code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A : List[Any] ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A : str ='''platform''' import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=None, ) -> Union[str, Any]: if attention_mask is None: _lowercase : Union[str, Any] = np.where(input_ids != config.pad_token_id, 1, 0 ) if decoder_attention_mask is None: _lowercase : Any = np.where(decoder_input_ids != config.pad_token_id, 1, 0 ) if head_mask is None: _lowercase : int = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _lowercase : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _lowercase : int = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]=13 , UpperCamelCase_ : Tuple=7 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Any=False , UpperCamelCase_ : Dict=99 , UpperCamelCase_ : int=16 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : str=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : List[Any]=0.02 , ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = parent _lowercase : int = batch_size _lowercase : Tuple = seq_length _lowercase : Any = is_training _lowercase : List[str] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Union[str, Any] = num_attention_heads _lowercase : int = intermediate_size _lowercase : Optional[int] = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : Tuple = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : int = eos_token_id _lowercase : Dict = pad_token_id _lowercase : Optional[int] = bos_token_id _lowercase : Dict = initializer_range def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _lowercase : Tuple = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _lowercase : str = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) _lowercase : Union[str, Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , ) _lowercase : Dict = prepare_blenderbot_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' _lowercase , _lowercase : List[str] = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ) -> Any: '''simple docstring''' _lowercase : List[str] = 20 _lowercase : Tuple = model_class_name(UpperCamelCase_ ) _lowercase : str = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : str = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : List[Any] = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _lowercase : Optional[int] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : List[Any] = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) _lowercase : str = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Tuple = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCamelCase_ , ) _lowercase : Optional[Any] = model.decode(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : Optional[int] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = 20 _lowercase : Any = model_class_name(UpperCamelCase_ ) _lowercase : List[str] = model.encode(inputs_dict['input_ids'] ) _lowercase , _lowercase : int = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _lowercase : Any = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _lowercase : str = model.init_cache(decoder_input_ids.shape[0] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : str = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _lowercase : Tuple = model.decode( decoder_input_ids[:, :-1] , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) _lowercase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _lowercase : Any = model.decode( decoder_input_ids[:, -1:] , UpperCamelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCamelCase_ , decoder_position_ids=UpperCamelCase_ , ) _lowercase : int = model.decode(UpperCamelCase_ , UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ ) _lowercase : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' A_ = 99 def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' _lowercase : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _lowercase : Optional[Any] = input_ids.shape[0] _lowercase : List[Any] = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' _lowercase , _lowercase , _lowercase : Dict = self._get_config_and_data() _lowercase : str = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) _lowercase : Optional[int] = lm_model(input_ids=UpperCamelCase_ ) _lowercase : Any = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Any = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _lowercase : Any = FlaxBlenderbotForConditionalGeneration(UpperCamelCase_ ) _lowercase : Tuple = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _lowercase : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _lowercase : str = lm_model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ) _lowercase : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' _lowercase : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _lowercase : Optional[Any] = shift_tokens_right(UpperCamelCase_ , 1 , 2 ) _lowercase : Union[str, Any] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() _lowercase : Optional[int] = np.equal(UpperCamelCase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCamelCase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase__ ( lowercase__ , unittest.TestCase , lowercase__ ): '''simple docstring''' A_ = True A_ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) A_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Any = FlaxBlenderbotModelTester(self ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase , _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' _lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : List[Any] = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : Optional[Any] = model_class(UpperCamelCase_ ) @jax.jit def encode_jitted(UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Optional[Any] ): return model.encode(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) with self.subTest('JIT Enabled' ): _lowercase : Optional[int] = encode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Optional[int] = encode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' _lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowercase : str = model_class(UpperCamelCase_ ) _lowercase : List[Any] = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _lowercase : Union[str, Any] = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ): return model.decode( decoder_input_ids=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , encoder_outputs=UpperCamelCase_ , ) with self.subTest('JIT Enabled' ): _lowercase : int = decode_jitted(**UpperCamelCase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowercase : Dict = decode_jitted(**UpperCamelCase_ ).to_tuple() self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) ) for jitted_output, output in zip(UpperCamelCase_ , UpperCamelCase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Any = model_class_name.from_pretrained('facebook/blenderbot-400M-distill' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _lowercase : List[Any] = np.ones((1, 1) ) * model.config.eos_token_id _lowercase : Union[str, Any] = model(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skipUnless(jax_device != 'cpu' , '3B test too slow on CPU.' ) @slow def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = {'num_beams': 1, 'early_stopping': True, 'min_length': 15, 'max_length': 25} _lowercase : Union[str, Any] = {'skip_special_tokens': True, 'clean_up_tokenization_spaces': True} _lowercase : Any = FlaxBlenderbotForConditionalGeneration.from_pretrained('facebook/blenderbot-3B' , from_pt=UpperCamelCase_ ) _lowercase : int = BlenderbotTokenizer.from_pretrained('facebook/blenderbot-3B' ) _lowercase : Any = ['Sam'] _lowercase : Any = tokenizer(UpperCamelCase_ , return_tensors='jax' ) _lowercase : Any = model.generate(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = 'Sam is a great name. It means \"sun\" in Gaelic.' _lowercase : int = tokenizer.batch_decode(UpperCamelCase_ , **UpperCamelCase_ ) assert generated_txt[0].strip() == tgt_text
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer _A : List[str] =logging.getLogger(__name__) def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' _lowercase : Tuple = argparse.ArgumentParser( description='Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset.' ) parser.add_argument( '--dataset_name', type=_lowercase, default='wikitext', help='Name of the training. Explore datasets at: hf.co/datasets.', ) parser.add_argument( '--dataset_config', type=_lowercase, default='wikitext-103-raw-v1', help='Configuration name of the dataset.' ) parser.add_argument( '--tokenizer_name_or_path', type=_lowercase, default='sayakpaul/unigram-tokenizer-wikitext', help='Tokenizer identifier. Can be a local filepath or a Hub identifier.', ) parser.add_argument( '--shard_size', type=_lowercase, default=1000, help='Number of entries to go in a single shard.', ) parser.add_argument('--split', type=_lowercase, default='train', choices=['train', 'test', 'validation'] ) parser.add_argument( '--limit', default=_lowercase, type=_lowercase, help='Limit the number of shards (used for debugging).', ) parser.add_argument( '--max_length', type=_lowercase, default=512, help='Maximum sequence length. For training on TPUs, it helps to have a maximum' ' sequence length that is a multiple of 8.', ) parser.add_argument( '--output_dir', default='tf-tpu', type=_lowercase, help='Output directory where the TFRecord shards will be saved. If the' ' path is appended with `gs://` (\'gs://tf-tpu\', for example) then the TFRecord' ' shards will be directly saved to a Google Cloud Storage bucket.', ) _lowercase : Tuple = parser.parse_args() return args def __UpperCamelCase ( _lowercase ) -> str: '''simple docstring''' def fn(_lowercase ): return tokenizer(examples['text'] ) return fn def __UpperCamelCase ( _lowercase ) -> List[Any]: '''simple docstring''' _lowercase : str = [] for i in range(len(tokenized_data['input_ids'] ) ): _lowercase : int = { 'input_ids': tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data['input_ids'][i] ) ), 'attention_mask': tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data['attention_mask'][i] ) ), } _lowercase : List[str] = tf.train.Features(feature=_lowercase ) _lowercase : Dict = tf.train.Example(features=_lowercase ) _lowercase : Tuple = example.SerializeToString() records.append(_lowercase ) return records def __UpperCamelCase ( _lowercase ) -> int: '''simple docstring''' _lowercase : Optional[int] = datasets.load_dataset(args.dataset_name, args.dataset_config, split=args.split ) if args.limit is not None: _lowercase : Dict = min(len(_lowercase ), args.limit ) _lowercase : Any = dataset.select(range(_lowercase ) ) print(f'''Limiting the dataset to {args.limit} entries.''' ) _lowercase : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) _lowercase : Optional[Any] = os.path.join(args.output_dir, args.split ) if not os.path.exists(_lowercase ): os.makedirs(_lowercase ) else: _lowercase : List[Any] = os.path.join(args.output_dir, args.split ) # Tokenize the whole dataset at once. _lowercase : List[Any] = tokenize_function(_lowercase ) _lowercase : Any = dataset.map(_lowercase, batched=_lowercase, num_proc=4, remove_columns=['text'] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(_lowercase ): # Concatenate all texts. _lowercase : Tuple = {k: sum(examples[k], [] ) for k in examples.keys()} _lowercase : int = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 _lowercase : str = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. _lowercase : Dict = { k: [t[i : i + args.max_length] for i in range(0, _lowercase, args.max_length )] for k, t in concatenated_examples.items() } return result _lowercase : Any = dataset_tokenized.map(_lowercase, batched=_lowercase, batch_size=1000, num_proc=4 ) _lowercase : Union[str, Any] = 0 _lowercase : Union[str, Any] = 0 for shard in range(0, len(_lowercase ), args.shard_size ): _lowercase : Optional[Any] = grouped_dataset[shard : shard + args.shard_size] _lowercase : Any = len(dataset_snapshot['input_ids'] ) _lowercase : Any = os.path.join(_lowercase, f'''dataset-{shard_count}-{records_containing}.tfrecord''' ) _lowercase : Optional[int] = get_serialized_examples(_lowercase ) with tf.io.TFRecordWriter(_lowercase ) as out_file: for i in range(len(_lowercase ) ): _lowercase : Dict = serialized_examples[i] out_file.write(_lowercase ) print('Wrote file {} containing {} records'.format(_lowercase, _lowercase ) ) shard_count += 1 total_records += records_containing with open(f'''split-{args.split}-records-count.txt''', 'w' ) as f: print(f'''Total {args.split} records: {total_records}''', file=_lowercase ) if __name__ == "__main__": _A : Optional[int] =parse_args() main(args)
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _A : Optional[int] ="""\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ _A : str ="""\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ _A : str =""" Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : int=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Union[str, Any]="auto" , UpperCamelCase_ : Optional[Any]=-1 , UpperCamelCase_ : Optional[Any]=0.9 , UpperCamelCase_ : Any=5 , UpperCamelCase_ : List[Any]=500 , UpperCamelCase_ : Tuple="gpt2-large" , UpperCamelCase_ : Optional[Any]=-1 , UpperCamelCase_ : str=1024 , UpperCamelCase_ : Tuple=25 , UpperCamelCase_ : str=5 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Any=25 , ) -> int: '''simple docstring''' _lowercase : List[Any] = compute_mauve( p_text=__A , q_text=__A , p_features=__A , q_features=__A , p_tokens=__A , q_tokens=__A , num_buckets=__A , pca_max_data=__A , kmeans_explained_var=__A , kmeans_num_redo=__A , kmeans_max_iter=__A , featurize_model_name=__A , device_id=__A , max_text_length=__A , divergence_curve_discretization_size=__A , mauve_scaling_factor=__A , verbose=__A , seed=__A , ) return out
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class lowerCamelCase__ ( lowercase__ ): '''simple docstring''' def __UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = {"col_1": [3, 2, 1, 0], "col_2": ["a", "b", "c", "d"]} return Dataset.from_dict(UpperCamelCase_ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[str] = self._create_example_records() _lowercase : Optional[int] = Dataset.from_list(UpperCamelCase_ ) self.assertListEqual(dset.column_names , ['col_1', 'col_2'] ) for i, r in enumerate(UpperCamelCase_ ): self.assertDictEqual(UpperCamelCase_ , example_records[i] ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = self._create_example_records() _lowercase : Tuple = Dataset.from_list(UpperCamelCase_ ) _lowercase : int = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: # checks what happens with missing columns '''simple docstring''' _lowercase : Optional[int] = [{"col_1": 1}, {"col_2": "x"}] _lowercase : List[Any] = Dataset.from_list(UpperCamelCase_ ) self.assertDictEqual(dset[0] , {'col_1': 1} ) self.assertDictEqual(dset[1] , {'col_1': None} ) # NB: first record is used for columns def __UpperCAmelCase ( self : Tuple ) -> List[str]: # checks if the type can be inferred from the second record '''simple docstring''' _lowercase : Any = [{"col_1": []}, {"col_1": [1, 2]}] _lowercase : List[str] = Dataset.from_list(UpperCamelCase_ ) self.assertEqual(dset.info.features['col_1'] , Sequence(Value('int64' ) ) ) def __UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[Any] = Dataset.from_list([] ) self.assertEqual(len(UpperCamelCase_ ) , 0 ) self.assertListEqual(dset.column_names , [] )
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Union[str, Any] = filter(lambda _lowercase : p.requires_grad, model.parameters() ) _lowercase : Optional[int] = sum([np.prod(p.size() ) for p in model_parameters] ) return params _A : Dict =logging.getLogger(__name__) def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if metric == "rouge2": _lowercase : Union[str, Any] = """{val_avg_rouge2:.4f}-{step_count}""" elif metric == "bleu": _lowercase : List[Any] = """{val_avg_bleu:.4f}-{step_count}""" elif metric == "em": _lowercase : Optional[int] = """{val_avg_em:.4f}-{step_count}""" elif metric == "loss": _lowercase : Union[str, Any] = """{val_avg_loss:.4f}-{step_count}""" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowercase : List[str] = ModelCheckpoint( dirpath=_lowercase, filename=_lowercase, monitor=f'''val_{metric}''', mode='max', save_top_k=1, every_n_epochs=1, ) return checkpoint_callback def __UpperCamelCase ( _lowercase, _lowercase ) -> List[Any]: return EarlyStopping( monitor=f'''val_{metric}''', mode='min' if 'loss' in metric else 'max', patience=_lowercase, verbose=_lowercase, ) class lowerCamelCase__ ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = {F'''lr_group_{i}''': param["""lr"""] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(_a ) @rank_zero_only def __UpperCAmelCase ( self : str , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule , UpperCamelCase_ : str , UpperCamelCase_ : str=True ) -> Dict: '''simple docstring''' logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _lowercase : int = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowercase : str = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowercase : Optional[Any] = od / """test_results.txt""" _lowercase : Any = od / """test_generations.txt""" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowercase : Dict = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowercase : Dict = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=_a ) generations_file.parent.mkdir(exist_ok=_a ) with open(_a , 'a+' ) as writer: for key in sorted(_a ): if key in ["log", "progress_bar", "preds"]: continue _lowercase : Dict = metrics[key] if isinstance(_a , torch.Tensor ): _lowercase : Any = val.item() _lowercase : Optional[int] = F'''{key}: {val:.6f}\n''' writer.write(_a ) if not save_generations: return if "preds" in metrics: _lowercase : List[str] = """\n""".join(metrics['preds'] ) generations_file.open('w+' ).write(_a ) @rank_zero_only def __UpperCAmelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' try: _lowercase : Union[str, Any] = pl_module.model.model.num_parameters() except AttributeError: _lowercase : str = pl_module.model.num_parameters() _lowercase : Dict = count_trainable_parameters(_a ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> str: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(_a , _a , 'test' ) @rank_zero_only def __UpperCAmelCase ( self : Any , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _lowercase ) -> int: # This function is recursive _lowercase : Optional[int] = len(snake_case__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _lowercase : Dict = array[0] _lowercase : List[Any] = False _lowercase : Any = 1 _lowercase : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: _lowercase : int = True _lowercase : str = [element for element in array[i:] if element >= array[i]] _lowercase : Optional[int] = longest_subsequence(snake_case__ ) if len(snake_case__ ) > len(snake_case__ ): _lowercase : str = temp_array else: i += 1 _lowercase : Optional[int] = [element for element in array[1:] if element >= pivot] _lowercase : Union[str, Any] = [pivot, *longest_subsequence(snake_case__ )] if len(snake_case__ ) > len(snake_case__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class lowerCamelCase__ ( A ): '''simple docstring''' A_ = 42 @flax_register_to_config class lowerCamelCase__ ( nn.Module , A , A ): '''simple docstring''' A_ = 32 A_ = 4 A_ = 4 A_ = ( """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""", """DownBlock2D""", ) A_ = ("""UpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""") A_ = False A_ = (320, 640, 1280, 1280) A_ = 2 A_ = 8 A_ = None A_ = 1280 A_ = 0.0 A_ = False A_ = jnp.floataa A_ = True A_ = 0 A_ = False def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[Any] = (1, self.in_channels, self.sample_size, self.sample_size) _lowercase : Tuple = jnp.zeros(__lowerCAmelCase , dtype=jnp.floataa ) _lowercase : int = jnp.ones((1,) , dtype=jnp.intaa ) _lowercase : Union[str, Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _lowercase , _lowercase : int = jax.random.split(__lowerCAmelCase ) _lowercase : Any = {'params': params_rng, 'dropout': dropout_rng} return self.init(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )["params"] def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : Optional[int] = self.block_out_channels _lowercase : Union[str, Any] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _lowercase : Dict = self.num_attention_heads or self.attention_head_dim # input _lowercase : List[str] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _lowercase : Optional[int] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _lowercase : List[str] = FlaxTimestepEmbedding(__lowerCAmelCase , dtype=self.dtype ) _lowercase : List[str] = self.only_cross_attention if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowercase : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowercase : List[Any] = (num_attention_heads,) * len(self.down_block_types ) # down _lowercase : Union[str, Any] = [] _lowercase : Union[str, Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): _lowercase : Optional[int] = output_channel _lowercase : Tuple = block_out_channels[i] _lowercase : List[str] = i == len(__lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": _lowercase : Any = FlaxCrossAttnDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowercase : Optional[Any] = FlaxDownBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(__lowerCAmelCase ) _lowercase : Optional[int] = down_blocks # mid _lowercase : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up _lowercase : int = [] _lowercase : List[Any] = list(reversed(__lowerCAmelCase ) ) _lowercase : int = list(reversed(__lowerCAmelCase ) ) _lowercase : Dict = list(reversed(__lowerCAmelCase ) ) _lowercase : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): _lowercase : Dict = output_channel _lowercase : Optional[int] = reversed_block_out_channels[i] _lowercase : List[Any] = reversed_block_out_channels[min(i + 1 , len(__lowerCAmelCase ) - 1 )] _lowercase : str = i == len(__lowerCAmelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": _lowercase : List[Any] = FlaxCrossAttnUpBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , prev_output_channel=__lowerCAmelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: _lowercase : List[str] = FlaxUpBlockaD( in_channels=__lowerCAmelCase , out_channels=__lowerCAmelCase , prev_output_channel=__lowerCAmelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(__lowerCAmelCase ) _lowercase : Union[str, Any] = output_channel _lowercase : Union[str, Any] = up_blocks # out _lowercase : List[str] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) _lowercase : Tuple = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Tuple = True , UpperCamelCase_ : int = False , ) -> int: '''simple docstring''' if not isinstance(__lowerCAmelCase , jnp.ndarray ): _lowercase : List[str] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(__lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: _lowercase : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _lowercase : Dict = jnp.expand_dims(__lowerCAmelCase , 0 ) _lowercase : Union[str, Any] = self.time_proj(__lowerCAmelCase ) _lowercase : Union[str, Any] = self.time_embedding(__lowerCAmelCase ) # 2. pre-process _lowercase : Union[str, Any] = jnp.transpose(__lowerCAmelCase , (0, 2, 3, 1) ) _lowercase : List[Any] = self.conv_in(__lowerCAmelCase ) # 3. down _lowercase : Any = (sample,) for down_block in self.down_blocks: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowercase , _lowercase : Optional[int] = down_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) else: _lowercase , _lowercase : Optional[Any] = down_block(__lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: _lowercase : Optional[Any] = () for down_block_res_sample, down_block_additional_residual in zip( __lowerCAmelCase , __lowerCAmelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) _lowercase : Dict = new_down_block_res_samples # 4. mid _lowercase : List[Any] = self.mid_block(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: _lowercase : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] _lowercase : Tuple = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): _lowercase : str = up_block( __lowerCAmelCase , temb=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , deterministic=not train , ) else: _lowercase : Optional[Any] = up_block(__lowerCAmelCase , temb=__lowerCAmelCase , res_hidden_states_tuple=__lowerCAmelCase , deterministic=not train ) # 6. post-process _lowercase : Optional[Any] = self.conv_norm_out(__lowerCAmelCase ) _lowercase : int = nn.silu(__lowerCAmelCase ) _lowercase : str = self.conv_out(__lowerCAmelCase ) _lowercase : Tuple = jnp.transpose(__lowerCAmelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=__lowerCAmelCase )
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' from __future__ import annotations import math _A : Union[str, Any] ="2020.9.26" _A : Any ="xcodz-dot, cclaus, dhruvmanila" def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> tuple[float, float]: if not all(isinstance(UpperCAmelCase__, (float, int) ) for val in locals().values() ): _lowercase : str = f'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(UpperCAmelCase__ ) _lowercase : str = ((x * distance) / (z + distance)) * scale _lowercase : Optional[Any] = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> tuple[float, float, float]: if not isinstance(UpperCAmelCase__, UpperCAmelCase__ ): raise TypeError('Axis must be a str' ) _lowercase : int = locals() del input_variables["axis"] if not all(isinstance(UpperCAmelCase__, (float, int) ) for val in input_variables.values() ): _lowercase : List[Any] = ( """Input values except axis must either be float or int: """ f'''{list(input_variables.values() )}''' ) raise TypeError(UpperCAmelCase__ ) _lowercase : Optional[Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": _lowercase : Union[str, Any] = x * math.cos(UpperCAmelCase__ ) - y * math.sin(UpperCAmelCase__ ) _lowercase : Optional[Any] = y * math.cos(UpperCAmelCase__ ) + x * math.sin(UpperCAmelCase__ ) _lowercase : Dict = z elif axis == "x": _lowercase : Dict = y * math.cos(UpperCAmelCase__ ) - z * math.sin(UpperCAmelCase__ ) _lowercase : int = z * math.cos(UpperCAmelCase__ ) + y * math.sin(UpperCAmelCase__ ) _lowercase : str = x elif axis == "y": _lowercase : str = x * math.cos(UpperCAmelCase__ ) - z * math.sin(UpperCAmelCase__ ) _lowercase : Any = z * math.cos(UpperCAmelCase__ ) + x * math.sin(UpperCAmelCase__ ) _lowercase : Optional[Any] = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }''')
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: _lowercase : Union[str, Any] = 1.5 _lowercase : List[str] = int(factor * num_class_images ) _lowercase : Optional[Any] = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=_lowercase, aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''', exist_ok=_lowercase ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: _lowercase : List[Any] = client.query(text=_lowercase ) if len(_lowercase ) >= factor * num_class_images or num_images > 1E4: break else: _lowercase : Optional[int] = int(factor * num_images ) _lowercase : str = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=_lowercase, aesthetic_weight=0.1, ) _lowercase : Optional[int] = 0 _lowercase : str = 0 _lowercase : Any = tqdm(desc='downloading real regularization images', total=_lowercase ) with open(f'''{class_data_dir}/caption.txt''', 'w' ) as fa, open(f'''{class_data_dir}/urls.txt''', 'w' ) as fa, open( f'''{class_data_dir}/images.txt''', 'w' ) as fa: while total < num_class_images: _lowercase : Optional[Any] = class_images[count] count += 1 try: _lowercase : str = requests.get(images['url'] ) if img.status_code == 200: _lowercase : int = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''', 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def __UpperCamelCase ( ) -> Dict: _lowercase : Optional[int] = argparse.ArgumentParser('', add_help=_lowercase ) parser.add_argument('--class_prompt', help='text prompt to retrieve images', required=_lowercase, type=_lowercase ) parser.add_argument('--class_data_dir', help='path to save images', required=_lowercase, type=_lowercase ) parser.add_argument('--num_class_images', help='number of images to download', default=200, type=_lowercase ) return parser.parse_args() if __name__ == "__main__": _A : List[Any] =parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def __UpperCamelCase ( _lowercase ) -> str: if ( (cp >= 0x4E_00 and cp <= 0x9F_FF) or (cp >= 0x34_00 and cp <= 0x4D_BF) # or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) # or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) # or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) # or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) # or (cp >= 0xF9_00 and cp <= 0xFA_FF) or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) # ): # return True return False def __UpperCamelCase ( _lowercase ) -> int: for char in word: _lowercase : List[Any] = ord(UpperCAmelCase__ ) if not _is_chinese_char(UpperCAmelCase__ ): return 0 return 1 def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: _lowercase : Union[str, Any] = set() for token in tokens: _lowercase : Tuple = len(UpperCAmelCase__ ) > 1 and is_chinese(UpperCAmelCase__ ) if chinese_word: word_set.add(UpperCAmelCase__ ) _lowercase : Tuple = list(UpperCAmelCase__ ) return word_list def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[int]: if not chinese_word_set: return bert_tokens _lowercase : List[Any] = max([len(UpperCAmelCase__ ) for w in chinese_word_set] ) _lowercase : List[Any] = bert_tokens _lowercase , _lowercase : List[Any] = 0, len(UpperCAmelCase__ ) while start < end: _lowercase : List[str] = True if is_chinese(bert_word[start] ): _lowercase : str = min(end - start, UpperCAmelCase__ ) for i in range(UpperCAmelCase__, 1, -1 ): _lowercase : str = ''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1, start + i ): _lowercase : Dict = '##' + bert_word[j] _lowercase : Optional[int] = start + i _lowercase : List[str] = False break if single_word: start += 1 return bert_word def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[str]: _lowercase : Tuple = [] for i in range(0, len(UpperCAmelCase__ ), 100 ): _lowercase : int = ltp_tokenizer.pipeline(lines[i : i + 100], tasks=['cws'] ).cws _lowercase : Optional[Any] = [get_chinese_word(UpperCAmelCase__ ) for r in res] ltp_res.extend(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) _lowercase : List[str] = [] for i in range(0, len(UpperCAmelCase__ ), 100 ): _lowercase : List[str] = bert_tokenizer(lines[i : i + 100], add_special_tokens=UpperCAmelCase__, truncation=UpperCAmelCase__, max_length=512 ) bert_res.extend(res['input_ids'] ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) _lowercase : Tuple = [] for input_ids, chinese_word in zip(UpperCAmelCase__, UpperCAmelCase__ ): _lowercase : Dict = [] for id in input_ids: _lowercase : List[Any] = bert_tokenizer._convert_id_to_token(UpperCAmelCase__ ) input_tokens.append(UpperCAmelCase__ ) _lowercase : Any = add_sub_symbol(UpperCAmelCase__, UpperCAmelCase__ ) _lowercase : str = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(UpperCAmelCase__ ): if token[:2] == "##": _lowercase : List[str] = token[2:] # save chinese tokens' pos if len(UpperCAmelCase__ ) == 1 and _is_chinese_char(ord(UpperCAmelCase__ ) ): ref_id.append(UpperCAmelCase__ ) ref_ids.append(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) return ref_ids def __UpperCamelCase ( _lowercase ) -> int: with open(args.file_name, 'r', encoding='utf-8' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Tuple = [line.strip() for line in data if len(UpperCAmelCase__ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase : int = LTP(args.ltp ) # faster in GPU device _lowercase : Dict = BertTokenizer.from_pretrained(args.bert ) _lowercase : Optional[int] = prepare_ref(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) with open(args.save_path, 'w', encoding='utf-8' ) as f: _lowercase : List[str] = [json.dumps(UpperCAmelCase__ ) + '\n' for ref in ref_ids] f.writelines(UpperCAmelCase__ ) if __name__ == "__main__": _A : int =argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) _A : List[str] =parser.parse_args() main(args)
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _lowercase ) -> Optional[int]: _lowercase : Union[str, Any] = str(_snake_case ) return n == n[::-1] def __UpperCamelCase ( _lowercase = 100_0000 ) -> Any: _lowercase : int = 0 for i in range(1, _snake_case ): if is_palindrome(_snake_case ) and is_palindrome(bin(_snake_case ).split('b' )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> Any: # noqa: E741 _lowercase : str = len(_lowercase ) _lowercase : Union[str, Any] = 0 _lowercase : Any = [0] * n _lowercase : Dict = [False] * n _lowercase : Optional[Any] = [False] * n def dfs(_lowercase, _lowercase, _lowercase, _lowercase ): if parent == root: out_edge_count += 1 _lowercase : int = True _lowercase : Optional[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: _lowercase : Optional[int] = dfs(_lowercase, _lowercase, _lowercase, _lowercase ) _lowercase : Dict = min(low[at], low[to] ) # AP found via bridge if at < low[to]: _lowercase : str = True # AP found via cycle if at == low[to]: _lowercase : int = True else: _lowercase : List[str] = min(low[at], _lowercase ) return out_edge_count for i in range(_lowercase ): if not visited[i]: _lowercase : str = 0 _lowercase : Dict = dfs(_lowercase, _lowercase, -1, _lowercase ) _lowercase : str = out_edge_count > 1 for x in range(len(_lowercase ) ): if is_art[x] is True: print(_lowercase ) # Adjacency list of graph _A : str = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase__ : '''simple docstring''' @staticmethod def __UpperCAmelCase ( *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' A_ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , image_processor=_SCREAMING_SNAKE_CASE ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ) -> Any: '''simple docstring''' _lowercase : int = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) import datasets _lowercase : str = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _lowercase : Any = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _lowercase : Any = object_detector(_SCREAMING_SNAKE_CASE , threshold=0.0 ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for outputs in batch_outputs: self.assertGreater(len(_SCREAMING_SNAKE_CASE ) , 0 ) for detected_object in outputs: self.assertEqual( _SCREAMING_SNAKE_CASE , { 'score': ANY(_SCREAMING_SNAKE_CASE ), 'label': ANY(_SCREAMING_SNAKE_CASE ), 'box': {'xmin': ANY(_SCREAMING_SNAKE_CASE ), 'ymin': ANY(_SCREAMING_SNAKE_CASE ), 'xmax': ANY(_SCREAMING_SNAKE_CASE ), 'ymax': ANY(_SCREAMING_SNAKE_CASE )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' pass @require_torch def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' _lowercase : List[str] = 'hf-internal-testing/tiny-detr-mobilenetsv3' _lowercase : Dict = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase : Tuple = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase : Any = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) _lowercase : List[str] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) _lowercase : int = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.33_76, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = 'facebook/detr-resnet-50' _lowercase : Optional[int] = AutoModelForObjectDetection.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase : Optional[Any] = AutoFeatureExtractor.from_pretrained(_SCREAMING_SNAKE_CASE ) _lowercase : Union[str, Any] = ObjectDetectionPipeline(model=_SCREAMING_SNAKE_CASE , feature_extractor=_SCREAMING_SNAKE_CASE ) _lowercase : str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _lowercase : str = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = 'facebook/detr-resnet-50' _lowercase : List[str] = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) _lowercase : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _lowercase : List[Any] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.99_82, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.99_60, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.99_55, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : str = 0.99_85 _lowercase : List[str] = 'facebook/detr-resnet-50' _lowercase : List[str] = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=_SCREAMING_SNAKE_CASE ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.99_88, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.99_87, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' _lowercase : int = 'Narsil/layoutlmv3-finetuned-funsd' _lowercase : List[Any] = 0.99_93 _lowercase : Union[str, Any] = pipeline('object-detection' , model=_SCREAMING_SNAKE_CASE , threshold=_SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(_SCREAMING_SNAKE_CASE , decimals=4 ) , [ {'score': 0.99_93, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.99_93, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
712
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _A : str ={'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] =[ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int =[ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[Any]=18 , UpperCamelCase_ : Tuple=30 , UpperCamelCase_ : Any=400 , UpperCamelCase_ : Any=True , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[int]=True , ) -> Any: '''simple docstring''' _lowercase : Union[str, Any] = size if size is not None else {'height': 18, 'width': 18} _lowercase : Optional[int] = parent _lowercase : str = batch_size _lowercase : Optional[int] = num_channels _lowercase : Union[str, Any] = image_size _lowercase : Dict = min_resolution _lowercase : Union[str, Any] = max_resolution _lowercase : List[Any] = do_resize _lowercase : List[str] = size _lowercase : Optional[Any] = apply_ocr def __UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase__ ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ = LayoutLMvaImageProcessor if is_pytesseract_available() else None def __UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : Dict = LayoutLMvaImageProcessingTester(self ) @property def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' _lowercase : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__lowercase , 'do_resize' ) ) self.assertTrue(hasattr(__lowercase , 'size' ) ) self.assertTrue(hasattr(__lowercase , 'apply_ocr' ) ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) _lowercase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowercase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , Image.Image ) # Test not batched input _lowercase : Any = image_processing(image_inputs[0] , return_tensors='pt' ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , __lowercase ) self.assertIsInstance(encoding.boxes , __lowercase ) # Test batched _lowercase : Optional[Any] = image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , numpify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , np.ndarray ) # Test not batched input _lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowercase : List[Any] = image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowercase : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__lowercase , torchify=__lowercase ) for image in image_inputs: self.assertIsInstance(__lowercase , torch.Tensor ) # Test not batched input _lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _lowercase : Tuple = image_processing(__lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = LayoutLMvaImageProcessor() from datasets import load_dataset _lowercase : int = load_dataset('hf-internal-testing/fixtures_docvqa' , split='test' ) _lowercase : int = Image.open(ds[0]['file'] ).convert('RGB' ) _lowercase : Union[str, Any] = image_processing(__lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _lowercase : List[str] = [['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _lowercase : str = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , __lowercase ) self.assertListEqual(encoding.boxes , __lowercase ) # with apply_OCR = False _lowercase : Dict = LayoutLMvaImageProcessor(apply_ocr=__lowercase ) _lowercase : Any = image_processing(__lowercase , return_tensors='pt' ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
