="store_true", help="Whether this is pre or post release.") parser.add_argument("--patch", action="store_true", help="Whether or not this is a patch release.") A : int = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("Nothing to do after a patch :-)") else: post_release_work()
5
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
1
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = KandinskyVaaImgaImgPipeline A__ = ["image_embeds", "negative_image_embeds", "image"] A__ = [ "image_embeds", "negative_image_embeds", "image", ] A__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ = False @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.dummy_unet lowerCamelCase__ : Optional[Any] = self.dummy_movq lowerCamelCase__ : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase ) lowerCamelCase__ : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = "cpu" lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCamelCase__ : List[str] = output.images lowerCamelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase__ : Any = "A red cartoon frog, 4k" lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase__ : Optional[Any] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
5
1
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() A : Optional[int] = logging.get_logger(__name__) A : int = "The Nymphenburg Palace is a beautiful palace in Munich!" def lowercase_ ( _A : str , _A : str ): """simple docstring""" lowerCamelCase__ : Optional[Any] = { "attention_cell": "multi_head", "num_layers": 4, "units": 1024, "hidden_size": 768, "max_length": 512, "num_heads": 8, "scaled": True, "dropout": 0.1, "use_residual": True, "embed_size": 1024, "embed_dropout": 0.1, "word_embed": None, "layer_norm_eps": 1E-5, "token_type_vocab_size": 2, } lowerCamelCase__ : List[str] = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py lowerCamelCase__ : List[str] = BERTEncoder( attention_cell=predefined_args["attention_cell"] , num_layers=predefined_args["num_layers"] , units=predefined_args["units"] , hidden_size=predefined_args["hidden_size"] , max_length=predefined_args["max_length"] , num_heads=predefined_args["num_heads"] , scaled=predefined_args["scaled"] , dropout=predefined_args["dropout"] , output_attention=_A , output_all_encodings=_A , use_residual=predefined_args["use_residual"] , activation=predefined_args.get("activation" , "gelu" ) , layer_norm_eps=predefined_args.get("layer_norm_eps" , _A ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later lowerCamelCase__ : int = "openwebtext_ccnews_stories_books_cased" # Specify download folder to Gluonnlp's vocab lowerCamelCase__ : List[Any] = os.path.join(get_home_dir() , "models" ) lowerCamelCase__ : List[str] = _load_vocab(_A , _A , _A , cls=_A ) lowerCamelCase__ : str = nlp.model.BERTModel( _A , len(_A ) , units=predefined_args["units"] , embed_size=predefined_args["embed_size"] , embed_dropout=predefined_args["embed_dropout"] , word_embed=predefined_args["word_embed"] , use_pooler=_A , use_token_type_embed=_A , token_type_vocab_size=predefined_args["token_type_vocab_size"] , use_classifier=_A , use_decoder=_A , ) original_bort.load_parameters(_A , cast_dtype=_A , ignore_extra=_A ) lowerCamelCase__ : List[Any] = original_bort._collect_params_with_prefix() # Build our config 🤗 lowerCamelCase__ : int = { "architectures": ["BertForMaskedLM"], "attention_probs_dropout_prob": predefined_args["dropout"], "hidden_act": "gelu", "hidden_dropout_prob": predefined_args["dropout"], "hidden_size": predefined_args["embed_size"], "initializer_range": 0.02, "intermediate_size": predefined_args["hidden_size"], "layer_norm_eps": predefined_args["layer_norm_eps"], "max_position_embeddings": predefined_args["max_length"], "model_type": "bort", "num_attention_heads": predefined_args["num_heads"], "num_hidden_layers": predefined_args["num_layers"], "pad_token_id": 1, # 2 = BERT, 1 = RoBERTa "type_vocab_size": 1, # 2 = BERT, 1 = RoBERTa "vocab_size": len(_A ), } lowerCamelCase__ : Optional[Any] = BertConfig.from_dict(_A ) lowerCamelCase__ : Optional[Any] = BertForMaskedLM(_A ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(_A : List[Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(_A : Any , _A : str ): lowerCamelCase__ : List[Any] = hf_param.shape lowerCamelCase__ : int = to_torch(params[gluon_param] ) lowerCamelCase__ : Optional[int] = gluon_param.shape assert ( shape_hf == shape_gluon ), F"The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers" return gluon_param lowerCamelCase__ : List[Any] = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , "word_embed.0.weight" ) lowerCamelCase__ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , "encoder.position_weight" ) lowerCamelCase__ : List[str] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , "encoder.layer_norm.beta" ) lowerCamelCase__ : Any = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , "encoder.layer_norm.gamma" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) lowerCamelCase__ : List[Any] = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): lowerCamelCase__ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention lowerCamelCase__ : BertSelfAttention = layer.attention.self lowerCamelCase__ : Tuple = check_and_map_params( self_attn.key.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.bias" ) lowerCamelCase__ : int = check_and_map_params( self_attn.key.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_key.weight" ) lowerCamelCase__ : Union[str, Any] = check_and_map_params( self_attn.query.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.bias" ) lowerCamelCase__ : Optional[int] = check_and_map_params( self_attn.query.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_query.weight" ) lowerCamelCase__ : List[Any] = check_and_map_params( self_attn.value.bias.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.bias" ) lowerCamelCase__ : List[Any] = check_and_map_params( self_attn.value.weight.data , F"encoder.transformer_cells.{i}.attention_cell.proj_value.weight" ) # self attention output lowerCamelCase__ : BertSelfOutput = layer.attention.output lowerCamelCase__ : Dict = check_and_map_params( self_output.dense.bias , F"encoder.transformer_cells.{i}.proj.bias" ) lowerCamelCase__ : str = check_and_map_params( self_output.dense.weight , F"encoder.transformer_cells.{i}.proj.weight" ) lowerCamelCase__ : Tuple = check_and_map_params( self_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.layer_norm.beta" ) lowerCamelCase__ : Optional[int] = check_and_map_params( self_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.layer_norm.gamma" ) # intermediate lowerCamelCase__ : BertIntermediate = layer.intermediate lowerCamelCase__ : Union[str, Any] = check_and_map_params( intermediate.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_1.bias" ) lowerCamelCase__ : Optional[int] = check_and_map_params( intermediate.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_1.weight" ) # output lowerCamelCase__ : BertOutput = layer.output lowerCamelCase__ : str = check_and_map_params( bert_output.dense.bias , F"encoder.transformer_cells.{i}.ffn.ffn_2.bias" ) lowerCamelCase__ : Tuple = check_and_map_params( bert_output.dense.weight , F"encoder.transformer_cells.{i}.ffn.ffn_2.weight" ) lowerCamelCase__ : Tuple = check_and_map_params( bert_output.LayerNorm.bias , F"encoder.transformer_cells.{i}.ffn.layer_norm.beta" ) lowerCamelCase__ : int = check_and_map_params( bert_output.LayerNorm.weight , F"encoder.transformer_cells.{i}.ffn.layer_norm.gamma" ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models lowerCamelCase__ : List[str] = RobertaTokenizer.from_pretrained("roberta-base" ) lowerCamelCase__ : Tuple = tokenizer.encode_plus(_A )["input_ids"] # Get gluon output lowerCamelCase__ : Union[str, Any] = mx.nd.array([input_ids] ) lowerCamelCase__ : Optional[Any] = original_bort(inputs=_A , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(_A ) lowerCamelCase__ : List[Any] = BertModel.from_pretrained(_A ) hf_bort_model.eval() lowerCamelCase__ : int = tokenizer.encode_plus(_A , return_tensors="pt" ) lowerCamelCase__ : Any = hf_bort_model(**_A )[0] lowerCamelCase__ : Dict = output_gluon[0].asnumpy() lowerCamelCase__ : Optional[Any] = output_hf[0].detach().numpy() lowerCamelCase__ : Union[str, Any] = np.max(np.abs(hf_layer - gluon_layer ) ).item() lowerCamelCase__ : List[Any] = np.allclose(_A , _A , atol=1E-3 ) if success: print("✔️ Both model do output the same tensors" ) else: print("❌ Both model do **NOT** output the same tensors" ) print("Absolute difference is:" , _A ) if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A : str = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowercase_ ( _A : Any ): """simple docstring""" return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = ArgumentParser( "HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=_A ) lowerCamelCase__ : Optional[Any] = parser.add_subparsers(help="datasets-cli command helpers" ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_A ) EnvironmentCommand.register_subcommand(_A ) TestCommand.register_subcommand(_A ) RunBeamCommand.register_subcommand(_A ) DummyDataCommand.register_subcommand(_A ) # Parse args lowerCamelCase__ , lowerCamelCase__ : List[Any] = parser.parse_known_args() if not hasattr(_A , "func" ): parser.print_help() exit(1 ) lowerCamelCase__ : Tuple = parse_unknown_args(_A ) # Run lowerCamelCase__ : Tuple = args.func(_A , **_A ) service.run() if __name__ == "__main__": main()
5
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: A : int = None A : Optional[int] = logging.get_logger(__name__) A : int = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} A : Tuple = { "vocab_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model", }, "tokenizer_file": { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json", }, } A : Dict = { "xlnet-base-cased": None, "xlnet-large-cased": None, } A : List[Any] = "▁" # Segments (not really needed) A : Tuple = 0 A : int = 1 A : Dict = 2 A : List[str] = 3 A : Optional[Any] = 4 class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = "left" A__ = XLNetTokenizer def __init__( self : int , __lowerCamelCase : List[Any]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Dict=False , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Any="<s>" , __lowerCamelCase : Any="</s>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : Optional[int]="<sep>" , __lowerCamelCase : Union[str, Any]="<pad>" , __lowerCamelCase : Tuple="<cls>" , __lowerCamelCase : Tuple="<mask>" , __lowerCamelCase : int=["<eop>", "<eod>"] , **__lowerCamelCase : Union[str, Any] , ): '''simple docstring''' lowerCamelCase__ : Any = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( vocab_file=__lowerCamelCase , tokenizer_file=__lowerCamelCase , do_lower_case=__lowerCamelCase , remove_space=__lowerCamelCase , keep_accents=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , additional_special_tokens=__lowerCamelCase , **__lowerCamelCase , ) lowerCamelCase__ : Optional[int] = 3 lowerCamelCase__ : List[str] = do_lower_case lowerCamelCase__ : List[str] = remove_space lowerCamelCase__ : Any = keep_accents lowerCamelCase__ : int = vocab_file lowerCamelCase__ : str = False if not self.vocab_file else True def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : List[str] = [self.sep_token_id] lowerCamelCase__ : List[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ): copyfile(self.vocab_file , __lowerCamelCase ) return (out_vocab_file,)
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
from sklearn.metrics import mean_squared_error import datasets A : Optional[int] = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" A : str = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" A : Optional[int] = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html" ] , ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("float" ) ), "references": datasets.Sequence(datasets.Value("float" ) ), } else: return { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]="uniform_average" , __lowerCamelCase : Any=True ): '''simple docstring''' lowerCamelCase__ : str = mean_squared_error( __lowerCamelCase , __lowerCamelCase , sample_weight=__lowerCamelCase , multioutput=__lowerCamelCase , squared=__lowerCamelCase ) return {"mse": mse}
5
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Dict = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "dpr" def __init__( self : str , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[Any]=768 , __lowerCamelCase : int=12 , __lowerCamelCase : Tuple=12 , __lowerCamelCase : Any=3072 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : int=512 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : int = 0 , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[str] = hidden_size lowerCamelCase__ : str = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Tuple = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : int = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : str = layer_norm_eps lowerCamelCase__ : List[Any] = projection_dim lowerCamelCase__ : Optional[Any] = position_embedding_type
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=lowercase__) class _lowercase ( lowercase__): """simple docstring""" A__ = field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"text": Value("string")}) A__ = Features({"labels": ClassLabel}) A__ = "text" A__ = "labels" def lowerCAmelCase ( self : int , __lowerCamelCase : Optional[Any] ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"Column {self.label_column} is not present in features." ) if not isinstance(features[self.label_column] , __lowerCamelCase ): raise ValueError(f"Column {self.label_column} is not a ClassLabel." ) lowerCamelCase__ : Dict = copy.deepcopy(self ) lowerCamelCase__ : Dict = self.label_schema.copy() lowerCamelCase__ : Tuple = features[self.label_column] lowerCamelCase__ : List[Any] = label_schema return task_template @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return { self.text_column: "text", self.label_column: "labels", }
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
1
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler A : Dict = 16 A : Optional[int] = 32 def lowercase_ ( _A : Accelerator , _A : int = 16 , _A : str = "bert-base-cased" ): """simple docstring""" lowerCamelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) lowerCamelCase__ : List[str] = load_dataset("glue" , "mrpc" ) def tokenize_function(_A : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ : int = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_A , max_length=_A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCamelCase__ : Tuple = datasets.map( _A , batched=_A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=_A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ : Dict = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(_A : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_A , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(_A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowerCamelCase__ : List[Any] = DataLoader( tokenized_datasets["train"] , shuffle=_A , collate_fn=_A , batch_size=_A ) lowerCamelCase__ : Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=_A , collate_fn=_A , batch_size=_A ) return train_dataloader, eval_dataloader def lowercase_ ( _A : List[Any] , _A : int , _A : Union[str, Any] , _A : Union[str, Any] ): """simple docstring""" model.eval() lowerCamelCase__ : Optional[int] = 0 for step, batch in enumerate(_A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**_A ) lowerCamelCase__ : Union[str, Any] = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_A ) - 1: lowerCamelCase__ : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowerCamelCase__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_A , references=_A , ) lowerCamelCase__ : Optional[int] = metric.compute() return eval_metric["accuracy"] def lowercase_ ( _A : Optional[Any] , _A : Dict ): """simple docstring""" lowerCamelCase__ : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : int = config["lr"] lowerCamelCase__ : Optional[Any] = int(config["num_epochs"] ) lowerCamelCase__ : Union[str, Any] = int(config["seed"] ) lowerCamelCase__ : Any = int(config["batch_size"] ) lowerCamelCase__ : Union[str, Any] = args.model_name_or_path set_seed(_A ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = get_dataloaders(_A , _A , _A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : List[Any] = AutoModelForSequenceClassification.from_pretrained(_A , return_dict=_A ) # Instantiate optimizer lowerCamelCase__ : Any = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowerCamelCase__ : Optional[int] = optimizer_cls(params=model.parameters() , lr=_A ) if accelerator.state.deepspeed_plugin is not None: lowerCamelCase__ : Union[str, Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Tuple = (len(_A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowerCamelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=_A , num_warmup_steps=0 , num_training_steps=_A , ) else: lowerCamelCase__ : List[Any] = DummyScheduler(_A , total_num_steps=_A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = accelerator.prepare( _A , _A , _A , _A , _A ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Dict = evaluate.load("glue" , "mrpc" ) lowerCamelCase__ : List[str] = num_epochs if args.partial_train_epoch is not None: lowerCamelCase__ : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase__ : Dict = args.resume_from_checkpoint.split("epoch_" )[1] lowerCamelCase__ : Optional[int] = "" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break lowerCamelCase__ : Optional[int] = int(_A ) + 1 lowerCamelCase__ : Union[str, Any] = evaluation_loop(_A , _A , _A , _A ) accelerator.print("resumed checkpoint performance:" , _A ) accelerator.print("resumed checkpoint's scheduler's lr:" , lr_scheduler.get_lr()[0] ) accelerator.print("resumed optimizers's lr:" , optimizer.param_groups[0]["lr"] ) with open(os.path.join(args.output_dir , F"state_{starting_epoch-1}.json" ) , "r" ) as f: lowerCamelCase__ : int = json.load(_A ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model lowerCamelCase__ : Optional[int] = {} for epoch in range(_A , _A ): model.train() for step, batch in enumerate(_A ): lowerCamelCase__ : Tuple = model(**_A ) lowerCamelCase__ : Union[str, Any] = outputs.loss lowerCamelCase__ : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(_A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 lowerCamelCase__ : Union[str, Any] = F"epoch_{epoch}" lowerCamelCase__ : List[Any] = os.path.join(args.output_dir , _A ) accelerator.save_state(_A ) lowerCamelCase__ : str = evaluation_loop(_A , _A , _A , _A ) lowerCamelCase__ : List[Any] = accuracy lowerCamelCase__ : Union[str, Any] = lr_scheduler.get_lr()[0] lowerCamelCase__ : Any = optimizer.param_groups[0]["lr"] lowerCamelCase__ : List[Any] = epoch lowerCamelCase__ : Dict = overall_step accelerator.print(F"epoch {epoch}:" , _A ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , F"state_{epoch}.json" ) , "w" ) as f: json.dump(_A , _A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=_A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_A , ) parser.add_argument( "--output_dir" , type=_A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--resume_from_checkpoint" , type=_A , default=_A , help="If the training should continue from a checkpoint folder." , ) parser.add_argument( "--partial_train_epoch" , type=_A , default=_A , help="If passed, the training will stop after this number of epochs." , ) parser.add_argument( "--num_epochs" , type=_A , default=2 , help="Number of train epochs." , ) lowerCamelCase__ : Optional[Any] = parser.parse_args() lowerCamelCase__ : int = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(_A , _A ) if __name__ == "__main__": main()
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _lowercase : """simple docstring""" A__ = 42 A__ = None A__ = None def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = Node(1 ) lowerCamelCase__ : str = Node(2 ) lowerCamelCase__ : int = Node(3 ) lowerCamelCase__ : Any = Node(4 ) lowerCamelCase__ : Dict = Node(5 ) return tree def lowercase_ ( _A : Node | None ): """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowercase_ ( _A : Node | None ): """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowercase_ ( _A : Node | None ): """simple docstring""" lowerCamelCase__ : list[Any] = [] if root is None: return output lowerCamelCase__ : Optional[Any] = deque([root] ) while process_queue: lowerCamelCase__ : List[Any] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowercase_ ( _A : Node | None , _A : int ): """simple docstring""" lowerCamelCase__ : list[Any] = [] def populate_output(_A : Node | None , _A : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def lowercase_ ( _A : Node | None , _A : int ): """simple docstring""" lowerCamelCase__ : list[Any] = [] def populate_output(_A : Node | None , _A : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def lowercase_ ( _A : Node | None ): """simple docstring""" if root is None: return [] lowerCamelCase__ : list[Sequence[Node | None]] = [] lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : int = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) lowerCamelCase__ : str = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) lowerCamelCase__ : int = 0 return output def lowercase_ ( ): # Main function for testing. """simple docstring""" lowerCamelCase__ : str = make_tree() print(F"In-order Traversal: {inorder(_A )}" ) print(F"Pre-order Traversal: {preorder(_A )}" ) print(F"Post-order Traversal: {postorder(_A )}" , "\n" ) print(F"Height of Tree: {height(_A )}" , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(_A ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(_A ) + 1 ): print(F"Level {level}:" , get_nodes_from_left_to_right(_A , level=_A ) ) print("\nZigZag order Traversal: " ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
def lowercase_ ( _A : int = 10 , _A : int = 22 ): """simple docstring""" lowerCamelCase__ : Optional[Any] = range(1 , _A ) lowerCamelCase__ : str = range(1 , _A ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(10, 22) = }')
5
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Tuple = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class _lowercase ( lowercase__): """simple docstring""" A__ = "Wav2Vec2FeatureExtractor" A__ = "AutoTokenizer" def __init__( self : Any , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' super().__init__(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Any = self.feature_extractor lowerCamelCase__ : List[Any] = False @classmethod def lowerCAmelCase ( cls : Tuple , __lowerCamelCase : Optional[int] , **__lowerCamelCase : Tuple ): '''simple docstring''' try: return super().from_pretrained(__lowerCamelCase , **__lowerCamelCase ) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , __lowerCamelCase , ) lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Tuple = WavaVecaCTCTokenizer.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) return cls(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) def __call__( self : Optional[int] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : int ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase , **__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase__ : Union[str, Any] = kwargs.pop("raw_speech" ) else: lowerCamelCase__ : List[Any] = kwargs.pop("audio" , __lowerCamelCase ) lowerCamelCase__ : Tuple = kwargs.pop("sampling_rate" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = kwargs.pop("text" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCamelCase__ : Any = args[0] lowerCamelCase__ : List[str] = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase__ : List[Any] = self.feature_extractor(__lowerCamelCase , *__lowerCamelCase , sampling_rate=__lowerCamelCase , **__lowerCamelCase ) if text is not None: lowerCamelCase__ : Tuple = self.tokenizer(__lowerCamelCase , **__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Any = encodings["input_ids"] return inputs def lowerCAmelCase ( self : List[str] , *__lowerCamelCase : str , **__lowerCamelCase : Optional[int] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor.pad(*__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Optional[int] = kwargs.pop("input_features" , __lowerCamelCase ) lowerCamelCase__ : List[str] = kwargs.pop("labels" , __lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCamelCase__ : Dict = args[0] lowerCamelCase__ : List[str] = args[1:] if input_features is not None: lowerCamelCase__ : Tuple = self.feature_extractor.pad(__lowerCamelCase , *__lowerCamelCase , **__lowerCamelCase ) if labels is not None: lowerCamelCase__ : Dict = self.tokenizer.pad(__lowerCamelCase , **__lowerCamelCase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ : Any = labels["input_ids"] return input_features def lowerCAmelCase ( self : Optional[int] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.batch_decode(*__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , *__lowerCamelCase : Optional[int] , **__lowerCamelCase : List[str] ): '''simple docstring''' return self.tokenizer.decode(*__lowerCamelCase , **__lowerCamelCase ) @contextmanager def lowerCAmelCase ( self : List[str] ): '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase__ : Tuple = True lowerCamelCase__ : Optional[int] = self.tokenizer yield lowerCamelCase__ : Tuple = self.feature_extractor lowerCamelCase__ : Optional[int] = False
5
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
1
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
1
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge A : Dict = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] A : int = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2", "rougeL"] ) assert isinstance(_A , _A ) lowerCamelCase__ : Any = calculate_rouge(_A , _A , bootstrap_aggregation=_A , rouge_keys=["rouge2"] ) assert ( pd.DataFrame(no_aggregation["rouge2"] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["rouge2"] ).fmeasure.mean() ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = "rougeLsum" lowerCamelCase__ : Tuple = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[Any] = ["rouge1", "rouge2", "rougeL"] lowerCamelCase__ : Union[str, Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) lowerCamelCase__ : List[Any] = calculate_rouge(_A , _A , newline_sep=_A , rouge_keys=_A ) assert score_sep == score_no_sep def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = [ "Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.", "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .", ] lowerCamelCase__ : int = [ "Margot Frank, died in 1945, a month earlier than previously thought.", "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of" " the final seconds on board Flight 9525.", ] assert calculate_rouge(_A , _A , newline_sep=_A ) == calculate_rouge(_A , _A , newline_sep=_A ) def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] = [ "\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" " ] lowerCamelCase__ : Dict = [ " Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says ." ] lowerCamelCase__ : Tuple = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] , newline_sep=_A )["rougeLsum"] lowerCamelCase__ : Optional[int] = calculate_rouge(_A , _A , rouge_keys=["rougeLsum"] )["rougeLsum"] assert new_score > prev_score def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = Path("examples/seq2seq/test_data/wmt_en_ro" ) lowerCamelCase__ : List[Any] = calculate_rouge_path(data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) ) assert isinstance(_A , _A ) lowerCamelCase__ : int = calculate_rouge_path( data_dir.joinpath("test.source" ) , data_dir.joinpath("test.target" ) , bootstrap_aggregation=_A ) assert isinstance(_A , _A )