714
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
0
'''simple docstring''' import math def __UpperCamelCase ( _lowercase, _lowercase ) -> float: return math.pow(_lowerCAmelCase, 2 ) - a def __UpperCamelCase ( _lowercase ) -> float: return 2 * x def __UpperCamelCase ( _lowercase ) -> float: _lowercase : Dict = 2.0 while start <= a: _lowercase : Dict = math.pow(_lowerCAmelCase, 2 ) return start def __UpperCamelCase ( _lowercase, _lowercase = 9999, _lowercase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: if a < 0: raise ValueError('math domain error' ) _lowercase : str = get_initial_point(_lowerCAmelCase ) for _ in range(_lowerCAmelCase ): _lowercase : List[str] = value _lowercase : Optional[int] = value - fx(_lowerCAmelCase, _lowerCAmelCase ) / fx_derivative(_lowerCAmelCase ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
715
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A_ = UnCLIPImageVariationPipeline A_ = IMAGE_VARIATION_PARAMS - {"""height""", """width""", """guidance_scale"""} A_ = IMAGE_VARIATION_BATCH_PARAMS A_ = [ """generator""", """return_dict""", """decoder_num_inference_steps""", """super_res_num_inference_steps""", ] A_ = False @property def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' return 100 @property def __UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(UpperCamelCase_ ) @property def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) return CLIPVisionModelWithProjection(UpperCamelCase_ ) @property def __UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Union[str, Any] = { 'clip_embeddings_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'cross_attention_dim': self.cross_attention_dim, } _lowercase : int = UnCLIPTextProjModel(**UpperCamelCase_ ) return model @property def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Tuple = { 'sample_size': 32, # RGB in channels 'in_channels': 3, # Out channels is double in channels because predicts mean and variance 'out_channels': 6, 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': 'identity', } _lowercase : Dict = UNetaDConditionModel(**UpperCamelCase_ ) return model @property def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' return { "sample_size": 64, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Tuple = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' torch.manual_seed(1 ) _lowercase : Union[str, Any] = UNetaDModel(**self.dummy_super_res_kwargs ) return model def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Dict = self.dummy_decoder _lowercase : Tuple = self.dummy_text_proj _lowercase : Dict = self.dummy_text_encoder _lowercase : Dict = self.dummy_tokenizer _lowercase : Dict = self.dummy_super_res_first _lowercase : Dict = self.dummy_super_res_last _lowercase : List[str] = UnCLIPScheduler( variance_type='learned_range' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _lowercase : str = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='epsilon' , num_train_timesteps=1000 , ) _lowercase : List[str] = CLIPImageProcessor(crop_size=32 , size=32 ) _lowercase : Optional[Any] = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=0 , UpperCamelCase_ : List[Any]=True ) -> Optional[int]: '''simple docstring''' _lowercase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : str = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) if pil_image: _lowercase : Tuple = input_image * 0.5 + 0.5 _lowercase : str = input_image.clamp(0 , 1 ) _lowercase : List[str] = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() _lowercase : Optional[int] = DiffusionPipeline.numpy_to_pil(UpperCamelCase_ )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' _lowercase : List[str] = 'cpu' _lowercase : str = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) _lowercase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : List[Any] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : Dict = pipe(**UpperCamelCase_ ) _lowercase : Union[str, Any] = output.images _lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : List[Any] = pipe( **UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] _lowercase : Tuple = image[0, -3:, -3:, -1] _lowercase : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Union[str, Any] = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = 'cpu' _lowercase : str = self.get_dummy_components() _lowercase : int = self.pipeline_class(**UpperCamelCase_ ) _lowercase : List[str] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Dict = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : int = pipe(**UpperCamelCase_ ) _lowercase : Dict = output.images _lowercase : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : Union[str, Any] = pipe( **UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] _lowercase : Optional[Any] = image[0, -3:, -3:, -1] _lowercase : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : str = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[int] = 'cpu' _lowercase : Optional[int] = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**UpperCamelCase_ ) _lowercase : Optional[int] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Tuple = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : List[str] = [ pipeline_inputs['image'], pipeline_inputs['image'], ] _lowercase : List[Any] = pipe(**UpperCamelCase_ ) _lowercase : Union[str, Any] = output.images _lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : Union[str, Any] = [ tuple_pipeline_inputs['image'], tuple_pipeline_inputs['image'], ] _lowercase : Tuple = pipe( **UpperCamelCase_ , return_dict=UpperCamelCase_ , )[0] _lowercase : List[Any] = image[0, -3:, -3:, -1] _lowercase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 64, 64, 3) _lowercase : Dict = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = torch.device('cpu' ) class lowerCamelCase__ : '''simple docstring''' A_ = 1 _lowercase : Tuple = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) _lowercase : str = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) _lowercase : Dict = pipe.decoder.dtype _lowercase : Tuple = 1 _lowercase : Union[str, Any] = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) _lowercase : Tuple = pipe.prepare_latents( UpperCamelCase_ , dtype=UpperCamelCase_ , device=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , scheduler=DummyScheduler() ) _lowercase : Any = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) _lowercase : List[Any] = pipe.prepare_latents( UpperCamelCase_ , dtype=UpperCamelCase_ , device=UpperCamelCase_ , generator=UpperCamelCase_ , latents=UpperCamelCase_ , scheduler=DummyScheduler() ) _lowercase : Union[str, Any] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) _lowercase : List[Any] = pipe( **UpperCamelCase_ , decoder_latents=UpperCamelCase_ , super_res_latents=UpperCamelCase_ ).images _lowercase : Optional[int] = self.get_dummy_inputs(UpperCamelCase_ , pil_image=UpperCamelCase_ ) # Don't pass image, instead pass embedding _lowercase : Optional[Any] = pipeline_inputs.pop('image' ) _lowercase : Optional[int] = pipe.image_encoder(UpperCamelCase_ ).image_embeds _lowercase : Optional[Any] = pipe( **UpperCamelCase_ , decoder_latents=UpperCamelCase_ , super_res_latents=UpperCamelCase_ , image_embeddings=UpperCamelCase_ , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1E-4 @skip_mps def __UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = torch_device == 'cpu' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor _lowercase : Any = 1E-2 self._test_attention_slicing_forward_pass( test_max_difference=UpperCamelCase_ , expected_max_diff=UpperCamelCase_ ) @skip_mps def __UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' _lowercase : List[Any] = torch_device == 'cpu' _lowercase : List[str] = True _lowercase : List[str] = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] self._test_inference_batch_single_identical( test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , additional_params_copy_to_batched_inputs=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : Dict = [ 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes _lowercase : Dict = [2, 3] self._test_inference_batch_consistent( batch_sizes=UpperCamelCase_ , additional_params_copy_to_batched_inputs=UpperCamelCase_ , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=UpperCamelCase_ ) @skip_mps def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent() @skip_mps def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' return super().test_save_load_local() @skip_mps def __UpperCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' return super().test_save_load_optional_components() @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png' ) _lowercase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/unclip/karlo_v1_alpha_cat_variation_fp16.npy' ) _lowercase : Any = UnCLIPImageVariationPipeline.from_pretrained( 'kakaobrain/karlo-v1-alpha-image-variations' , torch_dtype=torch.floataa ) _lowercase : Optional[int] = pipeline.to(UpperCamelCase_ ) pipeline.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : str = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : Any = pipeline( UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , ) _lowercase : int = output.images[0] assert image.shape == (256, 256, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ , 15 )
716
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class lowerCamelCase__ ( UpperCAmelCase__ ): '''simple docstring''' warnings.warn( """Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will """ """be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.""" , UpperCAmelCase__ , )
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: if len(lowercase__ ) != len(lowercase__ ): raise ValueError('The length of profit and weight must be same.' ) if max_weight <= 0: raise ValueError('max_weight must greater than zero.' ) if any(p < 0 for p in profit ): raise ValueError('Profit can not be negative.' ) if any(w < 0 for w in weight ): raise ValueError('Weight can not be negative.' ) # List created to store profit gained for the 1kg in case of each weight # respectively. Calculate and append profit/weight for each element. _lowercase : Dict = [p / w for p, w in zip(lowercase__, lowercase__ )] # Creating a copy of the list and sorting profit/weight in ascending order _lowercase : List[str] = sorted(lowercase__ ) # declaring useful variables _lowercase : Optional[Any] = len(lowercase__ ) _lowercase : Optional[int] = 0 _lowercase : Dict = 0 _lowercase : List[str] = 0 # loop till the total weight do not reach max limit e.g. 15 kg and till i<length while limit <= max_weight and i < length: # flag value for encountered greatest element in sorted_profit_by_weight _lowercase : Union[str, Any] = sorted_profit_by_weight[length - i - 1] _lowercase : List[str] = profit_by_weight.index(lowercase__ ) _lowercase : List[str] = -1 # check if the weight encountered is less than the total weight # encountered before. if max_weight - limit >= weight[index]: limit += weight[index] # Adding profit gained for the given weight 1 === # weight[index]/weight[index] gain += 1 * profit[index] else: # Since the weight encountered is greater than limit, therefore take the # required number of remaining kgs and calculate profit for it. # weight remaining / weight[index] gain += (max_weight - limit) / weight[index] * profit[index] break i += 1 return gain if __name__ == "__main__": print( '''Input profits, weights, and then max_weight (all positive ints) separated by ''' '''spaces.''' ) _A : Optional[int] =[int(x) for x in input('''Input profits separated by spaces: ''').split()] _A : Any =[int(x) for x in input('''Input weights separated by spaces: ''').split()] _A : int =int(input('''Max weight allowed: ''')) # Function Call calc_profit(profit, weight, max_weight)
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
0
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: _lowercase : Dict = len(_UpperCamelCase ) for i in range(length - 1 ): _lowercase : Any = i for k in range(i + 1, _UpperCamelCase ): if collection[k] < collection[least]: _lowercase : List[Any] = k if least != i: _lowercase , _lowercase : List[str] = (collection[i], collection[least]) return collection if __name__ == "__main__": _A : Union[str, Any] =input('''Enter numbers separated by a comma:\n''').strip() _A : List[Any] =[int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
720
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
0
'''simple docstring''' from __future__ import annotations from scipy.special import comb # type: ignore class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. _lowercase : Optional[int] = len(A__ ) - 1 def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : Optional[Any] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A__ ) , 5 ) == 1 return output_values def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : int ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." _lowercase : str = self.basis_function(A__ ) _lowercase : str = 0.0 _lowercase : Dict = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] = 0.01 ) -> str: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore _lowercase : int = [] # x coordinates of points to plot _lowercase : Union[str, Any] = [] # y coordinates of points to plot _lowercase : List[str] = 0.0 while t <= 1: _lowercase : List[Any] = self.bezier_curve_function(A__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size _lowercase : Optional[Any] = [i[0] for i in self.list_of_points] _lowercase : List[str] = [i[1] for i in self.list_of_points] plt.plot( A__ , A__ , color='blue' , label='Curve of Degree ' + str(self.degree ) , ) plt.scatter(A__ , A__ , color='red' , label='Control Points' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : Union[str, Any] =logging.get_logger(__name__) _A : Optional[Any] ={ '''microsoft/resnet-50''': '''https://huggingface.co/microsoft/resnet-50/blob/main/config.json''', } class lowerCamelCase__ ( A , A ): '''simple docstring''' A_ = 'resnet' A_ = ['basic', 'bottleneck'] def __init__( self : List[Any] , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : str=64 , UpperCamelCase_ : Optional[int]=[256, 512, 1024, 2048] , UpperCamelCase_ : str=[3, 4, 6, 3] , UpperCamelCase_ : Any="bottleneck" , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : str=False , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : str , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) _lowercase : Optional[int] = num_channels _lowercase : Tuple = embedding_size _lowercase : Any = hidden_sizes _lowercase : Union[str, Any] = depths _lowercase : List[str] = layer_type _lowercase : List[str] = hidden_act _lowercase : List[str] = downsample_in_first_stage _lowercase : List[str] = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(UpperCamelCase_ ) + 1 )] _lowercase , _lowercase : Optional[Any] = get_aligned_output_features_output_indices( out_features=UpperCamelCase_ , out_indices=UpperCamelCase_ , stage_names=self.stage_names ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = version.parse("""1.11""" ) @property def __UpperCAmelCase ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Optional[int] ) -> float: '''simple docstring''' return 1E-3
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : int ={ '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] =['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] =[ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys _A : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
from __future__ import annotations import typing from collections import Counter def __UpperCamelCase ( _lowercase ) -> Optional[Any]: _lowercase : typing.Counter[int] = Counter() for base in range(1, max_perimeter + 1 ): for perpendicular in range(lowerCAmelCase_, max_perimeter + 1 ): _lowercase : List[str] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(lowerCAmelCase_ ): _lowercase : Optional[Any] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def __UpperCamelCase ( _lowercase = 1000 ) -> List[Any]: _lowercase : Dict = pythagorean_triple(lowerCAmelCase_ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(F'''Perimeter {solution()} has maximum solutions''')
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' from copy import deepcopy class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : Any = None , UpperCamelCase_ : List[str] = None ) -> Union[str, Any]: '''simple docstring''' if arr is None and size is not None: _lowercase : str = size _lowercase : Optional[Any] = [0] * size elif arr is not None: self.init(lowercase__ ) else: raise ValueError('Either arr or size must be specified' ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = len(lowercase__ ) _lowercase : int = deepcopy(lowercase__ ) for i in range(1 , self.size ): _lowercase : Optional[Any] = self.next_(lowercase__ ) if j < self.size: self.tree[j] += self.tree[i] def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): _lowercase : Optional[int] = self.next_(lowercase__ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' return index + (index & (-index)) @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : Any ) -> List[Any]: '''simple docstring''' return index - (index & (-index)) def __UpperCAmelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value _lowercase : Tuple = self.next_(lowercase__ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' self.add(lowercase__ , value - self.get(lowercase__ ) ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' if right == 0: return 0 _lowercase : List[str] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] _lowercase : Optional[int] = self.prev(lowercase__ ) return result def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ) -> Optional[int]: '''simple docstring''' return self.prefix(lowercase__ ) - self.prefix(lowercase__ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' return self.query(lowercase__ , index + 1 ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' value -= self.tree[0] if value < 0: return -1 _lowercase : Tuple = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 _lowercase : Tuple = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' from math import ceil def __UpperCamelCase ( _lowercase = 1001 ) -> int: _lowercase : Union[str, Any] = 1 for i in range(1, int(ceil(n / 2.0 ) ) ): _lowercase : Any = 2 * i + 1 _lowercase : str = 2 * i _lowercase : Tuple = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: _A : List[Any] =int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' import os def __UpperCamelCase ( _lowercase = "input.txt" ) -> Optional[Any]: with open(os.path.join(os.path.dirname(_lowercase ), _lowercase ) ) as input_file: _lowercase : List[str] = [ [int(_lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase : Optional[Any] = len(_lowercase ) _lowercase : Optional[int] = len(matrix[0] ) _lowercase : Optional[int] = [[-1 for _ in range(_lowercase )] for _ in range(_lowercase )] for i in range(_lowercase ): _lowercase : Any = matrix[i][0] for j in range(1, _lowercase ): for i in range(_lowercase ): _lowercase : Optional[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, _lowercase ): _lowercase : Optional[Any] = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): _lowercase : Union[str, Any] = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' A_ = ConsistencyModelPipeline A_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS A_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt A_ = frozenset( [ """num_inference_steps""", """generator""", """latents""", """output_type""", """return_dict""", """callback""", """callback_steps""", ] ) @property def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : str = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : Dict = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=False ) -> Tuple: '''simple docstring''' if class_cond: _lowercase : Union[str, Any] = self.dummy_cond_unet else: _lowercase : Any = self.dummy_uncond_unet # Default to CM multistep sampler _lowercase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _lowercase : Optional[int] = { "unet": unet, "scheduler": scheduler, } return components def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Any=0 ) -> Optional[int]: '''simple docstring''' if str(__a ).startswith('mps' ): _lowercase : Optional[int] = torch.manual_seed(__a ) else: _lowercase : List[str] = torch.Generator(device=__a ).manual_seed(__a ) _lowercase : Any = { "batch_size": 1, "num_inference_steps": None, "timesteps": [22, 0], "generator": generator, "output_type": "np", } return inputs def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Tuple = self.get_dummy_components() _lowercase : Optional[int] = ConsistencyModelPipeline(**__a ) _lowercase : int = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Dict = self.get_dummy_inputs(__a ) _lowercase : Optional[Any] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : List[str] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Union[str, Any] = self.get_dummy_components(class_cond=__a ) _lowercase : List[Any] = ConsistencyModelPipeline(**__a ) _lowercase : Tuple = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Tuple = self.get_dummy_inputs(__a ) _lowercase : Tuple = 0 _lowercase : List[str] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] _lowercase : Optional[int] = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Any = self.get_dummy_components() _lowercase : List[Any] = ConsistencyModelPipeline(**__a ) _lowercase : Optional[Any] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Union[str, Any] = self.get_dummy_inputs(__a ) _lowercase : Union[str, Any] = 1 _lowercase : Union[str, Any] = None _lowercase : Optional[int] = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _lowercase : str = image[0, -3:, -3:, -1] _lowercase : Optional[Any] = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = "cpu" # ensure determinism for the device-dependent torch.Generator _lowercase : Optional[Any] = self.get_dummy_components(class_cond=__a ) _lowercase : List[str] = ConsistencyModelPipeline(**__a ) _lowercase : List[str] = pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Union[str, Any] = self.get_dummy_inputs(__a ) _lowercase : List[Any] = 1 _lowercase : List[str] = None _lowercase : int = 0 _lowercase : int = pipe(**__a ).images assert image.shape == (1, 32, 32, 3) _lowercase : Tuple = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : Optional[Any]="cpu" , UpperCamelCase_ : int=torch.floataa , UpperCamelCase_ : Union[str, Any]=(1, 3, 64, 64) ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = torch.manual_seed(__a ) _lowercase : Optional[Any] = { "num_inference_steps": None, "timesteps": [22, 0], "class_labels": 0, "generator": generator, "output_type": "np", } if get_fixed_latents: _lowercase : List[str] = self.get_fixed_latents(seed=__a , device=__a , dtype=__a , shape=__a ) _lowercase : List[Any] = latents return inputs def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str=0 , UpperCamelCase_ : int="cpu" , UpperCamelCase_ : List[str]=torch.floataa , UpperCamelCase_ : Tuple=(1, 3, 64, 64) ) -> Dict: '''simple docstring''' if type(__a ) == str: _lowercase : int = torch.device(__a ) _lowercase : Optional[int] = torch.Generator(device=__a ).manual_seed(__a ) _lowercase : List[Any] = randn_tensor(__a , generator=__a , device=__a , dtype=__a ) return latents def __UpperCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _lowercase : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _lowercase : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Any = self.get_inputs() _lowercase : List[str] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _lowercase : int = image[0, -3:, -3:, -1] _lowercase : Tuple = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _lowercase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _lowercase : List[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a ) pipe.set_progress_bar_config(disable=__a ) _lowercase : List[str] = self.get_inputs() _lowercase : List[str] = 1 _lowercase : Optional[Any] = None _lowercase : Optional[int] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _lowercase : Optional[Any] = image[0, -3:, -3:, -1] _lowercase : int = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def __UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' _lowercase : List[str] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _lowercase : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _lowercase : Any = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _lowercase : Optional[int] = self.get_inputs(get_fixed_latents=__a , device=__a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _lowercase : Union[str, Any] = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _lowercase : Any = image[0, -3:, -3:, -1] _lowercase : Tuple = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' _lowercase : List[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) _lowercase : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) _lowercase : Optional[Any] = ConsistencyModelPipeline(unet=__a , scheduler=__a ) pipe.to(torch_device=__a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__a ) _lowercase : int = self.get_inputs(get_fixed_latents=__a , device=__a ) _lowercase : Any = 1 _lowercase : Any = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__a , enable_math=__a , enable_mem_efficient=__a ): _lowercase : int = pipe(**__a ).images assert image.shape == (1, 64, 64, 3) _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] _lowercase : Any = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase = 6008_5147_5143 ) -> int: try: _lowercase : Optional[int] = int(__UpperCamelCase ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) _lowercase : Optional[int] = 1 _lowercase : List[Any] = 2 while i * i <= n: while n % i == 0: _lowercase : Optional[Any] = i n //= i i += 1 if n > 1: _lowercase : List[str] = n return int(__UpperCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A : int =1_6 _A : int =3_2 def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase = 16 ) -> Any: _lowercase : Tuple = AutoTokenizer.from_pretrained('bert-base-cased' ) _lowercase : Any = DatasetDict( { 'train': dataset['train'].select(_lowercase ), 'validation': dataset['train'].select(_lowercase ), 'test': dataset['validation'], } ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) _lowercase : str = tokenizer(examples['sentence1'], examples['sentence2'], truncation=_lowercase, max_length=_lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowercase : Any = datasets.map( _lowercase, batched=_lowercase, remove_columns=['idx', 'sentence1', 'sentence2'], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : Optional[Any] = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowercase : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowercase : int = 16 elif accelerator.mixed_precision != "no": _lowercase : Optional[int] = 8 else: _lowercase : Dict = None return tokenizer.pad( _lowercase, padding='longest', max_length=_lowercase, pad_to_multiple_of=_lowercase, return_tensors='pt', ) # Instantiate dataloaders. _lowercase : Optional[int] = DataLoader( tokenized_datasets['train'], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) _lowercase : List[Any] = DataLoader( tokenized_datasets['validation'], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) _lowercase : List[str] = DataLoader( tokenized_datasets['test'], shuffle=_lowercase, collate_fn=_lowercase, batch_size=_lowercase ) return train_dataloader, eval_dataloader, test_dataloader def __UpperCamelCase ( _lowercase, _lowercase ) -> Tuple: _lowercase : List[Any] = [] # Download the dataset _lowercase : Dict = load_dataset('glue', 'mrpc' ) # Create our splits _lowercase : Optional[int] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator _lowercase : Tuple = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : str = config['lr'] _lowercase : Dict = int(config['num_epochs'] ) _lowercase : Union[str, Any] = int(config['seed'] ) _lowercase : int = int(config['batch_size'] ) _lowercase : List[Any] = evaluate.load('glue', 'mrpc' ) # If the batch size is too big we use gradient accumulation _lowercase : str = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _lowercase : int = batch_size // MAX_GPU_BATCH_SIZE _lowercase : Tuple = MAX_GPU_BATCH_SIZE set_seed(_lowercase ) # New Code # # Create our folds: _lowercase : Optional[int] = kfold.split(np.zeros(datasets['train'].num_rows ), datasets['train']['label'] ) _lowercase : Dict = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(_lowercase ): _lowercase , _lowercase , _lowercase : Tuple = get_fold_dataloaders( _lowercase, _lowercase, _lowercase, _lowercase, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : Any = AutoModelForSequenceClassification.from_pretrained('bert-base-cased', return_dict=_lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowercase : int = model.to(accelerator.device ) # Instantiate optimizer _lowercase : Dict = AdamW(params=model.parameters(), lr=_lowercase ) # Instantiate scheduler _lowercase : Dict = get_linear_schedule_with_warmup( optimizer=_lowercase, num_warmup_steps=100, num_training_steps=(len(_lowercase ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = accelerator.prepare( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) # Now we train the model for epoch in range(_lowercase ): model.train() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _lowercase : str = model(**_lowercase ) _lowercase : str = outputs.loss _lowercase : List[Any] = loss / gradient_accumulation_steps accelerator.backward(_lowercase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : List[str] = model(**_lowercase ) _lowercase : List[Any] = outputs.logits.argmax(dim=-1 ) _lowercase , _lowercase : Optional[int] = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=_lowercase, references=_lowercase, ) _lowercase : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''', _lowercase ) # New Code # # We also run predictions on the test set at the very end _lowercase : int = [] for step, batch in enumerate(_lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowercase : Optional[Any] = model(**_lowercase ) _lowercase : List[str] = outputs.logits _lowercase , _lowercase : str = accelerator.gather_for_metrics((predictions, batch['labels']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(_lowercase, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: _lowercase : List[Any] = torch.cat(_lowercase, dim=0 ) _lowercase : Union[str, Any] = torch.stack(_lowercase, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) _lowercase : List[Any] = metric.compute(predictions=_lowercase, references=_lowercase ) accelerator.print('Average test metrics from all folds:', _lowercase ) def __UpperCamelCase ( ) -> Optional[Any]: _lowercase : Dict = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision', type=_lowercase, default=_lowercase, choices=['no', 'fp16', 'bf16', 'fp8'], help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.', ) parser.add_argument('--cpu', action='store_true', help='If passed, will train on the CPU.' ) # New Code # parser.add_argument('--num_folds', type=_lowercase, default=3, help='The number of splits to perform across the dataset' ) _lowercase : int = parser.parse_args() _lowercase : str = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(_lowercase, _lowercase ) if __name__ == "__main__": main()
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( UpperCamelCase__ , unittest.TestCase ): '''simple docstring''' A_ = KandinskyVaaImgaImgPipeline A_ = ["""image_embeds""", """negative_image_embeds""", """image"""] A_ = [ """image_embeds""", """negative_image_embeds""", """image""", ] A_ = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A_ = False @property def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' return 100 @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _lowercase : str = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _lowercase : Union[str, Any] = UNetaDConditionModel(**_a ) return model @property def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Dict = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : Any = self.dummy_unet _lowercase : List[Any] = self.dummy_movq _lowercase : str = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_00_85, """beta_end""": 0.0_12, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } _lowercase : int = DDIMScheduler(**_a ) _lowercase : Tuple = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple=0 ) -> str: '''simple docstring''' _lowercase : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(_a ) ).to(_a ) _lowercase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( _a ) # create init_image _lowercase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_a ) ).to(_a ) _lowercase : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Optional[Any] = Image.fromarray(np.uinta(_a ) ).convert('RGB' ).resize((256, 256) ) if str(_a ).startswith('mps' ): _lowercase : Tuple = torch.manual_seed(_a ) else: _lowercase : str = torch.Generator(device=_a ).manual_seed(_a ) _lowercase : Optional[Any] = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = """cpu""" _lowercase : int = self.get_dummy_components() _lowercase : Optional[int] = self.pipeline_class(**_a ) _lowercase : Any = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) _lowercase : List[Any] = pipe(**self.get_dummy_inputs(_a ) ) _lowercase : Dict = output.images _lowercase : List[str] = pipe( **self.get_dummy_inputs(_a ) , return_dict=_a , )[0] _lowercase : Dict = image[0, -3:, -3:, -1] _lowercase : Union[str, Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowercase : Optional[int] = np.array( [0.6_19_97_78, 0.63_98_44_06, 0.46_14_57_85, 0.62_94_49_84, 0.5_62_22_15, 0.47_30_61_32, 0.47_44_14_56, 0.4_60_76_06, 0.48_71_92_63] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowercase : Dict = """A red cartoon frog, 4k""" _lowercase : Dict = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_a ) _lowercase : int = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) _lowercase : Dict = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) _lowercase : Tuple = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : List[str] = pipe_prior( _a , generator=_a , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowercase : int = pipeline( image=_a , image_embeds=_a , negative_image_embeds=_a , generator=_a , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) _lowercase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_a , _a )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _A : str =logging.get_logger(__name__) def __UpperCamelCase ( _lowercase, _lowercase=False, _lowercase=False ) -> Any: _lowercase : str = '''backbone.''' if is_semantic else '''''' _lowercase : Optional[Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (f'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (f'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (f'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=False, _lowercase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): _lowercase : Optional[Any] = '''backbone.''' if is_semantic else '''''' # queries, keys and values _lowercase : str = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) _lowercase : Dict = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) _lowercase : Dict = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) _lowercase : Dict = in_proj_weight[ : config.hidden_size, : ] _lowercase : int = q_bias _lowercase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowercase : Tuple = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _lowercase : str = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) _lowercase : Any = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) _lowercase : Dict = gamma_a _lowercase : str = gamma_a def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Tuple: _lowercase : int = dct.pop(__UpperCamelCase ) _lowercase : Any = val def __UpperCamelCase ( ) -> Any: _lowercase : Dict = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _lowercase : int = Image.open(requests.get(__UpperCamelCase, stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=False ) -> str: _lowercase : List[str] = False if '''rvlcdip''' in checkpoint_url else True _lowercase : int = BeitConfig(use_absolute_position_embeddings=__UpperCamelCase, use_mask_token=__UpperCamelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _lowercase : Union[str, Any] = 1024 _lowercase : List[Any] = 4096 _lowercase : Any = 24 _lowercase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: _lowercase : Tuple = 16 _lowercase : Union[str, Any] = '''huggingface/label-files''' _lowercase : int = '''rvlcdip-id2label.json''' _lowercase : Dict = json.load(open(hf_hub_download(__UpperCamelCase, __UpperCamelCase, repo_type='dataset' ), 'r' ) ) _lowercase : Optional[Any] = {int(__UpperCamelCase ): v for k, v in idalabel.items()} _lowercase : int = idalabel _lowercase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _lowercase : int = torch.hub.load_state_dict_from_url(__UpperCamelCase, map_location='cpu' )['''model'''] _lowercase : List[str] = create_rename_keys(__UpperCamelCase, has_lm_head=__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase, __UpperCamelCase, __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase, __UpperCamelCase, has_lm_head=__UpperCamelCase ) # load HuggingFace model _lowercase : Optional[Any] = BeitForMaskedImageModeling(__UpperCamelCase ) if has_lm_head else BeitForImageClassification(__UpperCamelCase ) model.eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image _lowercase : Optional[int] = BeitImageProcessor( size=config.image_size, resample=PILImageResampling.BILINEAR, do_center_crop=__UpperCamelCase ) _lowercase : Optional[Any] = prepare_img() _lowercase : Any = image_processor(images=__UpperCamelCase, return_tensors='pt' ) _lowercase : List[str] = encoding['''pixel_values'''] _lowercase : Union[str, Any] = model(__UpperCamelCase ) _lowercase : Dict = outputs.logits # verify logits _lowercase : str = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(__UpperCamelCase ), "Shape of logits not as expected" Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if push_to_hub: if has_lm_head: _lowercase : int = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: _lowercase : Dict = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(__UpperCamelCase, __UpperCamelCase ), organization='nielsr', commit_message='Add image processor', use_temp_dir=__UpperCamelCase, ) model.push_to_hub( repo_path_or_name=Path(__UpperCamelCase, __UpperCamelCase ), organization='nielsr', commit_message='Add model', use_temp_dir=__UpperCamelCase, ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) _A : str =parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Optional[int] = logging.get_logger(__name__) _A : List[str] = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCamelCase__ ( lowerCAmelCase__ ): '''simple docstring''' A_ = "convbert" def __init__( self : int , UpperCamelCase_ : int=3_0522 , UpperCamelCase_ : Dict=768 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : List[Any]=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[Any]=512 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : int=1E-12 , UpperCamelCase_ : Optional[Any]=1 , UpperCamelCase_ : str=0 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Optional[Any]=9 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : Optional[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) _lowercase : int = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Optional[int] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Any = intermediate_size _lowercase : Tuple = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : List[Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : List[Any] = embedding_size _lowercase : int = head_ratio _lowercase : Union[str, Any] = conv_kernel_size _lowercase : Dict = num_groups _lowercase : Tuple = classifier_dropout class lowerCamelCase__ ( lowerCAmelCase__ ): '''simple docstring''' @property def __UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowercase : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : int = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _A : Tuple =data_utils.TransfoXLTokenizer _A : Union[str, Any] =data_utils.TransfoXLCorpus _A : Optional[Any] =data_utils _A : Optional[Any] =data_utils def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__snake_case, 'rb' ) as fp: _lowercase : Optional[int] = pickle.load(__snake_case, encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _lowercase : Tuple = pytorch_dump_folder_path + "/" + VOCAB_FILES_NAMES["pretrained_vocab_file"] print(f'''Save vocabulary to {pytorch_vocab_dump_path}''' ) _lowercase : Union[str, Any] = corpus.vocab.