5
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase_ ( _A : str ): """simple docstring""" lowerCamelCase__ : Any = botoa.client("iam" ) lowerCamelCase__ : List[str] = { "Version": "2012-10-17", "Statement": [ {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) lowerCamelCase__ : Tuple = { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "sagemaker:*", "ecr:GetDownloadUrlForLayer", "ecr:BatchGetImage", "ecr:BatchCheckLayerAvailability", "ecr:GetAuthorizationToken", "cloudwatch:PutMetricData", "cloudwatch:GetMetricData", "cloudwatch:GetMetricStatistics", "cloudwatch:ListMetrics", "logs:CreateLogGroup", "logs:CreateLogStream", "logs:DescribeLogStreams", "logs:PutLogEvents", "logs:GetLogEvents", "s3:CreateBucket", "s3:ListBucket", "s3:GetBucketLocation", "s3:GetObject", "s3:PutObject", ], "Resource": "*", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F"{role_name}_policy_permission" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"role {role_name} already exists. Using existing one" ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : List[str] = botoa.client("iam" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : int = _ask_options( "How do you want to authorize?" , ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "] , _A , ) lowerCamelCase__ : Tuple = None if credentials_configuration == 0: lowerCamelCase__ : List[str] = _ask_field("Enter your AWS Profile name: [default] " , default="default" ) lowerCamelCase__ : Optional[int] = aws_profile else: print( "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" ) lowerCamelCase__ : Optional[int] = _ask_field("AWS Access Key ID: " ) lowerCamelCase__ : List[str] = aws_access_key_id lowerCamelCase__ : List[Any] = _ask_field("AWS Secret Access Key: " ) lowerCamelCase__ : Tuple = aws_secret_access_key lowerCamelCase__ : Optional[Any] = _ask_field("Enter your AWS Region: [us-east-1]" , default="us-east-1" ) lowerCamelCase__ : Union[str, Any] = aws_region lowerCamelCase__ : Optional[Any] = _ask_options( "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?" , ["Provide IAM Role name", "Create new IAM role using credentials"] , _A , ) if role_management == 0: lowerCamelCase__ : Optional[int] = _ask_field("Enter your IAM role name: " ) else: lowerCamelCase__ : Any = "accelerate_sagemaker_execution_role" print(F"Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials" ) _create_iam_role_for_sagemaker(_A ) lowerCamelCase__ : str = _ask_field( "Do you want to use custom Docker image? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Dict = None if is_custom_docker_image: lowerCamelCase__ : List[str] = _ask_field("Enter your Docker image: " , lambda _A : str(_A ).lower() ) lowerCamelCase__ : Optional[int] = _ask_field( "Do you want to provide SageMaker input channels with data locations? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Tuple = None if is_sagemaker_inputs_enabled: lowerCamelCase__ : Optional[int] = _ask_field( "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): " , lambda _A : str(_A ).lower() , ) lowerCamelCase__ : Union[str, Any] = _ask_field( "Do you want to enable SageMaker metrics? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : List[str] = None if is_sagemaker_metrics_enabled: lowerCamelCase__ : str = _ask_field( "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): " , lambda _A : str(_A ).lower() , ) lowerCamelCase__ : Tuple = _ask_options( "What is the distributed mode?" , ["No distributed training", "Data parallelism"] , _convert_sagemaker_distributed_mode , ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[Any] = _ask_field( "Do you wish to optimize your script with torch dynamo?[yes/NO]:" , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_dynamo: lowerCamelCase__ : List[Any] = "dynamo_" lowerCamelCase__ : List[str] = _ask_options( "Which dynamo backend would you like to use?" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowerCamelCase__ : Dict = _ask_field( "Do you want to customize the defaults sent to torch.compile? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) if use_custom_options: lowerCamelCase__ : Any = _ask_options( "Which mode do you want to use?" , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default="default" , ) lowerCamelCase__ : str = _ask_field( "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : Any = _ask_field( "Do you want to enable dynamic shape tracing? [yes/NO]: " , _convert_yes_no_to_bool , default=_A , error_message="Please enter yes or no." , ) lowerCamelCase__ : int = "Which EC2 instance type you want to use for your training?" if distributed_type != SageMakerDistributedType.NO: lowerCamelCase__ : List[str] = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowerCamelCase__ : Tuple = _ask_field(_A , lambda _A : str(_A ).lower() , default="ml.p3.2xlarge" ) lowerCamelCase__ : List[Any] = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowerCamelCase__ : List[Any] = _ask_field( "How many machines do you want use? [1]: " , _A , default=1 , ) lowerCamelCase__ : Tuple = _ask_options( "Do you wish to use FP16 or BF16 (mixed precision)?" , ["no", "fp16", "bf16", "fp8"] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
5
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Dict = TFCamembertModel.from_pretrained("jplu/tf-camembert-base" ) lowerCamelCase__ : str = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" lowerCamelCase__ : Any = model(__lowerCamelCase )["last_hidden_state"] lowerCamelCase__ : List[str] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) # compare the actual values for a slice. lowerCamelCase__ : str = tf.convert_to_tensor( [[[-0.0_2_5_4, 0.0_2_3_5, 0.1_0_2_7], [0.0_6_0_6, -0.1_8_1_1, -0.0_4_1_8], [-0.1_5_6_1, -0.1_1_2_7, 0.2_6_8_7]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
5
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowercase_ ( ): """simple docstring""" raise RuntimeError("CUDA out of memory." ) class _lowercase ( nn.Module): """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' super().__init__() lowerCamelCase__ : Union[str, Any] = nn.Linear(3 , 4 ) lowerCamelCase__ : List[str] = nn.BatchNormad(4 ) lowerCamelCase__ : Any = nn.Linear(4 , 5 ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(__lowerCamelCase ) ) ) class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : str = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Dict ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : List[Any] , __lowerCamelCase : List[str] ): nonlocal batch_sizes batch_sizes.append(__lowerCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga lowerCamelCase__ , lowerCamelCase__ : Tuple = mock_training_loop_function("hello" ) self.assertListEqual(__lowerCamelCase , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__lowerCamelCase : List[str] ): pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : Optional[int] ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(__lowerCamelCase : Tuple , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function(128 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(__lowerCamelCase : List[Any] ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__lowerCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = torch.cuda.memory_allocated() lowerCamelCase__ : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __lowerCamelCase ) lowerCamelCase__ : Dict = release_memory(__lowerCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __lowerCamelCase )
5
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Any = { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json", # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _lowercase ( lowercase__): """simple docstring""" A__ = "blenderbot-small" A__ = ["past_key_values"] A__ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Dict , __lowerCamelCase : List[str]=50265 , __lowerCamelCase : str=512 , __lowerCamelCase : Tuple=8 , __lowerCamelCase : str=2048 , __lowerCamelCase : str=16 , __lowerCamelCase : List[Any]=8 , __lowerCamelCase : Any=2048 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Tuple="gelu" , __lowerCamelCase : Tuple=512 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Dict=False , __lowerCamelCase : int=0 , __lowerCamelCase : Optional[Any]=1 , __lowerCamelCase : str=2 , __lowerCamelCase : Any=2 , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : str = vocab_size lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[int] = encoder_ffn_dim lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : Any = encoder_attention_heads lowerCamelCase__ : Union[str, Any] = decoder_ffn_dim lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[Any] = decoder_attention_heads lowerCamelCase__ : List[str] = dropout lowerCamelCase__ : List[Any] = attention_dropout lowerCamelCase__ : Dict = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Dict = init_std lowerCamelCase__ : List[str] = encoder_layerdrop lowerCamelCase__ : Dict = decoder_layerdrop lowerCamelCase__ : int = use_cache lowerCamelCase__ : List[Any] = encoder_layers lowerCamelCase__ : Tuple = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , forced_eos_token_id=__lowerCamelCase , **__lowerCamelCase , ) class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : int = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ : Union[str, Any] = {0: "batch"} lowerCamelCase__ : int = {0: "batch", 1: "past_decoder_sequence + sequence"} else: lowerCamelCase__ : Tuple = {0: "batch", 1: "decoder_sequence"} lowerCamelCase__ : str = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ : Tuple = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Optional[int] = {0: "batch", 2: "past_sequence + sequence"} else: lowerCamelCase__ : Any = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Union[str, Any] = super().outputs else: lowerCamelCase__ : int = super(__lowerCamelCase , self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ : Tuple = self.num_layers for i in range(__lowerCamelCase ): lowerCamelCase__ : Tuple = {0: "batch", 2: "past_sequence + sequence"} lowerCamelCase__ : Any = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase ( self : int , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Generate decoder inputs lowerCamelCase__ : List[str] = seq_length if not self.use_past else 1 lowerCamelCase__ : List[Any] = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ : Optional[Any] = dict(**__lowerCamelCase , **__lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : Tuple = common_inputs["input_ids"].shape lowerCamelCase__ : int = common_inputs["decoder_input_ids"].shape[1] lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.num_attention_heads lowerCamelCase__ : str = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Optional[int] = decoder_seq_length + 3 lowerCamelCase__ : Dict = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ : List[Any] = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ : str = self.num_layers lowerCamelCase__ : Union[str, Any] = min(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = max(__lowerCamelCase , __lowerCamelCase ) - min_num_layers lowerCamelCase__ : str = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__lowerCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase ), ) ) # TODO: test this. lowerCamelCase__ : Optional[int] = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__lowerCamelCase , __lowerCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) ) return common_inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ : int = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ : str = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ : Optional[int] = self.num_layers lowerCamelCase__ , lowerCamelCase__ : int = self.num_attention_heads lowerCamelCase__ : Tuple = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ : Union[str, Any] = common_inputs["attention_mask"].dtype lowerCamelCase__ : List[str] = torch.cat( [common_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) lowerCamelCase__ : Tuple = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(__lowerCamelCase ) ] return common_inputs def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' lowerCamelCase__ : str = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ : List[str] = tokenizer.num_special_tokens_to_add(__lowerCamelCase ) lowerCamelCase__ : Dict = compute_effective_axis_dimension( __lowerCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowerCamelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ : Optional[int] = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ : Optional[Any] = dict(tokenizer(__lowerCamelCase , return_tensors=__lowerCamelCase ) ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Optional[int] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) elif self.task == "causal-lm": lowerCamelCase__ : Any = self._generate_dummy_inputs_for_causal_lm( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) else: lowerCamelCase__ : Any = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) return common_inputs def lowerCAmelCase ( self : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ : Dict = super()._flatten_past_key_values_(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: lowerCamelCase__ : int = super(__lowerCamelCase , self )._flatten_past_key_values_( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