__dict__ torch.save(__snake_case, __snake_case ) _lowercase : str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab', __snake_case ) _lowercase : str = pytorch_dump_folder_path + "/" + CORPUS_NAME print(f'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(__snake_case, __snake_case ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _lowercase : Tuple = os.path.abspath(__snake_case ) _lowercase : int = os.path.abspath(__snake_case ) print(f'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": _lowercase : Dict = TransfoXLConfig() else: _lowercase : List[Any] = TransfoXLConfig.from_json_file(__snake_case ) print(f'''Building PyTorch model from configuration: {config}''' ) _lowercase : str = TransfoXLLMHeadModel(__snake_case ) _lowercase : Any = load_tf_weights_in_transfo_xl(__snake_case, __snake_case, __snake_case ) # Save pytorch-model _lowercase : Dict = os.path.join(__snake_case, __snake_case ) _lowercase : int = os.path.join(__snake_case, __snake_case ) print(f'''Save PyTorch model to {os.path.abspath(__snake_case )}''' ) torch.save(model.state_dict(), __snake_case ) print(f'''Save configuration file to {os.path.abspath(__snake_case )}''' ) with open(__snake_case, 'w', encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--tf_checkpoint_path''', default='''''', type=str, help='''An optional path to a TensorFlow checkpoint path to be converted.''', ) parser.add_argument( '''--transfo_xl_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--transfo_xl_dataset_file''', default='''''', type=str, help='''An optional dataset file to be converted in a vocabulary.''', ) _A : Tuple =parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
712
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def __UpperCamelCase ( _lowercase=None, _lowercase=None ) -> str: return field(default_factory=lambda: default, metadata=a__ ) @dataclass class lowerCamelCase__ : '''simple docstring''' A_ = field( metadata={"""help""": """The csv file to plot."""} , ) A_ = field( default=__lowercase , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) A_ = field( default=__lowercase , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) A_ = field( default=__lowercase , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) A_ = field( default=__lowercase , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) A_ = field( default=__lowercase , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) A_ = list_field( default=__lowercase , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""} ) def __UpperCamelCase ( _lowercase ) -> Tuple: try: int(a__ ) return True except ValueError: return False def __UpperCamelCase ( _lowercase ) -> Any: try: float(a__ ) return True except ValueError: return False class lowerCamelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Any ) -> List[Any]: '''simple docstring''' _lowercase : Any = args _lowercase : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: _lowercase : int = csv.DictReader(__A ) for row in reader: _lowercase : Tuple = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None _lowercase : Tuple = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None _lowercase : Optional[Any] = float(row['result'] ) def __UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' _lowercase , _lowercase : int = plt.subplots() _lowercase : Optional[Any] = 'Time usage' if self.args.is_time else 'Memory usage' _lowercase : Any = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): _lowercase : str = sorted(set(self.result_dict[model_name]['bsz'] ) ) _lowercase : Optional[Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) _lowercase : Tuple = self.result_dict[model_name]['result'] ((_lowercase) , (_lowercase)) : Optional[int] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _lowercase : Dict = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _lowercase : Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__A , ) else: _lowercase : Tuple = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_lowercase) , (_lowercase)) : Optional[int] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) _lowercase : Optional[int] = np.asarray(__A , __A )[: len(__A )] plt.scatter( __A , __A , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__A , __A , '--' ) title_str += F''' {label_model_name} vs.''' _lowercase : str = title_str[:-4] _lowercase : Dict = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(__A ) plt.xlabel(__A ) plt.ylabel(__A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def __UpperCamelCase ( ) -> Any: _lowercase : Dict = HfArgumentParser(a__ ) _lowercase : Any = parser.parse_args_into_dataclasses()[0] _lowercase : str = Plot(args=a__ ) plot.plot() if __name__ == "__main__": main()
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
0
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _A : List[Any] =1_6 _A : Tuple =3_2 def __UpperCamelCase ( _lowercase ) -> str: return int(x / 2**20 ) class lowerCamelCase__ : '''simple docstring''' def __enter__( self : int ) -> Tuple: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero _lowercase : Dict = torch.cuda.memory_allocated() return self def __exit__( self : int , *UpperCamelCase_ : Any ) -> List[str]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() _lowercase : Union[str, Any] = torch.cuda.memory_allocated() _lowercase : Dict = torch.cuda.max_memory_allocated() _lowercase : List[Any] = bamb(self.end - self.begin ) _lowercase : Optional[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __UpperCamelCase ( _lowercase, _lowercase = 16, _lowercase = "bert-base-cased", _lowercase = 320, _lowercase = 160, ) -> Optional[Any]: _lowercase : Optional[int] = AutoTokenizer.from_pretrained(UpperCamelCase__ ) _lowercase : Dict = load_dataset( 'glue', 'mrpc', split={'train': f'''train[:{n_train}]''', 'validation': f'''validation[:{n_val}]'''} ) def tokenize_function(_lowercase ): # max_length=None => use the model max length (it's actually the default) _lowercase : List[str] = tokenizer(examples['sentence1'], examples['sentence2'], truncation=UpperCamelCase__, max_length=UpperCamelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _lowercase : int = datasets.map( UpperCamelCase__, batched=UpperCamelCase__, remove_columns=['idx', 'sentence1', 'sentence2'], load_from_cache_file=UpperCamelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowercase : Any = tokenized_datasets.rename_column('label', 'labels' ) def collate_fn(_lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(UpperCamelCase__, padding='max_length', max_length=128, return_tensors='pt' ) return tokenizer.pad(UpperCamelCase__, padding='longest', return_tensors='pt' ) # Instantiate dataloaders. _lowercase : str = DataLoader( tokenized_datasets['train'], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) _lowercase : Optional[Any] = DataLoader( tokenized_datasets['validation'], shuffle=UpperCamelCase__, collate_fn=UpperCamelCase__, batch_size=UpperCamelCase__ ) return train_dataloader, eval_dataloader def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[int]: # Initialize accelerator _lowercase : Optional[Any] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowercase : str = config['lr'] _lowercase : List[str] = int(config['num_epochs'] ) _lowercase : Union[str, Any] = int(config['seed'] ) _lowercase : List[str] = int(config['batch_size'] ) _lowercase : Union[str, Any] = args.model_name_or_path set_seed(UpperCamelCase__ ) _lowercase , _lowercase : List[Any] = get_dataloaders(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, args.n_train, args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained(UpperCamelCase__, return_dict=UpperCamelCase__ ) # Instantiate optimizer _lowercase : List[str] = ( AdamW if accelerator.state.deepspeed_plugin is None or 'optimizer' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _lowercase : List[str] = optimizer_cls(params=model.parameters(), lr=UpperCamelCase__ ) if accelerator.state.deepspeed_plugin is not None: _lowercase : Optional[Any] = accelerator.state.deepspeed_plugin.deepspeed_config[ 'gradient_accumulation_steps' ] else: _lowercase : Any = 1 _lowercase : Tuple = (len(UpperCamelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _lowercase : int = get_linear_schedule_with_warmup( optimizer=UpperCamelCase__, num_warmup_steps=0, num_training_steps=UpperCamelCase__, ) else: _lowercase : Optional[Any] = DummyScheduler(UpperCamelCase__, total_num_steps=UpperCamelCase__, warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : int = accelerator.prepare( UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # We need to keep track of how many total steps we have iterated over _lowercase : Optional[Any] = 0 # We also need to keep track of the stating epoch so files are named properly _lowercase : Optional[Any] = 0 # Now we train the model _lowercase : Optional[Any] = {} for epoch in range(UpperCamelCase__, UpperCamelCase__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(UpperCamelCase__ ): _lowercase : Optional[Any] = model(**UpperCamelCase__ ) _lowercase : List[str] = outputs.loss _lowercase : str = loss / gradient_accumulation_steps accelerator.backward(UpperCamelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('Memory before entering the train : {}'.format(bamb(tracemalloc.begin ) ) ) accelerator.print('Memory consumed at the end of the train (end-begin): {}'.format(tracemalloc.used ) ) accelerator.print('Peak Memory consumed during the train (max-begin): {}'.format(tracemalloc.peaked ) ) accelerator.print( 'Total Peak Memory consumed during the train (max): {}'.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) _lowercase : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[f'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir, 'peak_memory_utilization.json' ), 'w' ) as f: json.dump(UpperCamelCase__, UpperCamelCase__ ) def __UpperCamelCase ( ) -> List[str]: _lowercase : List[str] = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path', type=UpperCamelCase__, default='bert-base-cased', help='Path to pretrained model or model identifier from huggingface.co/models.', required=UpperCamelCase__, ) parser.add_argument( '--output_dir', type=UpperCamelCase__, default='.', help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.', ) parser.add_argument( '--peak_memory_upper_bound', type=UpperCamelCase__, default=UpperCamelCase__, help='The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.', ) parser.add_argument( '--n_train', type=UpperCamelCase__, default=320, help='Number of training examples to use.', ) parser.add_argument( '--n_val', type=UpperCamelCase__, default=160, help='Number of validation examples to use.', ) parser.add_argument( '--num_epochs', type=UpperCamelCase__, default=1, help='Number of train epochs.', ) _lowercase : List[Any] = parser.parse_args() _lowercase : int = {'lr': 2E-5, 'num_epochs': args.num_epochs, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase__, UpperCamelCase__ ) if __name__ == "__main__": main()
714
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: return round(float(moles / volume ) * nfactor ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[str]: return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Any: return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[Any]: return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
715
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
0
'''simple docstring''' from __future__ import annotations _A : Dict ='''#''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[Any] ) -> None: '''simple docstring''' _lowercase : dict = {} def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : str ) -> None: '''simple docstring''' _lowercase : Optional[int] = self._trie for char in text: if char not in trie: _lowercase : str = {} _lowercase : Tuple = trie[char] _lowercase : int = True def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple ) -> tuple | list: '''simple docstring''' _lowercase : Optional[Any] = self._trie for char in prefix: if char in trie: _lowercase : str = trie[char] else: return [] return self._elements(__a ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Any ) -> tuple: '''simple docstring''' _lowercase : Union[str, Any] = [] for c, v in d.items(): _lowercase : List[str] = [' '] if c == END else [(c + s) for s in self._elements(__a )] result.extend(__a ) return tuple(__a ) _A : Any =Trie() _A : Tuple =('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def __UpperCamelCase ( _lowercase ) -> tuple: _lowercase : int = trie.find_word(_lowercase ) return tuple(string + word for word in suffixes ) def __UpperCamelCase ( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
716
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
0
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _lowercase, _lowercase ) -> Tuple: assert isinstance(_lowercase, _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Tuple: _lowercase : Optional[int] = tmp_path / 'cache' _lowercase : Tuple = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Tuple = ParquetDatasetReader(_lowercase, cache_dir=_lowercase, keep_in_memory=_lowercase ).read() _check_parquet_dataset(_lowercase, _lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: _lowercase : int = tmp_path / 'cache' _lowercase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowercase : List[Any] = features.copy() if features else default_expected_features _lowercase : str = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : Any = ParquetDatasetReader(_lowercase, features=_lowercase, cache_dir=_lowercase ).read() _check_parquet_dataset(_lowercase, _lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Tuple = tmp_path / 'cache' _lowercase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowercase : List[str] = ParquetDatasetReader(_lowercase, cache_dir=_lowercase, split=_lowercase ).read() _check_parquet_dataset(_lowercase, _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[str]: if issubclass(_lowercase, _lowercase ): _lowercase : int = parquet_path elif issubclass(_lowercase, _lowercase ): _lowercase : Any = [parquet_path] _lowercase : Optional[Any] = tmp_path / 'cache' _lowercase : List[str] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowercase : Any = ParquetDatasetReader(_lowercase, cache_dir=_lowercase ).read() _check_parquet_dataset(_lowercase, _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=("train",) ) -> int: assert isinstance(_lowercase, _lowercase ) for split in splits: _lowercase : int = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Union[str, Any] = tmp_path / 'cache' _lowercase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : Any = ParquetDatasetReader( {'train': parquet_path}, cache_dir=_lowercase, keep_in_memory=_lowercase ).read() _check_parquet_datasetdict(_lowercase, _lowercase ) @pytest.mark.parametrize( 'features', [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ], ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Tuple: _lowercase : List[str] = tmp_path / 'cache' _lowercase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowercase : str = features.copy() if features else default_expected_features _lowercase : Dict = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : List[str] = ParquetDatasetReader({'train': parquet_path}, features=_lowercase, cache_dir=_lowercase ).read() _check_parquet_datasetdict(_lowercase, _lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[str]: if split: _lowercase : Tuple = {split: parquet_path} else: _lowercase : List[Any] = 'train' _lowercase : List[str] = {'train': parquet_path, 'test': parquet_path} _lowercase : Optional[Any] = tmp_path / 'cache' _lowercase : Optional[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} _lowercase : Tuple = ParquetDatasetReader(_lowercase, cache_dir=_lowercase ).read() _check_parquet_datasetdict(_lowercase, _lowercase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[int] = ParquetDatasetWriter(_lowercase, tmp_path / 'foo.parquet' ) assert writer.write() > 0 _lowercase : Any = pq.ParquetFile(tmp_path / 'foo.parquet' ) _lowercase : int = pf.read() assert dataset.data.table == output_table def __UpperCamelCase ( _lowercase, _lowercase ) -> List[Any]: _lowercase : List[Any] = str(shared_datadir / 'test_image_rgb.jpg' ) _lowercase : List[Any] = {'image': [image_path]} _lowercase : Dict = Features({'image': Image()} ) _lowercase : str = Dataset.from_dict(_lowercase, features=_lowercase ) _lowercase : int = ParquetDatasetWriter(_lowercase, tmp_path / 'foo.parquet' ) assert writer.write() > 0 _lowercase : Tuple = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features _lowercase : List[str] = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ), streaming=_lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected', [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> int: assert get_writer_batch_size(_lowercase ) == expected
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor _A : str =logging.get_logger(__name__) class lowerCamelCase__ ( __snake_case ): '''simple docstring''' def __init__( self : int , *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' warnings.warn( 'The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use PoolFormerImageProcessor instead.' , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
0
_A : int =tuple[float, float, float] _A : Optional[Any] =tuple[float, float, float] def __UpperCamelCase ( _lowercase, _lowercase ) -> Vectorad: _lowercase : List[Any] = end_pointa[0] - end_pointa[0] _lowercase : Union[str, Any] = end_pointa[1] - end_pointa[1] _lowercase : List[str] = end_pointa[2] - end_pointa[2] return (x, y, z) def __UpperCamelCase ( _lowercase, _lowercase ) -> Vectorad: _lowercase : Optional[int] = ab[1] * ac[2] - ab[2] * ac[1] # *i _lowercase : Dict = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j _lowercase : Dict = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def __UpperCamelCase ( _lowercase, _lowercase ) -> bool: return tuple(round(lowercase_, lowercase_ ) for x in vector ) == (0, 0, 0) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase = 10 ) -> bool: _lowercase : Tuple = create_vector(lowercase_, lowercase_ ) _lowercase : Dict = create_vector(lowercase_, lowercase_ ) return is_zero_vector(get_ad_vectors_cross(lowercase_, lowercase_ ), lowercase_ )
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __UpperCamelCase ( ) -> Tuple: raise RuntimeError('CUDA out of memory.' ) class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' super().__init__() _lowercase : List[Any] = nn.Linear(3 , 4 ) _lowercase : Dict = nn.BatchNormad(4 ) _lowercase : Optional[Any] = nn.Linear(4 , 5 ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' _lowercase : Any = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase_ : int ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a , [128, 64, 32, 16, 8] ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _lowercase , _lowercase : Optional[Any] = mock_training_loop_function('hello' ) self.assertListEqual(_a , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def __UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(UpperCamelCase_ : Dict ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase_ : Any ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def __UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(UpperCamelCase_ : Tuple ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' _lowercase : Any = torch.cuda.memory_allocated() _lowercase : Optional[Any] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _a ) _lowercase : Optional[Any] = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() , _a )
720
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = CodeGenTokenizer A_ = CodeGenTokenizerFast A_ = True A_ = {"add_prefix_space": True} A_ = False def __UpperCAmelCase ( self : List[str] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', '<|endoftext|>', ] _lowercase : Optional[int] = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) _lowercase : List[str] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : Optional[Any] = {'unk_token': '<unk>'} _lowercase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __UpperCAmelCase ( self : str , **UpperCamelCase_ : str ) -> List[Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = 'lower newer' _lowercase : Dict = 'lower newer' return input_text, output_text def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _lowercase : Optional[int] = 'lower newer' _lowercase : Dict = ['\u0120low', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : List[Any] = tokenizer.tokenize(UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) _lowercase : Optional[Any] = tokens + [tokenizer.unk_token] _lowercase : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' if not self.test_rust_tokenizer: return _lowercase : Any = self.get_tokenizer() _lowercase : List[Any] = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__ ) _lowercase : Any = 'lower newer' # Testing tokenization _lowercase : Optional[int] = tokenizer.tokenize(UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) _lowercase : Optional[int] = rust_tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids without special tokens _lowercase : List[Any] = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) _lowercase : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing conversion to ids with special tokens _lowercase : Any = self.get_rust_tokenizer(add_prefix_space=UpperCamelCase__ ) _lowercase : int = tokenizer.encode(UpperCamelCase__ , add_prefix_space=UpperCamelCase__ ) _lowercase : Union[str, Any] = rust_tokenizer.encode(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) # Testing the unknown token _lowercase : Union[str, Any] = tokens + [rust_tokenizer.unk_token] _lowercase : List[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def __UpperCAmelCase ( self : int , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ) -> Dict: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Dict=15 ) -> Optional[Any]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) # Simple input _lowercase : Any = 'This is a simple input' _lowercase : Union[str, Any] = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : Dict = ('This is a simple input', 'This is a pair') _lowercase : Union[str, Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase__ , tokenizer_r.encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase__ , tokenizer_r.batch_encode_plus , UpperCamelCase__ , max_length=UpperCamelCase__ , padding='max_length' , ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='<pad>' ) # Simple input _lowercase : Tuple = 'This is a simple input' _lowercase : List[Any] = ['This is a simple input looooooooong', 'This is a simple input'] _lowercase : Optional[Any] = ('This is a simple input', 'This is a pair') _lowercase : str = [ ('This is a simple input loooooong', 'This is a simple input'), ('This is a simple pair loooooong', 'This is a simple pair'), ] _lowercase : Optional[int] = tokenizer.pad_token_id _lowercase : Union[str, Any] = tokenizer(UpperCamelCase__ , padding='max_length' , max_length=30 , return_tensors='np' ) _lowercase : Tuple = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncate=UpperCamelCase__ , return_tensors='np' ) _lowercase : Optional[Any] = tokenizer(*UpperCamelCase__ , padding='max_length' , max_length=60 , return_tensors='np' ) _lowercase : Union[str, Any] = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , truncate=UpperCamelCase__ , return_tensors='np' ) # s # test single string max_length padding self.assertEqual(out_s['input_ids'].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['input_ids'] ) self.assertTrue(0 in out_s['attention_mask'] ) # s2 # test automatic padding self.assertEqual(out_sa['input_ids'].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['input_ids'][0] ) self.assertFalse(0 in out_sa['attention_mask'][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['input_ids'][1] ) self.assertTrue(0 in out_sa['attention_mask'][1] ) # p # test single pair max_length padding self.assertEqual(out_p['input_ids'].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['input_ids'] ) self.assertTrue(0 in out_p['attention_mask'] ) # p2 # test automatic padding pair self.assertEqual(out_pa['input_ids'].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['input_ids'][0] ) self.assertFalse(0 in out_pa['attention_mask'][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['input_ids'][1] ) self.assertTrue(0 in out_pa['attention_mask'][1] ) def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' _lowercase : Tuple = '$$$' _lowercase : str = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=UpperCamelCase__ , add_bos_token=UpperCamelCase__ ) _lowercase : List[str] = 'This is a simple input' _lowercase : int = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : List[Any] = tokenizer.bos_token_id _lowercase : str = tokenizer(UpperCamelCase__ ) _lowercase : Union[str, Any] = tokenizer(UpperCamelCase__ ) self.assertEqual(out_s.input_ids[0] , UpperCamelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowercase : Optional[int] = tokenizer.decode(out_s.input_ids ) _lowercase : List[str] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , UpperCamelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' _lowercase : Optional[int] = CodeGenTokenizer.from_pretrained('Salesforce/codegen-350M-mono' ) _lowercase : Any = '\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#' _lowercase : List[Any] = '\nif len_a > len_b: result = a\nelse: result = b' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase__ ) _lowercase : List[Any] = ['^#', re.escape('<|endoftext|>' ), '^\'\'\'', '^"""', '\n\n\n'] _lowercase : Dict = tokenizer.decode(UpperCamelCase__ , truncate_before_pattern=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) def __UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' pass
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() _A : Dict =logging.get_logger(__name__) _A : Optional[int] ="""Hello world! cécé herlolip""" def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> int: _lowercase : str = FairseqRobertaModel.from_pretrained(_lowercase ) roberta.eval() # disable dropout _lowercase : str = roberta.model.encoder.sentence_encoder _lowercase : List[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings, hidden_size=roberta.cfg.model.encoder_embed_dim, num_hidden_layers=roberta.cfg.model.encoder_layers, num_attention_heads=roberta.cfg.model.encoder_attention_heads, intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim, max_position_embeddings=514, type_vocab_size=1, layer_norm_eps=1E-5, ) if classification_head: _lowercase : Union[str, Any] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:', _lowercase ) _lowercase : Tuple = XLMRobertaXLForSequenceClassification(_lowercase ) if classification_head else XLMRobertaXLForMaskedLM(_lowercase ) model.eval() # Now let's copy all the weights. # Embeddings _lowercase : Optional[Any] = roberta_sent_encoder.embed_tokens.weight _lowercase : str = roberta_sent_encoder.embed_positions.weight _lowercase : Optional[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. _lowercase : str = roberta_sent_encoder.layer_norm.weight _lowercase : Optional[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer _lowercase : List[Any] = model.roberta.encoder.layer[i] _lowercase : str = roberta_sent_encoder.layers[i] _lowercase : int = layer.attention _lowercase : Optional[Any] = roberta_layer.self_attn_layer_norm.weight _lowercase : Dict = roberta_layer.self_attn_layer_norm.bias # self attention _lowercase : Union[str, Any] = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) _lowercase : Tuple = roberta_layer.self_attn.q_proj.weight _lowercase : List[Any] = roberta_layer.self_attn.q_proj.bias _lowercase : str = roberta_layer.self_attn.k_proj.weight _lowercase : str = roberta_layer.self_attn.k_proj.bias _lowercase : Optional[int] = roberta_layer.self_attn.v_proj.weight _lowercase : List[str] = roberta_layer.self_attn.v_proj.bias # self-attention output _lowercase : Optional[int] = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape _lowercase : Optional[int] = roberta_layer.self_attn.out_proj.weight _lowercase : List[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm _lowercase : Any = roberta_layer.final_layer_norm.weight _lowercase : Optional[Any] = roberta_layer.final_layer_norm.bias # intermediate _lowercase : int = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape _lowercase : Tuple = roberta_layer.fca.weight _lowercase : Dict = roberta_layer.fca.bias # output _lowercase : Dict = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape _lowercase : List[str] = roberta_layer.fca.weight _lowercase : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: _lowercase : Any = roberta.model.classification_heads['mnli'].dense.weight _lowercase : Optional[int] = roberta.model.classification_heads['mnli'].dense.bias _lowercase : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight _lowercase : List[Any] = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head _lowercase : str = roberta.model.encoder.lm_head.dense.weight _lowercase : Union[str, Any] = roberta.model.encoder.lm_head.dense.bias _lowercase : Dict = roberta.model.encoder.lm_head.layer_norm.weight _lowercase : Any = roberta.model.encoder.lm_head.layer_norm.bias _lowercase : Optional[int] = roberta.model.encoder.lm_head.weight _lowercase : Tuple = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. _lowercase : Tuple = roberta.encode(_lowercase ).unsqueeze(0 ) # batch of size 1 _lowercase : Optional[int] = model(_lowercase )[0] if classification_head: _lowercase : Optional[int] = roberta.model.classification_heads['mnli'](roberta.extract_features(_lowercase ) ) else: _lowercase : Dict = roberta.model(_lowercase )[0] print(our_output.shape, their_output.shape ) _lowercase : Optional[int] = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 _lowercase : Optional[int] = torch.allclose(_lowercase, _lowercase, atol=1E-3 ) print('Do both models output the same tensors?', '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(_lowercase ).mkdir(parents=_lowercase, exist_ok=_lowercase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) _A : int =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__ ( _UpperCAmelCase ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Any = None , UpperCamelCase_ : List[str] = True , UpperCamelCase_ : Tuple = None , UpperCamelCase_ : List[Any] = False , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[str] = True , UpperCamelCase_ : List[str] = "arrow" , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__( split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , **lowercase__ , ) _lowercase : Any = load_from_cache_file _lowercase : Optional[int] = file_format _lowercase : List[Any] = Spark( df=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , working_dir=lowercase__ , **lowercase__ , ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _lowercase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=lowercase__ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , **UpperCamelCase_ : Dict ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[Any] , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : int = {} if "candidate_labels" in kwargs: _lowercase : Optional[Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : Optional[int] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : List[Any]="This is a photo of {}." ) -> Optional[Any]: '''simple docstring''' _lowercase : str = load_image(UpperCamelCase_ ) _lowercase : Union[str, Any] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Union[str, Any] = candidate_labels _lowercase : List[str] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Optional[int] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : List[str] = [text_inputs] return inputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = model_inputs.pop('candidate_labels' ) _lowercase : Any = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Tuple = text_inputs[0] else: # Batching case. _lowercase : Union[str, Any] = text_inputs[0][0] _lowercase : List[str] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = model_outputs.pop('candidate_labels' ) _lowercase : List[str] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : str = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Optional[Any] = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Union[str, Any] = [scores] elif self.framework == "tf": _lowercase : Tuple = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : Any = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : Optional[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers _A : List[Any] =[int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __UpperCamelCase ( ) -> Union[str, Any]: _lowercase : str = os.path.dirname(os.path.realpath(__lowercase ) ) _lowercase : Tuple = os.path.join(__lowercase, 'words.txt' ) _lowercase : str = '' with open(__lowercase ) as f: _lowercase : Optional[Any] = f.readline() _lowercase : Tuple = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _lowercase : Optional[Any] = [ word for word in [sum(ord(__lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowercase ) if __name__ == "__main__": print(solution())
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _A : Optional[Any] =2 class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , *, # begin keyword-only arguments UpperCamelCase_ : Optional[Any]="<s>" , UpperCamelCase_ : Union[str, Any]="<pad>" , UpperCamelCase_ : Dict="</s>" , UpperCamelCase_ : Optional[Any]="<unk>" , UpperCamelCase_ : int=None , ) -> List[str]: '''simple docstring''' _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = bos, unk, pad, eos _lowercase : List[Any] = [] _lowercase : Dict = [] _lowercase : List[str] = {} _lowercase : Union[str, Any] = self.add_symbol(_A ) _lowercase : Tuple = self.add_symbol(_A ) _lowercase : Optional[Any] = self.add_symbol(_A ) _lowercase : Tuple = self.add_symbol(_A ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(_A ) _lowercase : Optional[Any] = len(self.symbols ) def __eq__( self : Optional[Any] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' return self.indices == other.indices def __getitem__( self : Tuple , UpperCamelCase_ : Tuple ) -> Tuple: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : List[Any] ) -> List[Any]: '''simple docstring''' return len(self.symbols ) def __contains__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' return sym in self.indices @classmethod def __UpperCAmelCase ( cls : List[str] , UpperCamelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = cls() d.add_from_file(_A ) return d def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any]=1 , UpperCamelCase_ : Union[str, Any]=False ) -> Union[str, Any]: '''simple docstring''' if word in self.indices and not overwrite: _lowercase : str = self.indices[word] _lowercase : Union[str, Any] = self.count[idx] + n return idx else: _lowercase : int = len(self.symbols ) _lowercase : Any = idx self.symbols.append(_A ) self.count.append(_A ) return idx def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return 0 def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' if isinstance(_A , _A ): try: with open(_A , 'r' , encoding='utf-8' ) as fd: self.add_from_file(_A ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('Incorrect encoding detected in {}, please rebuild the dataset'.format(_A ) ) return _lowercase : Optional[int] = f.readlines() _lowercase : Optional[Any] = self._load_meta(_A ) for line in lines[indices_start_line:]: try: _lowercase , _lowercase : Dict = line.rstrip().rsplit(' ' , 1 ) if field == "#fairseq:overwrite": _lowercase : Optional[Any] = True _lowercase , _lowercase : Dict = line.rsplit(' ' , 1 ) else: _lowercase : Dict = False _lowercase : str = int(_A ) _lowercase : Optional[int] = line if word in self and not overwrite: raise RuntimeError( 'Duplicate word found when loading Dictionary: \'{}\'. ' 'Duplicate words can overwrite earlier ones by adding the ' '#fairseq:overwrite flag at the end of the corresponding row ' 'in the dictionary file. If using the Camembert model, please ' 'download an updated copy of the model file.'