5
1
from __future__ import annotations def lowercase_ ( _A : list[int] ): """simple docstring""" return len(set(_A ) ) == len(_A ) if __name__ == "__main__": import doctest doctest.testmod()
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : int = logging.get_logger(__name__) A : Optional[int] = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "xmod" def __init__( self : int , __lowerCamelCase : Any=30522 , __lowerCamelCase : Any=768 , __lowerCamelCase : str=12 , __lowerCamelCase : Any=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : str=2 , __lowerCamelCase : List[str]=0.0_2 , __lowerCamelCase : List[str]=1E-1_2 , __lowerCamelCase : str=1 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str="absolute" , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=None , __lowerCamelCase : Optional[Any]=False , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Tuple=False , __lowerCamelCase : Tuple=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : str=("en_XX",) , __lowerCamelCase : Union[str, Any]=None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Union[str, Any] = hidden_act lowerCamelCase__ : Optional[int] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : List[Any] = attention_probs_dropout_prob lowerCamelCase__ : Any = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : Union[str, Any] = position_embedding_type lowerCamelCase__ : str = use_cache lowerCamelCase__ : Union[str, Any] = classifier_dropout lowerCamelCase__ : Any = pre_norm lowerCamelCase__ : Tuple = adapter_reduction_factor lowerCamelCase__ : Tuple = adapter_layer_norm lowerCamelCase__ : List[Any] = adapter_reuse_layer_norm lowerCamelCase__ : Dict = ln_before_adapter lowerCamelCase__ : List[Any] = list(__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = default_language class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Dict = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : List[str] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class _lowercase : """simple docstring""" def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Optional[int]=13 , __lowerCamelCase : List[str]=7 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : List[Any]=32 , __lowerCamelCase : List[Any]=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Optional[int]=37 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=512 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : str=0.0_2 , __lowerCamelCase : List[str]=3 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : Tuple = parent lowerCamelCase__ : int = batch_size lowerCamelCase__ : List[Any] = seq_length lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Any = use_token_type_ids lowerCamelCase__ : Union[str, Any] = use_labels lowerCamelCase__ : List[str] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : List[Any] = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : List[str] = max_position_embeddings lowerCamelCase__ : Optional[int] = type_vocab_size lowerCamelCase__ : List[Any] = type_sequence_label_size lowerCamelCase__ : List[str] = initializer_range lowerCamelCase__ : List[str] = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : List[Any] = self.vocab_size - 1 def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Any = None lowerCamelCase__ : str = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) lowerCamelCase__ : Optional[int] = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : int , *__lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = OpenAIGPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) lowerCamelCase__ : str = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTDoubleHeadsModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Optional[Any] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , *__lowerCamelCase : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Tuple = OpenAIGPTForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[str] = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any = config_and_inputs lowerCamelCase__ : Union[str, Any] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) A__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly A__ = ( { "feature-extraction": OpenAIGPTModel, "text-classification": OpenAIGPTForSequenceClassification, "text-generation": OpenAIGPTLMHeadModel, "zero-shot": OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple=False ): '''simple docstring''' lowerCamelCase__ : Tuple = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": lowerCamelCase__ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Tuple = inputs_dict["labels"] lowerCamelCase__ : Any = inputs_dict["labels"] lowerCamelCase__ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__lowerCamelCase , ) lowerCamelCase__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = OpenAIGPTModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__lowerCamelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = OpenAIGPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__lowerCamelCase ) lowerCamelCase__ : int = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=__lowerCamelCase ) # the president is lowerCamelCase__ : Union[str, Any] = [ 481, 4735, 544, 246, 963, 870, 762, 239, 244, 40477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the lowerCamelCase__ : int = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) A : List[str] = { "configuration_resnet": ["RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "ResNetConfig", "ResNetOnnxConfig"] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ "RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "ResNetForImageClassification", "ResNetModel", "ResNetPreTrainedModel", "ResNetBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFResNetForImageClassification", "TFResNetModel", "TFResNetPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = [ "FlaxResNetForImageClassification", "FlaxResNetModel", "FlaxResNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys A : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : Dict = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class _lowercase ( lowercase__): """simple docstring""" A__ = "ibert" def __init__( self : int , __lowerCamelCase : List[str]=30522 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : List[Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : List[str]=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Union[str, Any]=0.0_2 , __lowerCamelCase : Any=1E-1_2 , __lowerCamelCase : int=1 , __lowerCamelCase : Optional[Any]=0 , __lowerCamelCase : int=2 , __lowerCamelCase : int="absolute" , __lowerCamelCase : Tuple=False , __lowerCamelCase : Dict="none" , **__lowerCamelCase : Tuple , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : int = num_attention_heads lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[int] = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : Tuple = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : List[str] = quant_mode lowerCamelCase__ : int = force_dequant class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : Any = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Any = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=lowercase__) class _lowercase ( lowercase__): """simple docstring""" A__ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True}) A__ = Features({"question": Value("string"), "context": Value("string")}) A__ = Features( { "answers": Sequence( { "text": Value("string"), "answer_start": Value("int32"), }) }) A__ = "question" A__ = "context" A__ = "answers" @property def lowerCAmelCase ( self : int ): '''simple docstring''' return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
5
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Dict = logging.get_logger(__name__) A : Union[str, Any] = { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/config.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/config.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/config.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/config.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json", } class _lowercase ( lowercase__): """simple docstring""" A__ = "roberta" def __init__( self : int , __lowerCamelCase : Dict=50265 , __lowerCamelCase : Optional[int]=768 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : Optional[int]=12 , __lowerCamelCase : int=3072 , __lowerCamelCase : Dict="gelu" , __lowerCamelCase : Union[str, Any]=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Tuple=512 , __lowerCamelCase : List[str]=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=1E-1_2 , __lowerCamelCase : List[Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Any=2 , __lowerCamelCase : Tuple="absolute" , __lowerCamelCase : Tuple=True , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : List[Any] = vocab_size lowerCamelCase__ : str = hidden_size lowerCamelCase__ : int = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_attention_heads lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : Any = intermediate_size lowerCamelCase__ : Tuple = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : int = type_vocab_size lowerCamelCase__ : Any = initializer_range lowerCamelCase__ : Dict = layer_norm_eps lowerCamelCase__ : int = position_embedding_type lowerCamelCase__ : Any = use_cache lowerCamelCase__ : int = classifier_dropout class _lowercase ( lowercase__): """simple docstring""" @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if self.task == "multiple-choice": lowerCamelCase__ : int = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCamelCase__ : Optional[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
5
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = FunnelTokenizer A__ = FunnelTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().setUp() lowerCamelCase__ : int = [ "<unk>", "<cls>", "<sep>", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def lowerCAmelCase ( self : List[Any] , **__lowerCamelCase : Tuple ): '''simple docstring''' return FunnelTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase ( self : Any , **__lowerCamelCase : Optional[int] ): '''simple docstring''' return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : int = "UNwant\u00E9d,running" lowerCamelCase__ : Optional[Any] = "unwanted, running" return input_text, output_text def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__ : List[str] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(__lowerCamelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.get_tokenizers(do_lower_case=__lowerCamelCase ) for tokenizer in tokenizers: lowerCamelCase__ : Dict = tokenizer("UNwant\u00E9d,running" ) lowerCamelCase__ : int = len(inputs["input_ids"] ) - 1 self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len ) lowerCamelCase__ : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" ) self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
5