.format(_A ) ) self.add_symbol(_A , n=_A , overwrite=_A ) except ValueError: raise ValueError('Incorrect dictionary format, expected \'<token> <cnt> [flags]\'' ) def __UpperCamelCase ( _lowercase ) -> int: # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} _lowercase : Tuple = dict((re.sub(r'@@$', '', __snake_case ), v) if k.endswith('@@' ) else (re.sub(r'$', '</w>', __snake_case ), v) for k, v in d.items() ) _lowercase : Dict = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] _lowercase : Dict = d[k] # restore return da def __UpperCamelCase ( _lowercase, _lowercase ) -> Any: # prep if not os.path.exists(__snake_case ): raise ValueError(f'''path {biogpt_checkpoint_path} does not exist!''' ) os.makedirs(__snake_case, exist_ok=__snake_case ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models _lowercase : Any = os.path.join(__snake_case, 'checkpoint.pt' ) if not os.path.isfile(__snake_case ): raise ValueError(f'''path to the file {checkpoint_file} does not exist!''' ) _lowercase : Dict = torch.load(__snake_case, map_location='cpu' ) _lowercase : Dict = chkpt['cfg']['model'] # dicts _lowercase : Tuple = os.path.join(__snake_case, 'dict.txt' ) if not os.path.isfile(__snake_case ): raise ValueError(f'''path to the file {dict_file} does not exist!''' ) _lowercase : int = Dictionary.load(__snake_case ) _lowercase : int = rewrite_dict_keys(src_dict.indices ) _lowercase : str = len(__snake_case ) _lowercase : Optional[int] = os.path.join(__snake_case, VOCAB_FILES_NAMES['vocab_file'] ) print(f'''Generating {src_vocab_file} of {src_vocab_size} records''' ) with open(__snake_case, 'w', encoding='utf-8' ) as f: f.write(json.dumps(__snake_case, ensure_ascii=__snake_case, indent=__snake_case ) ) # merges_file (bpecodes) _lowercase : Any = os.path.join(__snake_case, 'bpecodes' ) if not os.path.isfile(__snake_case ): raise ValueError(f'''path to the file {bpecodes_file} does not exist!''' ) _lowercase : List[Any] = os.path.join(__snake_case, VOCAB_FILES_NAMES['merges_file'] ) shutil.copyfile(__snake_case, __snake_case ) # model config _lowercase : List[Any] = os.path.join(__snake_case, 'config.json' ) _lowercase : Optional[int] = { 'activation_dropout': args['activation_dropout'], 'architectures': ['BioGptForCausalLM'], 'attention_probs_dropout_prob': args['attention_dropout'], 'bos_token_id': 0, 'eos_token_id': 2, 'hidden_act': args['activation_fn'], 'hidden_dropout_prob': args['dropout'], 'hidden_size': args['decoder_embed_dim'], 'initializer_range': 0.0_2, 'intermediate_size': args['decoder_ffn_embed_dim'], 'layer_norm_eps': 1E-1_2, 'layerdrop': args['decoder_layerdrop'], 'max_position_embeddings': args['max_target_positions'], 'model_type': 'biogpt', 'num_attention_heads': args['decoder_attention_heads'], 'num_hidden_layers': args['decoder_layers'], 'pad_token_id': 1, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_decoder_input_output_embed'], 'vocab_size': src_vocab_size, } # good hparam defaults to start with print(f'''Generating {biogpt_model_config_file}''' ) with open(__snake_case, 'w', encoding='utf-8' ) as f: f.write(json.dumps(__snake_case, ensure_ascii=__snake_case, indent=__snake_case ) ) # tokenizer config _lowercase : List[Any] = os.path.join(__snake_case, __snake_case ) _lowercase : Optional[int] = { 'bos_token': '<s>', 'eos_token': '</s>', 'model_max_length': 1024, 'pad_token': '<pad>', 'special_tokens_map_file': None, 'tokenizer_class': 'BioGptTokenizer', 'unk_token': '<unk>', } print(f'''Generating {biogpt_tokenizer_config_file}''' ) with open(__snake_case, 'w', encoding='utf-8' ) as f: f.write(json.dumps(__snake_case, ensure_ascii=__snake_case, indent=__snake_case ) ) # model _lowercase : int = chkpt['model'] # remove unneeded keys _lowercase : List[str] = [ 'decoder.version', ] for k in ignore_keys: model_state_dict.pop(__snake_case, __snake_case ) _lowercase : Optional[int] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('output_projection.weight' ): _lowercase : Dict = model_state_dict.pop(__snake_case ) else: _lowercase : str = model_state_dict.pop(__snake_case ) _lowercase : Optional[Any] = BioGptConfig.from_pretrained(__snake_case ) _lowercase : List[Any] = BioGptForCausalLM(__snake_case ) # check that it loads ok model_new.load_state_dict(__snake_case ) # save _lowercase : Any = os.path.join(__snake_case, __snake_case ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(__snake_case, __snake_case ) print('Conversion is done!' ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--biogpt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : Tuple =parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : str ={'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] =['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _A : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class lowerCamelCase__ ( __lowerCamelCase ): '''simple docstring''' A_ = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) A_ = '''CIDAS/clipseg-rd64-refined''' A_ = '''image_segmenter''' A_ = CLIPSegForImageSegmentation A_ = ['''image''', '''text'''] A_ = ['''image'''] def __init__( self : List[Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*a_ , **a_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=a_ , return_tensors='pt' ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : int ) -> Optional[int]: '''simple docstring''' with torch.no_grad(): _lowercase : int = self.model(**a_ ).logits return logits def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : str = outputs.cpu().detach().numpy() _lowercase : Union[str, Any] = 0 _lowercase : Dict = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' _A : List[str] ='''Input must be a string of 8 numbers plus letter''' _A : str ='''TRWAGMYFPDXBNJZSQVHLCKE''' def __UpperCamelCase ( _lowercase ) -> int: if not isinstance(_snake_case, _snake_case ): _lowercase : List[Any] = f'''Expected string as input, found {type(_snake_case ).__name__}''' raise TypeError(_snake_case ) _lowercase : str = spanish_id.replace('-', '' ).upper() if len(_snake_case ) != 9: raise ValueError(_snake_case ) try: _lowercase : Optional[Any] = int(spanish_id_clean[0:8] ) _lowercase : Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(_snake_case ) from ex if letter.isdigit(): raise ValueError(_snake_case ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _A : List[str] ={ 'configuration_gpt_neo': ['GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoConfig', 'GPTNeoOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =[ 'GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoForCausalLM', 'GPTNeoForQuestionAnswering', 'GPTNeoForSequenceClassification', 'GPTNeoForTokenClassification', 'GPTNeoModel', 'GPTNeoPreTrainedModel', 'load_tf_weights_in_gpt_neo', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ 'FlaxGPTNeoForCausalLM', 'FlaxGPTNeoModel', 'FlaxGPTNeoPreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' # # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __UpperCamelCase ( *_lowercase ) -> List[Any]: with open(A_, 'r' ) as fh: fcntl.flock(A_, fcntl.LOCK_EX ) try: print(*A_ ) finally: fcntl.flock(A_, fcntl.LOCK_UN ) _A : Tuple =int(os.environ['''LOCAL_RANK''']) torch.cuda.set_device(local_rank) _A : str =torch.device('''cuda''', local_rank) _A : int =socket.gethostname() _A : Union[str, Any] =F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('''nccl''') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _A : Optional[Any] =dist.get_rank() _A : Union[str, Any] =dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase ) -> Dict: _lowercase : Tuple = multiprocessing.Manager() _lowercase : int = manager.list() _lowercase : Dict = multiprocessing.Process(target=_lowercase, args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('timed out' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Dict: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil _lowercase : Any = shutil.rmtree _lowercase : Tuple = os.rmdir _lowercase : Tuple = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: _lowercase : Tuple = {} with swallow_io(): with time_limit(_lowercase ): exec(_lowercase, _lowercase ) result.append('passed' ) except TimeoutException: result.append('timed out' ) except BaseException as e: result.append(f'''failed: {e}''' ) # Needed for cleaning up. _lowercase : Dict = rmtree _lowercase : str = rmdir _lowercase : Optional[int] = chdir @contextlib.contextmanager def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: def signal_handler(_lowercase, _lowercase ): raise TimeoutException('Timed out!' ) signal.setitimer(signal.ITIMER_REAL, _lowercase ) signal.signal(signal.SIGALRM, _lowercase ) try: yield finally: signal.setitimer(signal.ITIMER_REAL, 0 ) @contextlib.contextmanager def __UpperCamelCase ( ) -> Any: _lowercase : Any = WriteOnlyStringIO() with contextlib.redirect_stdout(_lowercase ): with contextlib.redirect_stderr(_lowercase ): with redirect_stdin(_lowercase ): yield @contextlib.contextmanager def __UpperCamelCase ( ) -> str: with tempfile.TemporaryDirectory() as dirname: with chdir(_lowercase ): yield dirname class lowerCamelCase__ ( snake_case__ ): '''simple docstring''' pass class lowerCamelCase__ ( io.StringIO ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' raise OSError def __UpperCAmelCase ( self : Union[str, Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' raise OSError def __UpperCAmelCase ( self : int , *UpperCamelCase_ : Any , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' raise OSError def __UpperCAmelCase ( self : Tuple , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return False class lowerCamelCase__ ( contextlib._RedirectStream ): # type: ignore '''simple docstring''' A_ = '''stdin''' @contextlib.contextmanager def __UpperCamelCase ( _lowercase ) -> List[str]: if root == ".": yield return _lowercase : str = os.getcwd() os.chdir(_lowercase ) try: yield except BaseException as exc: raise exc finally: os.chdir(_lowercase ) def __UpperCamelCase ( _lowercase=None ) -> List[Any]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins _lowercase : List[Any] = None _lowercase : Tuple = None import os _lowercase : int = '1' _lowercase : List[str] = None _lowercase : Union[str, Any] = None _lowercase : Dict = None _lowercase : str = None _lowercase : str = None _lowercase : Optional[int] = None _lowercase : Dict = None _lowercase : int = None _lowercase : Tuple = None _lowercase : Optional[Any] = None _lowercase : Optional[int] = None _lowercase : int = None _lowercase : str = None _lowercase : Tuple = None _lowercase : List[Any] = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None _lowercase : Optional[Any] = None _lowercase : Union[str, Any] = None _lowercase : Union[str, Any] = None _lowercase : Any = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None _lowercase : Union[str, Any] = None _lowercase : List[Any] = None _lowercase : Optional[int] = None _lowercase : Union[str, Any] = None import shutil _lowercase : str = None _lowercase : Dict = None _lowercase : List[str] = None import subprocess _lowercase : Any = None # type: ignore _lowercase : Optional[Any] = None import sys _lowercase : int = None _lowercase : Any = None _lowercase : Any = None _lowercase : Union[str, Any] = None _lowercase : Tuple = None
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask _A : Any = logging.getLogger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Tuple=-1 ) -> Optional[int]: '''simple docstring''' _lowercase : int = label_idx def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ) -> List[InputExample]: '''simple docstring''' if isinstance(__a , __a ): _lowercase : List[Any] = mode.value _lowercase : Dict = os.path.join(__a , F'''{mode}.txt''' ) _lowercase : Union[str, Any] = 1 _lowercase : Optional[Any] = [] with open(__a , encoding='utf-8' ) as f: _lowercase : str = [] _lowercase : int = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 _lowercase : Union[str, Any] = [] _lowercase : Any = [] else: _lowercase : str = line.split(' ' ) words.append(splits[0] ) if len(__a ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) return examples def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(__a ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: _lowercase : Dict = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(__a ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' if path: with open(__a , 'r' ) as f: _lowercase : Any = f.read().splitlines() if "O" not in labels: _lowercase : Any = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Optional[Any] ) -> str: '''simple docstring''' super().__init__(label_idx=-2 ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' if path: with open(__a , 'r' ) as f: _lowercase : Optional[int] = f.read().splitlines() if "O" not in labels: _lowercase : Any = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str ) -> List[InputExample]: '''simple docstring''' if isinstance(__a , __a ): _lowercase : int = mode.value _lowercase : List[Any] = os.path.join(__a , F'''{mode}.txt''' ) _lowercase : Optional[int] = 1 _lowercase : Tuple = [] with open(__a , encoding='utf-8' ) as f: for sentence in parse_incr(__a ): _lowercase : Optional[Any] = [] _lowercase : Any = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(__a ) == len(__a ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=__a , labels=__a ) ) guid_index += 1 return examples def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = 0 for sentence in parse_incr(__a ): _lowercase : Optional[int] = preds_list[example_id] _lowercase : Union[str, Any] = '' for token in sentence: out += F'''{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) ''' out += "\n" writer.write(__a ) example_id += 1 def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[str] ) -> List[str]: '''simple docstring''' if path: with open(__a , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
0
'''simple docstring''' from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _A : Any =logging.get_logger(__name__) _A : Dict ='''T5Config''' class lowerCamelCase__ ( lowercase_ ): '''simple docstring''' A_ = """mt5""" A_ = MTaConfig class lowerCamelCase__ ( lowercase_ ): '''simple docstring''' A_ = """mt5""" A_ = MTaConfig class lowerCamelCase__ ( lowercase_ ): '''simple docstring''' A_ = """mt5""" A_ = MTaConfig
712
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
0
'''simple docstring''' from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class lowerCamelCase__ ( __lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : pyspark.sql.DataFrame , UpperCamelCase_ : Optional[NamedSplit] = None , UpperCamelCase_ : Optional[Features] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = False , UpperCamelCase_ : str = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : str = "arrow" , **UpperCamelCase_ : str , ) -> int: '''simple docstring''' super().__init__( split=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ , streaming=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Any = load_from_cache_file _lowercase : List[Any] = file_format _lowercase : int = Spark( df=UpperCamelCase_ , features=UpperCamelCase_ , cache_dir=UpperCamelCase_ , working_dir=UpperCamelCase_ , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) _lowercase : Optional[int] = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=UpperCamelCase_ , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class lowerCamelCase__ ( pl.LightningModule ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' super().__init__() _lowercase : int = model _lowercase : Optional[int] = 2 _lowercase : str = nn.Linear(self.model.config.hidden_size , self.num_labels ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' pass def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> int: _lowercase : str = LongformerModel.from_pretrained(lowerCamelCase__ ) _lowercase : int = LightningModel(lowerCamelCase__ ) _lowercase : Dict = torch.load(lowerCamelCase__, map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model _lowercase : Tuple = LongformerForQuestionAnswering.from_pretrained(lowerCamelCase__ ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(lowerCamelCase__ ) print(f'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : List[str] =parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
714
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _A : Dict =logging.get_logger(__name__) _A : List[str] ={ '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """longformer""" def __init__( self : Dict , UpperCamelCase_ : Union[List[int], int] = 512 , UpperCamelCase_ : int = 2 , UpperCamelCase_ : int = 1 , UpperCamelCase_ : int = 0 , UpperCamelCase_ : int = 2 , UpperCamelCase_ : int = 3_0522 , UpperCamelCase_ : int = 768 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : int = 3072 , UpperCamelCase_ : str = "gelu" , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : int = 512 , UpperCamelCase_ : int = 2 , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 1E-12 , UpperCamelCase_ : bool = False , **UpperCamelCase_ : Optional[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowercase_ , **lowercase_ ) _lowercase : List[Any] = attention_window _lowercase : Optional[int] = sep_token_id _lowercase : Union[str, Any] = bos_token_id _lowercase : Tuple = eos_token_id _lowercase : Optional[int] = vocab_size _lowercase : Optional[int] = hidden_size _lowercase : Tuple = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Union[str, Any] = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : Union[str, Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : str = onnx_export class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : "PretrainedConfig" , UpperCamelCase_ : str = "default" , UpperCamelCase_ : "List[PatchingSpec]" = None ) -> Any: '''simple docstring''' super().__init__(lowercase_ , lowercase_ , lowercase_ ) _lowercase : str = True @property def __UpperCAmelCase ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowercase : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : Any = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def __UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' _lowercase : List[str] = super().outputs if self.task == "default": _lowercase : Any = {0: 'batch'} return outputs @property def __UpperCAmelCase ( self : Optional[Any] ) -> float: '''simple docstring''' return 1E-4 @property def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' return max(super().default_onnx_opset , 14 ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : "PreTrainedTokenizerBase" , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase : Dict = super().generate_dummy_inputs( preprocessor=lowercase_ , batch_size=lowercase_ , seq_length=lowercase_ , is_pair=lowercase_ , framework=lowercase_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly _lowercase : List[Any] = torch.zeros_like(inputs['input_ids'] ) # make every second token global _lowercase : Dict = 1 return inputs
715
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
0