import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features A : Union[str, Any] = logging.get_logger(__name__) A : Union[str, Any] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) A : Optional[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _lowercase : """simple docstring""" A__ = field( default=lowercase__ , metadata={"help": "Model type selected in the list: " + ", ".join(lowercase__)}) A__ = field( default=lowercase__ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."}) A__ = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A__ = field( default=1_28 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) A__ = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) A__ = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) A__ = field( default=lowercase__ , metadata={"help": "Overwrite the cached training and evaluation sets"}) A__ = field( default=lowercase__ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."}) A__ = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."}) A__ = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) A__ = field(default=1 , metadata={"help": "multiple threads for converting example to features"}) class _lowercase ( lowercase__): """simple docstring""" A__ = "train" A__ = "dev" class _lowercase ( lowercase__): """simple docstring""" A__ = 42 A__ = 42 A__ = 42 A__ = 42 def __init__( self : Optional[int] , __lowerCamelCase : SquadDataTrainingArguments , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Union[str, Split] = Split.train , __lowerCamelCase : Optional[bool] = False , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[str] = "pt" , ): '''simple docstring''' lowerCamelCase__ : List[str] = args lowerCamelCase__ : Tuple = is_language_sensitive lowerCamelCase__ : int = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowerCamelCase , __lowerCamelCase ): try: lowerCamelCase__ : List[str] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name" ) lowerCamelCase__ : str = mode # Load data features from cache or dataset file lowerCamelCase__ : Any = "v2" if args.version_2_with_negative else "v1" lowerCamelCase__ : List[str] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCamelCase__ : List[str] = cached_features_file + ".lock" with FileLock(__lowerCamelCase ): if os.path.exists(__lowerCamelCase ) and not args.overwrite_cache: lowerCamelCase__ : str = time.time() lowerCamelCase__ : Tuple = torch.load(__lowerCamelCase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. lowerCamelCase__ : Optional[Any] = self.old_features["features"] lowerCamelCase__ : Optional[int] = self.old_features.get("dataset" , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] = self.old_features.get("examples" , __lowerCamelCase ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" " future run" ) else: if mode == Split.dev: lowerCamelCase__ : List[Any] = self.processor.get_dev_examples(args.data_dir ) else: lowerCamelCase__ : str = self.processor.get_train_examples(args.data_dir ) lowerCamelCase__ , lowerCamelCase__ : Tuple = squad_convert_examples_to_features( examples=self.examples , tokenizer=__lowerCamelCase , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=__lowerCamelCase , ) lowerCamelCase__ : int = time.time() torch.save( {"features": self.features, "dataset": self.dataset, "examples": self.examples} , __lowerCamelCase , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : List[Any] ): '''simple docstring''' return len(self.features ) def __getitem__( self : List[str] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = self.features[i] lowerCamelCase__ : Tuple = torch.tensor(feature.input_ids , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) lowerCamelCase__ : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.cls_index , dtype=torch.long ) lowerCamelCase__ : Any = torch.tensor(feature.p_mask , dtype=torch.float ) lowerCamelCase__ : Union[str, Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) lowerCamelCase__ : List[str] = { "input_ids": input_ids, "attention_mask": attention_mask, "token_type_ids": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": cls_index, "p_mask": p_mask} ) if self.args.version_2_with_negative: inputs.update({"is_impossible": is_impossible} ) if self.is_language_sensitive: inputs.update({"langs": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: lowerCamelCase__ : List[Any] = torch.tensor(feature.start_position , dtype=torch.long ) lowerCamelCase__ : List[Any] = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"start_positions": start_positions, "end_positions": end_positions} ) return inputs
5
1
import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(lowercase__) , "Tatoeba directory does not exist.") class _lowercase ( unittest.TestCase): """simple docstring""" @cached_property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Any = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCamelCase ) @slow def lowerCAmelCase ( self : str ): '''simple docstring''' self.resolver.convert_models(["heb-eng"] ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCamelCase ) assert mmeta["long_pair"] == "heb-eng"
5
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging A : Tuple = logging.get_logger(__name__) A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED A : int = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } A : Union[str, Any] = { "allenai/led-base-16384": 16384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : str = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowerCamelCase__ : Any = bs[:] lowerCamelCase__ : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 lowerCamelCase__ : Any = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def lowercase_ ( _A : Any ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = set() lowerCamelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase__ : Any = char return pairs class _lowercase ( lowercase__): """simple docstring""" A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ["input_ids", "attention_mask"] def __init__( self : str , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]="replace" , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : int="</s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : List[str]="<pad>" , __lowerCamelCase : Union[str, Any]="<mask>" , __lowerCamelCase : Tuple=False , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else bos_token lowerCamelCase__ : Optional[int] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else eos_token lowerCamelCase__ : str = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else sep_token lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else cls_token lowerCamelCase__ : Optional[Any] = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else unk_token lowerCamelCase__ : Tuple = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase__ : int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token super().__init__( errors=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , add_prefix_space=__lowerCamelCase , **__lowerCamelCase , ) with open(__lowerCamelCase , encoding="utf-8" ) as vocab_handle: lowerCamelCase__ : Union[str, Any] = json.load(__lowerCamelCase ) lowerCamelCase__ : List[str] = {v: k for k, v in self.encoder.items()} lowerCamelCase__ : Union[str, Any] = errors # how to handle errors in decoding lowerCamelCase__ : List[Any] = bytes_to_unicode() lowerCamelCase__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowerCamelCase , encoding="utf-8" ) as merges_handle: lowerCamelCase__ : List[Any] = merges_handle.read().split("\n" )[1:-1] lowerCamelCase__ : str = [tuple(merge.split() ) for merge in bpe_merges] lowerCamelCase__ : Optional[Any] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) lowerCamelCase__ : List[Any] = {} lowerCamelCase__ : Dict = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowerCamelCase__ : List[str] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Dict ): '''simple docstring''' if token in self.cache: return self.cache[token] lowerCamelCase__ : Union[str, Any] = tuple(__lowerCamelCase ) lowerCamelCase__ : Tuple = get_pairs(__lowerCamelCase ) if not pairs: return token while True: lowerCamelCase__ : str = min(__lowerCamelCase , key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = bigram lowerCamelCase__ : int = [] lowerCamelCase__ : int = 0 while i < len(__lowerCamelCase ): try: lowerCamelCase__ : Union[str, Any] = word.index(__lowerCamelCase , __lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase__ : List[str] = j if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase__ : Dict = tuple(__lowerCamelCase ) lowerCamelCase__ : str = new_word if len(__lowerCamelCase ) == 1: break else: lowerCamelCase__ : List[str] = get_pairs(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = " ".join(__lowerCamelCase ) lowerCamelCase__ : Dict = word return word def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = [] for token in re.findall(self.pat , __lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowerCamelCase ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Any , __lowerCamelCase : int ): '''simple docstring''' return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' return self.decoder.get(__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = "".join(__lowerCamelCase ) lowerCamelCase__ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(__lowerCamelCase ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCamelCase__ : List[Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ : Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase ) + "\n" ) lowerCamelCase__ : Tuple = 0 with open(__lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) lowerCamelCase__ : List[Any] = token_index writer.write(" ".join(__lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase__ : List[str] = [self.cls_token_id] lowerCamelCase__ : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowerCamelCase__ : Any = [self.sep_token_id] lowerCamelCase__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Dict=False , **__lowerCamelCase : List[str] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowerCamelCase ) > 0 and not text[0].isspace()): lowerCamelCase__ : Dict = " " + text return (text, kwargs) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Union[Dict[str, EncodedInput], BatchEncoding] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): '''simple docstring''' lowerCamelCase__ : str = super()._pad( encoded_inputs=__lowerCamelCase , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: lowerCamelCase__ : str = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: lowerCamelCase__ : Optional[int] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. lowerCamelCase__ : Union[str, Any] = len(encoded_inputs["global_attention_mask"] ) != len(__lowerCamelCase ) if needs_to_be_padded: lowerCamelCase__ : Dict = len(__lowerCamelCase ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` lowerCamelCase__ : Optional[int] = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": lowerCamelCase__ : Union[str, Any] = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
5
1
import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() A : List[Any] = logging.get_logger("transformers.models.encodec") A : Optional[int] = { "quantizer.vq.layers.*._codebook.inited": "quantizer.layers.*.codebook.inited", "quantizer.vq.layers.*._codebook.cluster_size": "quantizer.layers.*.codebook.cluster_size", "quantizer.vq.layers.*._codebook.embed": "quantizer.layers.*.codebook.embed", "quantizer.vq.layers.*._codebook.embed_avg": "quantizer.layers.*.codebook.embed_avg", } A : Dict = { "encoder.model.0.conv.conv": "encoder.layers.0.conv", "encoder.model.1.block.1.conv.conv": "encoder.layers.1.block.1.conv", "encoder.model.1.block.3.conv.conv": "encoder.layers.1.block.3.conv", "encoder.model.1.shortcut.conv.conv": "encoder.layers.1.shortcut.conv", "encoder.model.3.conv.conv": "encoder.layers.3.conv", "encoder.model.4.block.1.conv.conv": "encoder.layers.4.block.1.conv", "encoder.model.4.block.3.conv.conv": "encoder.layers.4.block.3.conv", "encoder.model.4.shortcut.conv.conv": "encoder.layers.4.shortcut.conv", "encoder.model.6.conv.conv": "encoder.layers.6.conv", "encoder.model.7.block.1.conv.conv": "encoder.layers.7.block.1.conv", "encoder.model.7.block.3.conv.conv": "encoder.layers.7.block.3.conv", "encoder.model.7.shortcut.conv.conv": "encoder.layers.7.shortcut.conv", "encoder.model.9.conv.conv": "encoder.layers.9.conv", "encoder.model.10.block.1.conv.conv": "encoder.layers.10.block.1.conv", "encoder.model.10.block.3.conv.conv": "encoder.layers.10.block.3.conv", "encoder.model.10.shortcut.conv.conv": "encoder.layers.10.shortcut.conv", "encoder.model.12.conv.conv": "encoder.layers.12.conv", "encoder.model.13.lstm": "encoder.layers.13.lstm", "encoder.model.15.conv.conv": "encoder.layers.15.conv", } A : str = { "encoder.model.0.conv.norm": "encoder.layers.0.norm", "encoder.model.1.block.1.conv.norm": "encoder.layers.1.block.1.norm", "encoder.model.1.block.3.conv.norm": "encoder.layers.1.block.3.norm", "encoder.model.1.shortcut.conv.norm": "encoder.layers.1.shortcut.norm", "encoder.model.3.conv.norm": "encoder.layers.3.norm", "encoder.model.4.block.1.conv.norm": "encoder.layers.4.block.1.norm", "encoder.model.4.block.3.conv.norm": "encoder.layers.4.block.3.norm", "encoder.model.4.shortcut.conv.norm": "encoder.layers.4.shortcut.norm", "encoder.model.6.conv.norm": "encoder.layers.6.norm", "encoder.model.7.block.1.conv.norm": "encoder.layers.7.block.1.norm", "encoder.model.7.block.3.conv.norm": "encoder.layers.7.block.3.norm", "encoder.model.7.shortcut.conv.norm": "encoder.layers.7.shortcut.norm", "encoder.model.9.conv.norm": "encoder.layers.9.norm", "encoder.model.10.block.1.conv.norm": "encoder.layers.10.block.1.norm", "encoder.model.10.block.3.conv.norm": "encoder.layers.10.block.3.norm", "encoder.model.10.shortcut.conv.norm": "encoder.layers.10.shortcut.norm", "encoder.model.12.conv.norm": "encoder.layers.12.norm", "encoder.model.15.conv.norm": "encoder.layers.15.norm", } A : List[str] = { "decoder.model.0.conv.conv": "decoder.layers.0.conv", "decoder.model.1.lstm": "decoder.layers.1.lstm", "decoder.model.3.convtr.convtr": "decoder.layers.3.conv", "decoder.model.4.block.1.conv.conv": "decoder.layers.4.block.1.conv", "decoder.model.4.block.3.conv.conv": "decoder.layers.4.block.3.conv", "decoder.model.4.shortcut.conv.conv": "decoder.layers.4.shortcut.conv", "decoder.model.6.convtr.convtr": "decoder.layers.6.conv", "decoder.model.7.block.1.conv.conv": "decoder.layers.7.block.1.conv", "decoder.model.7.block.3.conv.conv": "decoder.layers.7.block.3.conv", "decoder.model.7.shortcut.conv.conv": "decoder.layers.7.shortcut.conv", "decoder.model.9.convtr.convtr": "decoder.layers.9.conv", "decoder.model.10.block.1.conv.conv": "decoder.layers.10.block.1.conv", "decoder.model.10.block.3.conv.conv": "decoder.layers.10.block.3.conv", "decoder.model.10.shortcut.conv.conv": "decoder.layers.10.shortcut.conv", "decoder.model.12.convtr.convtr": "decoder.layers.12.conv", "decoder.model.13.block.1.conv.conv": "decoder.layers.13.block.1.conv", "decoder.model.13.block.3.conv.conv": "decoder.layers.13.block.3.conv", "decoder.model.13.shortcut.conv.conv": "decoder.layers.13.shortcut.conv", "decoder.model.15.conv.conv": "decoder.layers.15.conv", } A : int = { "decoder.model.0.conv.norm": "decoder.layers.0.norm", "decoder.model.3.convtr.norm": "decoder.layers.3.norm", "decoder.model.4.block.1.conv.norm": "decoder.layers.4.block.1.norm", "decoder.model.4.block.3.conv.norm": "decoder.layers.4.block.3.norm", "decoder.model.4.shortcut.conv.norm": "decoder.layers.4.shortcut.norm", "decoder.model.6.convtr.norm": "decoder.layers.6.norm", "decoder.model.7.block.1.conv.norm": "decoder.layers.7.block.1.norm", "decoder.model.7.block.3.conv.norm": "decoder.layers.7.block.3.norm", "decoder.model.7.shortcut.conv.norm": "decoder.layers.7.shortcut.norm", "decoder.model.9.convtr.norm": "decoder.layers.9.norm", "decoder.model.10.block.1.conv.norm": "decoder.layers.10.block.1.norm", "decoder.model.10.block.3.conv.norm": "decoder.layers.10.block.3.norm", "decoder.model.10.shortcut.conv.norm": "decoder.layers.10.shortcut.norm", "decoder.model.12.convtr.norm": "decoder.layers.12.norm", "decoder.model.13.block.1.conv.norm": "decoder.layers.13.block.1.norm", "decoder.model.13.block.3.conv.norm": "decoder.layers.13.block.3.norm", "decoder.model.13.shortcut.conv.norm": "decoder.layers.13.shortcut.norm", "decoder.model.15.conv.norm": "decoder.layers.15.norm", } A : Union[str, Any] = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } A : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } A : str = [] A : List[str] = [] def lowercase_ ( _A : Union[str, Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : Optional[int] , _A : int ): """simple docstring""" for attribute in key.split("." ): lowerCamelCase__ : Optional[Any] = getattr(_A , _A ) if weight_type is not None: lowerCamelCase__ : List[str] = getattr(_A , _A ).shape else: lowerCamelCase__ : List[str] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" F" {value.shape} for {full_name}" ) if weight_type == "weight": lowerCamelCase__ : Dict = value elif weight_type == "weight_g": lowerCamelCase__ : str = value elif weight_type == "weight_v": lowerCamelCase__ : Optional[int] = value elif weight_type == "bias": lowerCamelCase__ : Tuple = value elif weight_type == "running_mean": lowerCamelCase__ : List[Any] = value elif weight_type == "running_var": lowerCamelCase__ : str = value elif weight_type == "num_batches_tracked": lowerCamelCase__ : List[Any] = value elif weight_type == "weight_ih_l0": lowerCamelCase__ : Optional[Any] = value elif weight_type == "weight_hh_l0": lowerCamelCase__ : Tuple = value elif weight_type == "bias_ih_l0": lowerCamelCase__ : str = value elif weight_type == "bias_hh_l0": lowerCamelCase__ : Optional[int] = value elif weight_type == "weight_ih_l1": lowerCamelCase__ : Dict = value elif weight_type == "weight_hh_l1": lowerCamelCase__ : str = value elif weight_type == "bias_ih_l1": lowerCamelCase__ : Optional[Any] = value elif weight_type == "bias_hh_l1": lowerCamelCase__ : int = value else: lowerCamelCase__ : Optional[Any] = value logger.info(F"{key + ('.' + weight_type if weight_type is not None else '')} was initialized from {full_name}." ) def lowercase_ ( _A : Tuple , _A : Any ): """simple docstring""" for key in ignore_keys: if key.endswith(".*" ): if name.startswith(key[:-1] ): return True elif ".*." in key: lowerCamelCase__ , lowerCamelCase__ : Any = key.split(".*." ) if prefix in name and suffix in name: return True elif key in name: return True return False def lowercase_ ( _A : List[Any] , _A : Optional[int] , _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": lowerCamelCase__ : str = MAPPING_24K elif model_name == "encodec_48khz": lowerCamelCase__ : Any = MAPPING_48K else: raise ValueError(F"Unsupported model: {model_name}" ) for name, value in orig_dict.items(): if should_ignore(_A , _A ): logger.info(F"{name} was ignored" ) continue lowerCamelCase__ : int = False for key, mapped_key in MAPPING.items(): if "*" in key: lowerCamelCase__ , lowerCamelCase__ : Any = key.split(".*." ) if prefix in name and suffix in name: lowerCamelCase__ : Optional[Any] = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("embed" ) and name.endswith("embed_avg" ): continue lowerCamelCase__ : Optional[Any] = True if "*" in mapped_key: lowerCamelCase__ : Optional[Any] = name.split(_A )[0].split("." )[-2] lowerCamelCase__ : str = mapped_key.replace("*" , _A ) if "weight_g" in name: lowerCamelCase__ : Any = "weight_g" elif "weight_v" in name: lowerCamelCase__ : List[Any] = "weight_v" elif "weight_ih_l0" in name: lowerCamelCase__ : Union[str, Any] = "weight_ih_l0" elif "weight_hh_l0" in name: lowerCamelCase__ : Dict = "weight_hh_l0" elif "bias_ih_l0" in name: lowerCamelCase__ : Optional[Any] = "bias_ih_l0" elif "bias_hh_l0" in name: lowerCamelCase__ : Optional[int] = "bias_hh_l0" elif "weight_ih_l1" in name: lowerCamelCase__ : Dict = "weight_ih_l1" elif "weight_hh_l1" in name: lowerCamelCase__ : Optional[Any] = "weight_hh_l1" elif "bias_ih_l1" in name: lowerCamelCase__ : List[str] = "bias_ih_l1" elif "bias_hh_l1" in name: lowerCamelCase__ : List[Any] = "bias_hh_l1" elif "bias" in name: lowerCamelCase__ : str = "bias" elif "weight" in name: lowerCamelCase__ : List[Any] = "weight" elif "running_mean" in name: lowerCamelCase__ : Any = "running_mean" elif "running_var" in name: lowerCamelCase__ : List[Any] = "running_var" elif "num_batches_tracked" in name: lowerCamelCase__ : str = "num_batches_tracked" else: lowerCamelCase__ : Optional[int] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F"Unused weights: {unused_weights}" ) @torch.no_grad() def lowercase_ ( _A : Tuple , _A : Union[str, Any] , _A : List[str] , _A : List[str]=None , _A : Optional[int]=None , ): """simple docstring""" if config_path is not None: lowerCamelCase__ : str = EncodecConfig.from_pretrained(_A ) else: lowerCamelCase__ : Optional[int] = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": lowerCamelCase__ : Union[str, Any] = [8, 5, 4, 4] lowerCamelCase__ : Tuple = [2.2] lowerCamelCase__ : int = 64 lowerCamelCase__ : List[Any] = 32000 lowerCamelCase__ : Optional[int] = 2048 lowerCamelCase__ : Optional[Any] = False lowerCamelCase__ : int = False lowerCamelCase__ : int = False elif model_name == "encodec_48khz": lowerCamelCase__ : Any = [8, 5, 4, 2] lowerCamelCase__ : str = [3.0, 6.0, 12.0, 24.0] lowerCamelCase__ : Dict = 48000 lowerCamelCase__ : Optional[int] = 2 lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : str = "time_group_norm" lowerCamelCase__ : int = True lowerCamelCase__ : Optional[Any] = 1.0 lowerCamelCase__ : Union[str, Any] = 0.01 else: raise ValueError(F"Unknown model name: {model_name}" ) lowerCamelCase__ : Dict = EncodecModel(_A ) lowerCamelCase__ : Dict = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(_A ) lowerCamelCase__ : Dict = torch.load(_A ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights lowerCamelCase__ : List[str] = original_checkpoint["best_state"] recursively_load_weights(_A , _A , _A ) model.save_pretrained(_A ) if repo_id: print("Pushing to the hub..." ) feature_extractor.push_to_hub(_A ) model.push_to_hub(_A ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( "--model", default="encodec_24khz", type=str, help="The model to convert. Should be one of 'encodec_24khz', 'encodec_32khz', 'encodec_48khz'.", ) parser.add_argument("--checkpoint_path", required=True, default=None, type=str, help="Path to original checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--pytorch_dump_folder_path", required=True, default=None, type=str, help="Path to the output PyTorch model." ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) A : List[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
5
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = KandinskyVaaImgaImgPipeline A__ = ["image_embeds", "negative_image_embeds", "image"] A__ = [ "image_embeds", "negative_image_embeds", "image", ] A__ = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] A__ = False @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return 100 @property def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } lowerCamelCase__ : Tuple = UNetaDConditionModel(**__lowerCamelCase ) return model @property def lowerCAmelCase ( self : int ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__ : int = VQModel(**self.dummy_movq_kwargs ) return model def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.dummy_unet lowerCamelCase__ : Optional[Any] = self.dummy_movq lowerCamelCase__ : Optional[int] = { "num_train_timesteps": 1000, "beta_schedule": "linear", "beta_start": 0.0_0_0_8_5, "beta_end": 0.0_1_2, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } lowerCamelCase__ : List[Any] = DDIMScheduler(**__lowerCamelCase ) lowerCamelCase__ : Tuple = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : int=0 ): '''simple docstring''' lowerCamelCase__ : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image lowerCamelCase__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) lowerCamelCase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__ : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert("RGB" ).resize((256, 256) ) if str(__lowerCamelCase ).startswith("mps" ): lowerCamelCase__ : Optional[int] = torch.manual_seed(__lowerCamelCase ) else: lowerCamelCase__ : List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) lowerCamelCase__ : Tuple = { "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : Dict = "cpu" lowerCamelCase__ : str = self.get_dummy_components() lowerCamelCase__ : Optional[int] = self.pipeline_class(**__lowerCamelCase ) lowerCamelCase__ : List[str] = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Optional[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) lowerCamelCase__ : List[str] = output.images lowerCamelCase__ : Optional[Any] = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] lowerCamelCase__ : int = image[0, -3:, -3:, -1] lowerCamelCase__ : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCamelCase__ : str = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_img2img_frog.npy" ) lowerCamelCase__ : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) lowerCamelCase__ : Any = "A red cartoon frog, 4k" lowerCamelCase__ : str = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) lowerCamelCase__ : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder" , torch_dtype=torch.floataa ) lowerCamelCase__ : str = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) lowerCamelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCamelCase__ , lowerCamelCase__ : List[str] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() lowerCamelCase__ : Optional[Any] = pipeline( image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="np" , ) lowerCamelCase__ : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
5
1
import numpy as np def lowercase_ ( _A : np.array ): """simple docstring""" return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
def lowercase_ ( _A : int = 100 ): """simple docstring""" lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : str = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'{solution() = }')
5
import os from pathlib import Path def lowercase_ ( ): """simple docstring""" from torch.utils.cpp_extension import load lowerCamelCase__ : Any = Path(_A ).resolve().parent.parent.parent / "kernels" / "deformable_detr" lowerCamelCase__ : Optional[int] = [ root / filename for filename in [ "vision.cpp", os.path.join("cpu" , "ms_deform_attn_cpu.cpp" ), os.path.join("cuda" , "ms_deform_attn_cuda.cu" ), ] ] load( "MultiScaleDeformableAttention" , _A , with_cuda=_A , extra_include_paths=[str(_A )] , extra_cflags=["-DWITH_CUDA=1"] , extra_cuda_cflags=[ "-DCUDA_HAS_FP16=1", "-D__CUDA_NO_HALF_OPERATORS__", "-D__CUDA_NO_HALF_CONVERSIONS__", "-D__CUDA_NO_HALF2_OPERATORS__", ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
5
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging A : Tuple = logging.get_logger(__name__) if is_vision_available(): import PIL class _lowercase ( lowercase__): """simple docstring""" A__ = ["pixel_values"] def __init__( self : str , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : bool = True , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : bool = True , __lowerCamelCase : Union[int, float] = 1 / 255 , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = True , **__lowerCamelCase : List[Any] , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) lowerCamelCase__ : int = size if size is not None else {"shortest_edge": 224} lowerCamelCase__ : Optional[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Tuple = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCamelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase , param_name="crop_size" ) lowerCamelCase__ : List[str] = do_resize lowerCamelCase__ : int = size lowerCamelCase__ : Optional[int] = resample lowerCamelCase__ : List[str] = do_center_crop lowerCamelCase__ : Dict = crop_size lowerCamelCase__ : List[Any] = do_rescale lowerCamelCase__ : Optional[int] = rescale_factor lowerCamelCase__ : Optional[Any] = do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCamelCase__ : Optional[Any] = image_std if image_std is not None else OPENAI_CLIP_STD lowerCamelCase__ : Optional[Any] = do_convert_rgb def lowerCAmelCase ( self : Tuple , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : str , ): '''simple docstring''' lowerCamelCase__ : int = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase ) if "shortest_edge" not in size: raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) lowerCamelCase__ : Any = get_resize_output_image_size(__lowerCamelCase , size=size["shortest_edge"] , default_to_square=__lowerCamelCase ) return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Dict[str, int] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Optional[int] , ): '''simple docstring''' lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[int, float] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : List[str] , ): '''simple docstring''' return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : List[str] , __lowerCamelCase : np.ndarray , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Union[float, List[float]] , __lowerCamelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCamelCase : Dict , ): '''simple docstring''' return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : ImageInput , __lowerCamelCase : bool = None , __lowerCamelCase : Dict[str, int] = None , __lowerCamelCase : PILImageResampling = None , __lowerCamelCase : bool = None , __lowerCamelCase : int = None , __lowerCamelCase : bool = None , __lowerCamelCase : float = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : Optional[Union[float, List[float]]] = None , __lowerCamelCase : bool = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , __lowerCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , **__lowerCamelCase : Optional[Any] , ): '''simple docstring''' lowerCamelCase__ : int = do_resize if do_resize is not None else self.do_resize lowerCamelCase__ : Dict = size if size is not None else self.size lowerCamelCase__ : str = get_size_dict(__lowerCamelCase , param_name="size" , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Dict = resample if resample is not None else self.resample lowerCamelCase__ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase__ : int = crop_size if crop_size is not None else self.crop_size lowerCamelCase__ : List[str] = get_size_dict(__lowerCamelCase , param_name="crop_size" , default_to_square=__lowerCamelCase ) lowerCamelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase__ : Dict = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize lowerCamelCase__ : Tuple = image_mean if image_mean is not None else self.image_mean lowerCamelCase__ : Optional[int] = image_std if image_std is not None else self.image_std lowerCamelCase__ : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCamelCase__ : Optional[int] = make_list_of_images(__lowerCamelCase ) if not valid_images(__lowerCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCamelCase__ : Union[str, Any] = [convert_to_rgb(__lowerCamelCase ) for image in images] # All transformations expect numpy arrays. lowerCamelCase__ : Tuple = [to_numpy_array(__lowerCamelCase ) for image in images] if do_resize: lowerCamelCase__ : int = [self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase ) for image in images] if do_center_crop: lowerCamelCase__ : Any = [self.center_crop(image=__lowerCamelCase , size=__lowerCamelCase ) for image in images] if do_rescale: lowerCamelCase__ : List[str] = [self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase ) for image in images] if do_normalize: lowerCamelCase__ : Any = [self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase ) for image in images] lowerCamelCase__ : Optional[Any] = [to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase ) for image in images] lowerCamelCase__ : Dict = {"pixel_values": images} return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
5
import os from datetime import datetime as dt from github import Github A : Union[str, Any] = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] = Github(os.environ["GITHUB_TOKEN"] ) lowerCamelCase__ : str = g.get_repo("huggingface/diffusers" ) lowerCamelCase__ : Optional[int] = repo.get_issues(state="open" ) for issue in open_issues: lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_A ) lowerCamelCase__ : str = comments[0] if len(_A ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state="closed" ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state="open" ) issue.remove_from_labels("stale" ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) issue.add_to_labels("stale" ) if __name__ == "__main__": main()
5
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Optional[int] = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
from __future__ import annotations def lowercase_ ( _A : str , _A : list[str] | None = None , _A : dict[str, float] | None = None , _A : bool = False , ): """simple docstring""" lowerCamelCase__ : Tuple = cipher_alphabet or [chr(_A ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase__ : Dict = { "a": 0.08_497, "b": 0.01_492, "c": 0.02_202, "d": 0.04_253, "e": 0.11_162, "f": 0.02_228, "g": 0.02_015, "h": 0.06_094, "i": 0.07_546, "j": 0.00_153, "k": 0.01_292, "l": 0.04_025, "m": 0.02_406, "n": 0.06_749, "o": 0.07_507, "p": 0.01_929, "q": 0.00_095, "r": 0.07_587, "s": 0.06_327, "t": 0.09_356, "u": 0.02_758, "v": 0.00_978, "w": 0.02_560, "x": 0.00_150, "y": 0.01_994, "z": 0.00_077, } else: # Custom frequencies dictionary lowerCamelCase__ : Optional[int] = frequencies_dict if not case_sensitive: lowerCamelCase__ : str = ciphertext.lower() # Chi squared statistic values lowerCamelCase__ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_A ) ): lowerCamelCase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase__ : Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( _A ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase__ : str = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase__ : List[str] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : List[str] = decrypted_with_shift.lower().count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : List[Any] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase__ : Any = decrypted_with_shift.count(_A ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase__ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase__ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase__ : Optional[int] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_A : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase__ : int = min( _A , key=_A , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : int = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
5
1
import pprint import requests A : List[str] = "https://zenquotes.io/api" def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + "/today" ).json() def lowercase_ ( ): """simple docstring""" return requests.get(API_ENDPOINT_URL + "/random" ).json() if __name__ == "__main__": A : Union[str, Any] = random_quotes() pprint.pprint(response)
5
def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : List[str] = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if number < 0: return False lowerCamelCase__ : Dict = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
5
1
def lowercase_ ( _A : Dict ): """simple docstring""" if collection == []: return [] # get some information about the collection lowerCamelCase__ : int = len(_A ) lowerCamelCase__ : Dict = max(_A ) lowerCamelCase__ : str = min(_A ) # create the counting array lowerCamelCase__ : Optional[int] = coll_max + 1 - coll_min lowerCamelCase__ : Tuple = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _A ): lowerCamelCase__ : Dict = counting_arr[i] + counting_arr[i - 1] # create the output collection lowerCamelCase__ : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _A ) ): lowerCamelCase__ : int = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def lowercase_ ( _A : str ): """simple docstring""" return "".join([chr(_A ) for i in counting_sort([ord(_A ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("thisisthestring") == "eghhiiinrsssttt" A : Dict = input("Enter numbers separated by a comma:\n").strip() A : Any = [int(item) for item in user_input.split(",")] print(counting_sort(unsorted))
5
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) A : Optional[int] = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
5
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
5
from __future__ import annotations import time import numpy as np A : Dict = [8, 5, 9, 7] A : Optional[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] A : Any = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : list[list[int]] , ): '''simple docstring''' lowerCamelCase__ : int = claim_vector lowerCamelCase__ : str = allocated_resources_table lowerCamelCase__ : int = maximum_claim_table def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__lowerCamelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' return {self.__need().index(__lowerCamelCase ): i for i in self.__need()} def lowerCAmelCase ( self : List[str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.__need() lowerCamelCase__ : str = self.__allocated_resources_table lowerCamelCase__ : List[Any] = self.__available_resources() lowerCamelCase__ : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: lowerCamelCase__ : int = False for each_need in need_list: lowerCamelCase__ : Dict = True for index, need in enumerate(__lowerCamelCase ): if need > available_resources[index]: lowerCamelCase__ : str = False break if execution: lowerCamelCase__ : Tuple = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: lowerCamelCase__ : Any = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__lowerCamelCase ) # update available/freed resources stack lowerCamelCase__ : Union[str, Any] = np.array(__lowerCamelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__lowerCamelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__lowerCamelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__lowerCamelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__lowerCamelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
import os def lowercase_ ( _A : Tuple ): """simple docstring""" lowerCamelCase__ : Optional[Any] = len(grid[0] ) lowerCamelCase__ : List[str] = len(_A ) lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Optional[int] = 0 lowerCamelCase__ : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_A ): for j in range(n_rows - 3 ): lowerCamelCase__ : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__ : Optional[Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__ : str = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__ : Union[str, Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__ : List[Any] = max( _A , _A , _A , _A ) if max_product > largest: lowerCamelCase__ : Union[str, Any] = max_product return largest def lowercase_ ( ): """simple docstring""" lowerCamelCase__ : List[str] = [] with open(os.path.dirname(_A ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase__ : Any = [[int(_A ) for i in grid[j]] for j in range(len(_A ) )] return largest_product(_A ) if __name__ == "__main__": print(solution())
5
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class _lowercase ( lowercase__ , unittest.TestCase): """simple docstring""" A__ = BarthezTokenizer A__ = BarthezTokenizerFast A__ = True A__ = True def lowerCAmelCase ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__ : List[str] = BarthezTokenizerFast.from_pretrained("moussaKam/mbarthez" ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=__lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Any = "<pad>" lowerCamelCase__ : Tuple = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__lowerCamelCase ) , 101122 ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101122 ) @require_torch def lowerCAmelCase ( self : int ): '''simple docstring''' lowerCamelCase__ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] lowerCamelCase__ : str = [0, 57, 3018, 70307, 91, 2] lowerCamelCase__ : Tuple = self.tokenizer( __lowerCamelCase , max_length=len(__lowerCamelCase ) , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors="pt" ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) lowerCamelCase__ : Any = batch.input_ids.tolist()[0] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCamelCase__ : Any = self.get_tokenizer() lowerCamelCase__ : Tuple = self.get_rust_tokenizer() lowerCamelCase__ : Union[str, Any] = "I was born in 92000, and this is falsé." lowerCamelCase__ : Dict = tokenizer.tokenize(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = rust_tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Tuple = tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : List[str] = self.get_rust_tokenizer() lowerCamelCase__ : Optional[Any] = tokenizer.encode(__lowerCamelCase ) lowerCamelCase__ : List[Any] = rust_tokenizer.encode(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) @slow def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : int = {"input_ids": [[0, 490, 14328, 4507, 354, 47, 43669, 95, 25, 78117, 20215, 19779, 190, 22, 400, 4, 35343, 80310, 603, 86, 24937, 105, 33438, 94762, 196, 39642, 7, 15, 15933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10534, 87, 25, 66, 3358, 196, 55289, 8, 82961, 81, 2204, 75203, 7, 15, 763, 12956, 216, 178, 14328, 9595, 1377, 69693, 7, 448, 71021, 196, 18106, 1437, 13974, 108, 9083, 4, 49315, 7, 39, 86, 1326, 2793, 46333, 4, 448, 196, 74588, 7, 49315, 7, 39, 21, 822, 38470, 74, 21, 66723, 62480, 8, 22050, 5, 2]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. lowerCamelCase__ : List[str] = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="moussaKam/mbarthez" , revision="c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6" , sequences=__lowerCamelCase , )
5
1
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP A : Union[str, Any] = False try: A : str = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class _lowercase : """simple docstring""" def __init__( self : Optional[int] , __lowerCamelCase : str = None , __lowerCamelCase : list = [] ): '''simple docstring''' lowerCamelCase__ : Tuple = 0 lowerCamelCase__ : Optional[int] = choices lowerCamelCase__ : Union[str, Any] = prompt if sys.platform == "win32": lowerCamelCase__ : Optional[int] = "*" else: lowerCamelCase__ : Union[str, Any] = "➔ " def lowerCAmelCase ( self : int , __lowerCamelCase : int , __lowerCamelCase : str = "" ): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index] , 32 , __lowerCamelCase ) else: forceWrite(self.choices[index] , __lowerCamelCase ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : int ): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(__lowerCamelCase ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def lowerCAmelCase ( self : Any , __lowerCamelCase : Direction , __lowerCamelCase : int = 1 ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__lowerCamelCase ) move_cursor(__lowerCamelCase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP["up"] ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' self.move_direction(Direction.UP ) @input.mark(KEYMAP["down"] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.move_direction(Direction.DOWN ) @input.mark(KEYMAP["newline"] ) def lowerCAmelCase ( self : str ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) return self.position @input.mark(KEYMAP["interrupt"] ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' move_cursor(len(self.choices ) - self.position , "DOWN" ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__lowerCamelCase )] for number in range(10 )] ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : List[Any] = int(chr(self.current_selection ) ) lowerCamelCase__ : Union[str, Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __lowerCamelCase ) else: return else: return def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int = 0 ): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt , "\n" ) if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" ) else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" ) lowerCamelCase__ : Optional[Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(__lowerCamelCase ) forceWrite("\n" ) move_cursor(len(self.choices ) - self.position , "UP" ) with cursor.hide(): while True: if in_colab: try: lowerCamelCase__ : int = int(builtins.input() ) except ValueError: lowerCamelCase__ : Any = default_choice else: lowerCamelCase__ : int = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , "UP" ) clear_line() self.write_choice(__lowerCamelCase , "\n" ) return choice
5
import cva import numpy as np class _lowercase : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCamelCase : float , __lowerCamelCase : int ): '''simple docstring''' if k in (0.0_4, 0.0_6): lowerCamelCase__ : int = k lowerCamelCase__ : List[str] = window_size else: raise ValueError("invalid k value" ) def __str__( self : str ): '''simple docstring''' return str(self.k ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(__lowerCamelCase , 0 ) lowerCamelCase__ , lowerCamelCase__ : Any = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : List[Any] = img.copy() lowerCamelCase__ : int = cva.cvtColor(__lowerCamelCase , cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : int = np.gradient(__lowerCamelCase ) lowerCamelCase__ : Dict = dx**2 lowerCamelCase__ : Optional[Any] = dy**2 lowerCamelCase__ : int = dx * dy lowerCamelCase__ : Union[str, Any] = 0.0_4 lowerCamelCase__ : Any = self.window_size // 2 for y in range(__lowerCamelCase , h - offset ): for x in range(__lowerCamelCase , w - offset ): lowerCamelCase__ : Optional[Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = (wxx * wyy) - (wxy**2) lowerCamelCase__ : List[str] = wxx + wyy lowerCamelCase__ : List[Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": A : Tuple = HarrisCorner(0.0_4, 3) A, A : Optional[int] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
5
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("Googling.....") A : str = "https://www.google.com/search?q=" + " ".join(sys.argv[1:]) A : Optional[int] = requests.get(url, headers={"UserAgent": UserAgent().random}) # res.raise_for_status() with open("project1a.html", "wb") as out_file: # only for knowing the class for data in res.iter_content(10000): out_file.write(data) A : int = BeautifulSoup(res.text, "html.parser") A : Any = list(soup.select(".eZt8xd"))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("href")) else: webbrowser.open(f'https://google.com{link.get("href")}')
5
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str]=13 , __lowerCamelCase : Dict=7 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Optional[int]=99 , __lowerCamelCase : List[Any]=16 , __lowerCamelCase : Optional[Any]=36 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Union[str, Any]=6 , __lowerCamelCase : Optional[int]=6 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Tuple=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : List[Any]=512 , __lowerCamelCase : Dict=16 , __lowerCamelCase : Union[str, Any]=2 , __lowerCamelCase : Dict=0.0_2 , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Dict=None , ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Any = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_input_mask lowerCamelCase__ : List[str] = use_token_type_ids lowerCamelCase__ : int = use_labels lowerCamelCase__ : Dict = vocab_size lowerCamelCase__ : List[Any] = embedding_size lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Any = num_hidden_layers lowerCamelCase__ : Optional[Any] = num_hidden_groups lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = max_position_embeddings lowerCamelCase__ : List[Any] = type_vocab_size lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : Optional[int] = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : List[Any] = num_choices lowerCamelCase__ : Any = scope def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[int] = None if self.use_input_mask: lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : Optional[Any] = None if self.use_token_type_ids: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : List[str] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase ( self : str ): '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : int = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Optional[int] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Any = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase ( self : str , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : str = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : str = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Optional[int] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.num_labels lowerCamelCase__ : List[str] = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Any , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.num_choices lowerCamelCase__ : Optional[int] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Optional[int] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ : int = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Union[str, Any] = config_and_inputs lowerCamelCase__ : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A__ = ( { "feature-extraction": AlbertModel, "fill-mask": AlbertForMaskedLM, "question-answering": AlbertForQuestionAnswering, "text-classification": AlbertForSequenceClassification, "token-classification": AlbertForTokenClassification, "zero-shot": AlbertForSequenceClassification, } if is_torch_available() else {} ) A__ = True def lowerCAmelCase ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Tuple , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : Any = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): lowerCamelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) lowerCamelCase__ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Optional[int] = AlbertModelTester(self ) lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowerCamelCase__ : Dict = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" @slow def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__ : List[Any] = AlbertModel.from_pretrained("albert-base-v2" ) lowerCamelCase__ : Any = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase__ : int = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowerCamelCase__ : List[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] lowerCamelCase__ : Tuple = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __lowerCamelCase ) lowerCamelCase__ : Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
5
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase__) class _lowercase ( lowercase__): """simple docstring""" def __init__( self : str , **__lowerCamelCase : Optional[int] ): '''simple docstring''' super().__init__(**__lowerCamelCase ) if self.framework != "pt": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) # No specific FOR_XXX available yet def __call__( self : Dict , __lowerCamelCase : Union[np.ndarray, bytes, str] , **__lowerCamelCase : Union[str, Any] ): '''simple docstring''' return super().__call__(__lowerCamelCase , **__lowerCamelCase ) def lowerCAmelCase ( self : Any , **__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = {} if "candidate_labels" in kwargs: lowerCamelCase__ : Union[str, Any] = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: lowerCamelCase__ : List[Any] = kwargs["hypothesis_template"] return preprocess_params, {}, {} def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : List[str]="This is a sound of {}." ): '''simple docstring''' if isinstance(__lowerCamelCase , __lowerCamelCase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCamelCase__ : Union[str, Any] = requests.get(__lowerCamelCase ).content else: with open(__lowerCamelCase , "rb" ) as f: lowerCamelCase__ : List[Any] = f.read() if isinstance(__lowerCamelCase , __lowerCamelCase ): lowerCamelCase__ : Tuple = ffmpeg_read(__lowerCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(__lowerCamelCase , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) lowerCamelCase__ : List[str] = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) lowerCamelCase__ : Dict = candidate_labels lowerCamelCase__ : List[Any] = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] lowerCamelCase__ : List[str] = self.tokenizer(__lowerCamelCase , return_tensors=self.framework , padding=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = [text_inputs] return inputs def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = model_inputs.pop("candidate_labels" ) lowerCamelCase__ : str = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , __lowerCamelCase ): lowerCamelCase__ : int = text_inputs[0] else: # Batching case. lowerCamelCase__ : List[str] = text_inputs[0][0] lowerCamelCase__ : List[Any] = self.model(**__lowerCamelCase , **__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def lowerCAmelCase ( self : str , __lowerCamelCase : int ): '''simple docstring''' lowerCamelCase__ : List[Any] = model_outputs.pop("candidate_labels" ) lowerCamelCase__ : int = model_outputs["logits"][0] if self.framework == "pt": lowerCamelCase__ : Dict = logits.softmax(dim=0 ) lowerCamelCase__ : str = probs.tolist() else: raise ValueError("`tf` framework not supported." ) lowerCamelCase__ : Optional[Any] = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase , __lowerCamelCase ) , key=lambda __lowerCamelCase : -x[0] ) ] return result
5
import os def lowercase_ ( _A : str = "input.txt" ): """simple docstring""" with open(os.path.join(os.path.dirname(_A ) , _A ) ) as input_file: lowerCamelCase__ : List[Any] = [ [int(_A ) for element in line.split("," )] for line in input_file.readlines() ] lowerCamelCase__ : Optional[Any] = len(_A ) lowerCamelCase__ : Union[str, Any] = len(matrix[0] ) lowerCamelCase__ : Union[str, Any] = [[-1 for _ in range(_A )] for _ in range(_A )] for i in range(_A ): lowerCamelCase__ : Optional[Any] = matrix[i][0] for j in range(1 , _A ): for i in range(_A ): lowerCamelCase__ : int = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , _A ): lowerCamelCase__ : Tuple = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): lowerCamelCase__ : str = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
5
1
from maths.prime_check import is_prime def lowercase_ ( _A : int ): """simple docstring""" if not isinstance(_A , _A ): lowerCamelCase__ : int = F"Input value of [number={number}] must be an integer" raise TypeError(_A ) if is_prime(_A ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
5
import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py A : Tuple = "\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n" A : Optional[int] = "\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine's output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation's overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU's output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n" A : str = "\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n 'bleu': bleu score,\n 'precisions': geometric mean of n-gram precisions,\n 'brevity_penalty': brevity penalty,\n 'length_ratio': ratio of lengths,\n 'translation_length': translation_length,\n 'reference_length': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class _lowercase ( datasets.Metric): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : Dict=False ): '''simple docstring''' lowerCamelCase__ : str = compute_bleu( reference_corpus=__lowerCamelCase , translation_corpus=__lowerCamelCase , max_order=__lowerCamelCase , smooth=__lowerCamelCase ) ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : List[str] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
5
1