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=13 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : Any=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Any=99 , UpperCamelCase_ : List[str]=32 , UpperCamelCase_ : Optional[int]=5 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Union[str, Any]=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : int=False , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]="None" , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Optional[Any]=4 , UpperCamelCase_ : Dict=None , ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = parent _lowercase : str = batch_size _lowercase : List[Any] = seq_length _lowercase : Union[str, Any] = is_training _lowercase : List[str] = use_input_mask _lowercase : Optional[Any] = use_token_type_ids _lowercase : int = use_labels _lowercase : int = vocab_size _lowercase : Any = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : Any = intermediate_size _lowercase : int = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : str = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Union[str, Any] = initializer_range _lowercase : str = num_labels _lowercase : int = num_choices _lowercase : List[Any] = relative_attention _lowercase : Any = position_biased_input _lowercase : Any = pos_att_type _lowercase : Dict = scope def __UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Any = None if self.use_input_mask: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowercase : Optional[Any] = None if self.use_token_type_ids: _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : List[Any] = None _lowercase : List[str] = None _lowercase : Any = None if self.use_labels: _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Any ) -> Any: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : Any = DebertaVaModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : List[str] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _lowercase : Any = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ )[0] _lowercase : Optional[Any] = model(lowerCAmelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = DebertaVaForMaskedLM(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : Optional[int] = self.num_labels _lowercase : Dict = DebertaVaForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : Optional[int] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(lowerCAmelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ) -> str: '''simple docstring''' _lowercase : Optional[Any] = self.num_labels _lowercase : Dict = DebertaVaForTokenClassification(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : Union[str, Any] = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : int = DebertaVaForQuestionAnswering(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : Optional[Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Any ) -> str: '''simple docstring''' _lowercase : Optional[Any] = DebertaVaForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _lowercase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Union[str, Any] = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[int] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) A_ = ( { '''feature-extraction''': DebertaVaModel, '''fill-mask''': DebertaVaForMaskedLM, '''question-answering''': DebertaVaForQuestionAnswering, '''text-classification''': DebertaVaForSequenceClassification, '''token-classification''': DebertaVaForTokenClassification, '''zero-shot''': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = DebertaVaModelTester(self ) _lowercase : Any = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*lowerCAmelCase_ ) def __UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*lowerCAmelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*lowerCAmelCase_ ) def __UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*lowerCAmelCase_ ) def __UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*lowerCAmelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*lowerCAmelCase_ ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Optional[int] = DebertaVaModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' pass @slow def __UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = DebertaVaModel.from_pretrained('microsoft/deberta-v2-xlarge' ) _lowercase : Optional[int] = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _lowercase : Union[str, Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : int = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ )[0] # compare the actual values for a slice. _lowercase : str = torch.tensor( [[[0.23_56, 0.19_48, 0.03_69], [-0.10_63, 0.35_86, -0.51_52], [-0.63_99, -0.02_59, -0.25_25]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowerCAmelCase_ , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
716
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
0
'''simple docstring''' import unittest from typing import Tuple import torch from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device from diffusers.utils.testing_utils import require_torch @require_torch class lowerCamelCase__ : '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return self.get_dummy_input() @property def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' if self.block_type == "down": return (4, 32, 16, 16) elif self.block_type == "mid": return (4, 32, 32, 32) elif self.block_type == "up": return (4, 32, 64, 64) raise ValueError(F'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Any=False , ) -> List[Any]: '''simple docstring''' _lowercase : Union[str, Any] = 4 _lowercase : List[str] = 32 _lowercase : Tuple = (32, 32) _lowercase : Any = torch.manual_seed(0 ) _lowercase : Tuple = torch.device(UpperCAmelCase__ ) _lowercase : int = (batch_size, num_channels) + sizes _lowercase : Tuple = randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) _lowercase : List[str] = {'''hidden_states''': hidden_states} if include_temb: _lowercase : Optional[int] = 128 _lowercase : Optional[Any] = randn_tensor((batch_size, temb_channels) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) if include_res_hidden_states_tuple: _lowercase : Optional[Any] = torch.manual_seed(1 ) _lowercase : int = (randn_tensor(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ),) if include_encoder_hidden_states: _lowercase : Dict = floats_tensor((batch_size, 32, 32) ).to(UpperCAmelCase__ ) if include_skip_sample: _lowercase : List[Any] = randn_tensor(((batch_size, 3) + sizes) , generator=UpperCAmelCase__ , device=UpperCAmelCase__ ) return dummy_input def __UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = { '''in_channels''': 32, '''out_channels''': 32, '''temb_channels''': 128, } if self.block_type == "up": _lowercase : Union[str, Any] = 32 if self.block_type == "mid": init_dict.pop('out_channels' ) _lowercase : Tuple = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Dict ) -> int: '''simple docstring''' _lowercase : List[Any] = self.prepare_init_args_and_inputs_for_common() _lowercase : List[str] = self.block_class(**UpperCAmelCase__ ) unet_block.to(UpperCAmelCase__ ) unet_block.eval() with torch.no_grad(): _lowercase : Optional[int] = unet_block(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _lowercase : Optional[Any] = output[0] self.assertEqual(output.shape , self.output_shape ) _lowercase : List[str] = output[0, -1, -3:, -3:] _lowercase : Optional[Any] = torch.tensor(UpperCAmelCase__ ).to(UpperCAmelCase__ ) assert torch_all_close(output_slice.flatten() , UpperCAmelCase__ , atol=5E-3 ) @unittest.skipIf(torch_device == 'mps' , 'Training is not supported in mps' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _lowercase : Any = self.prepare_init_args_and_inputs_for_common() _lowercase : Optional[int] = self.block_class(**UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.train() _lowercase : int = model(**UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): _lowercase : Optional[int] = output[0] _lowercase : Dict = torch.device(UpperCAmelCase__ ) _lowercase : Tuple = randn_tensor(output.shape , device=UpperCAmelCase__ ) _lowercase : Union[str, Any] = torch.nn.functional.mse_loss(UpperCAmelCase__ , UpperCAmelCase__ ) loss.backward()
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING _A : List[Any] =logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__ ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' def __init__( self : Dict , **UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' super().__init__(**snake_case__ ) if self.framework == "tf": raise ValueError(F'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , 'vision' ) self.check_model_type(snake_case__ ) def __call__( self : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str = None , **UpperCamelCase_ : List[Any] , ) -> Optional[int]: '''simple docstring''' if "text_queries" in kwargs: _lowercase : List[str] = kwargs.pop('text_queries' ) if isinstance(snake_case__ , (str, Image.Image) ): _lowercase : Tuple = {"image": image, "candidate_labels": candidate_labels} else: _lowercase : Dict = image _lowercase : Any = super().__call__(snake_case__ , **snake_case__ ) return results def __UpperCAmelCase ( self : Dict , **UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = {} if "threshold" in kwargs: _lowercase : int = kwargs["threshold"] if "top_k" in kwargs: _lowercase : List[str] = kwargs["top_k"] return {}, {}, postprocess_params def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] ) -> Any: '''simple docstring''' _lowercase : Tuple = load_image(inputs['image'] ) _lowercase : List[str] = inputs["candidate_labels"] if isinstance(snake_case__ , snake_case__ ): _lowercase : Union[str, Any] = candidate_labels.split(',' ) _lowercase : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(snake_case__ ): _lowercase : List[str] = self.tokenizer(snake_case__ , return_tensors=self.framework ) _lowercase : Union[str, Any] = self.image_processor(snake_case__ , return_tensors=self.framework ) yield { "is_last": i == len(snake_case__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = model_inputs.pop('target_size' ) _lowercase : Tuple = model_inputs.pop('candidate_label' ) _lowercase : int = model_inputs.pop('is_last' ) _lowercase : Union[str, Any] = self.model(**snake_case__ ) _lowercase : Union[str, Any] = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs} return model_outputs def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Optional[Any]=None ) -> Dict: '''simple docstring''' _lowercase : Optional[Any] = [] for model_output in model_outputs: _lowercase : Optional[int] = model_output["candidate_label"] _lowercase : List[str] = BaseModelOutput(snake_case__ ) _lowercase : str = self.image_processor.post_process_object_detection( outputs=snake_case__ , threshold=snake_case__ , target_sizes=model_output['target_size'] )[0] for index in outputs["scores"].nonzero(): _lowercase : Dict = outputs["scores"][index].item() _lowercase : List[Any] = self._get_bounding_box(outputs['boxes'][index][0] ) _lowercase : List[Any] = {"score": score, "label": label, "box": box} results.append(snake_case__ ) _lowercase : Dict = sorted(snake_case__ , key=lambda UpperCamelCase_ : x["score"] , reverse=snake_case__ ) if top_k: _lowercase : List[str] = results[:top_k] return results def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : int ) -> Optional[int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ZeroShotObjectDetectionPipeline is only available in PyTorch.' ) _lowercase : List[str] = box.int().tolist() _lowercase : Any = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
0
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: if a < 0: raise ValueError('Input value must be a positive integer' ) elif isinstance(__a, __a ): raise TypeError('Input value must be a \'int\' type' ) return bin(__a ).count('1' ) if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A : Union[str, Any] ={ """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] =[ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowercase : List[Any] = [True] * (num + 1) _lowercase : Optional[int] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, _lowercase ): _lowercase : Union[str, Any] = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Dict =int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase__ ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' A_ = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Optional[Any]=0 ) -> List[str]: '''simple docstring''' _lowercase : int = np.random.RandomState(_lowerCamelCase ) _lowercase : Any = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : int ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**_lowerCamelCase ).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : List[Any] = np.array([0.6_50_72, 0.5_84_92, 0.4_82_19, 0.5_55_21, 0.5_31_80, 0.5_59_39, 0.5_06_97, 0.3_98_00, 0.4_64_55] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowercase : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : int = self.get_dummy_inputs() _lowercase : str = pipe(**_lowerCamelCase ).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : List[Any] = np.array([0.6_58_63, 0.5_94_25, 0.4_93_26, 0.5_63_13, 0.5_38_75, 0.5_66_27, 0.5_10_65, 0.3_97_77, 0.4_63_30] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowercase : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : str = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**_lowerCamelCase ).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : str = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowercase : str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : str = self.get_dummy_inputs() _lowercase : List[str] = pipe(**_lowerCamelCase ).images _lowercase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : Optional[Any] = np.array([0.5_37_55, 0.6_07_86, 0.4_74_02, 0.4_94_88, 0.5_18_69, 0.4_98_19, 0.4_79_85, 0.3_89_57, 0.4_42_79] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict: '''simple docstring''' _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowercase : List[Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Optional[int] = self.get_dummy_inputs() _lowercase : List[Any] = pipe(**_lowerCamelCase ).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : Dict = np.array([0.5_38_17, 0.6_08_12, 0.4_73_84, 0.4_95_30, 0.5_18_94, 0.4_98_14, 0.4_79_84, 0.3_89_58, 0.4_42_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _lowercase : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Tuple = self.get_dummy_inputs() _lowercase : Dict = pipe(**_lowerCamelCase ).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _lowercase : Optional[Any] = np.array([0.5_38_95, 0.6_08_08, 0.4_79_33, 0.4_96_08, 0.5_18_86, 0.4_99_50, 0.4_80_53, 0.3_89_57, 0.4_42_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Optional[Any] = self.get_dummy_inputs() _lowercase : Tuple = 3 * [inputs['prompt']] # forward _lowercase : Optional[int] = pipe(**_lowerCamelCase ) _lowercase : Optional[int] = output.images[0, -3:, -3:, -1] _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Optional[int] = 3 * [inputs.pop('prompt' )] _lowercase : str = pipe.tokenizer( _lowerCamelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='np' , ) _lowercase : str = text_inputs['input_ids'] _lowercase : Optional[Any] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] _lowercase : List[str] = prompt_embeds # forward _lowercase : Dict = pipe(**_lowerCamelCase ) _lowercase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : Tuple = 3 * ['this is a negative prompt'] _lowercase : str = negative_prompt _lowercase : Dict = 3 * [inputs['prompt']] # forward _lowercase : Dict = pipe(**_lowerCamelCase ) _lowercase : Dict = output.images[0, -3:, -3:, -1] _lowercase : List[str] = self.get_dummy_inputs() _lowercase : Union[str, Any] = 3 * [inputs.pop('prompt' )] _lowercase : int = [] for p in [prompt, negative_prompt]: _lowercase : str = pipe.tokenizer( _lowerCamelCase , padding='max_length' , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='np' , ) _lowercase : List[str] = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) _lowercase , _lowercase : str = embeds # forward _lowercase : str = pipe(**_lowerCamelCase ) _lowercase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : int = ort.SessionOptions() _lowercase : List[str] = False return options def __UpperCAmelCase ( self : List[Any] ) -> List[str]: '''simple docstring''' _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Tuple = 'A painting of a squirrel eating a burger' np.random.seed(0 ) _lowercase : str = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type='np' ) _lowercase : Union[str, Any] = output.images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : int = np.array([0.04_52, 0.03_90, 0.00_87, 0.03_50, 0.06_17, 0.03_64, 0.05_44, 0.05_23, 0.07_20] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Optional[int] = 'open neural network exchange' _lowercase : Union[str, Any] = np.random.RandomState(0 ) _lowercase : Tuple = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type='np' ) _lowercase : List[str] = output.images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : Tuple = np.array([0.28_67, 0.19_74, 0.14_81, 0.72_94, 0.72_51, 0.66_67, 0.41_94, 0.56_42, 0.64_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Optional[int] = 'open neural network exchange' _lowercase : List[str] = np.random.RandomState(0 ) _lowercase : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCamelCase , output_type='np' ) _lowercase : str = output.images _lowercase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _lowercase : Optional[Any] = np.array([0.23_06, 0.19_59, 0.15_93, 0.65_49, 0.63_94, 0.54_08, 0.50_65, 0.60_10, 0.61_61] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowercase : str = 0 def test_callback_fn(UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : np.ndarray ) -> None: _lowercase : Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowercase : Tuple = latents[0, -3:, -3:, -1] _lowercase : str = np.array( [-0.67_72, -0.38_35, -1.24_56, 0.19_05, -1.09_74, 0.69_67, -1.93_53, 0.01_78, 1.01_67] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowercase : Tuple = latents[0, -3:, -3:, -1] _lowercase : List[Any] = np.array( [-0.33_51, 0.22_41, -0.18_37, -0.23_25, -0.65_77, 0.33_93, -0.02_41, 0.58_99, 1.38_75] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 _lowercase : Dict = False _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) _lowercase : Any = 'Andromeda galaxy in a bottle' _lowercase : Dict = np.random.RandomState(0 ) pipe( prompt=_lowerCamelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCamelCase , callback=_lowerCamelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def __UpperCAmelCase ( self : str ) -> str: '''simple docstring''' _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , safety_checker=_lowerCamelCase , feature_extractor=_lowerCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCamelCase , _lowerCamelCase ) assert pipe.safety_checker is None _lowercase : Any = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCamelCase ) _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(_lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowercase : Optional[Any] = pipe('example prompt' , num_inference_steps=2 ).images[0] assert image is not None
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' A_ = KandinskyVaaInpaintPipeline A_ = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] A_ = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] A_ = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A_ = False @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' return 100 @property def __UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : int = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } _lowercase : List[Any] = UNetaDConditionModel(**__lowerCamelCase ) return model @property def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Any = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' _lowercase : Tuple = self.dummy_unet _lowercase : List[str] = self.dummy_movq _lowercase : List[str] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule='linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , steps_offset=1 , prediction_type='epsilon' , thresholding=__lowerCamelCase , ) _lowercase : Optional[Any] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=0 ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) _lowercase : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __lowerCamelCase ) # create init_image _lowercase : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowerCamelCase ) ).to(__lowerCamelCase ) _lowercase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(__lowerCamelCase ) ).convert('RGB' ).resize((256, 256) ) # create mask _lowercase : int = np.ones((64, 64) , dtype=np.floataa ) _lowercase : List[Any] = 0 if str(__lowerCamelCase ).startswith('mps' ): _lowercase : Any = torch.manual_seed(__lowerCamelCase ) else: _lowercase : Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) _lowercase : Optional[int] = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' _lowercase : Tuple = '''cpu''' _lowercase : Union[str, Any] = self.get_dummy_components() _lowercase : Optional[Any] = self.pipeline_class(**__lowerCamelCase ) _lowercase : Tuple = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) _lowercase : Optional[int] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) _lowercase : Optional[Any] = output.images _lowercase : Dict = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] _lowercase : List[str] = image[0, -3:, -3:, -1] _lowercase : List[str] = image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) _lowercase : Dict = np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : int ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy' ) _lowercase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) _lowercase : Optional[int] = np.ones((768, 768) , dtype=np.floataa ) _lowercase : List[Any] = 0 _lowercase : Any = '''a hat''' _lowercase : Dict = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(__lowerCamelCase ) _lowercase : str = KandinskyVaaInpaintPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder-inpaint' , torch_dtype=torch.floataa ) _lowercase : Union[str, Any] = pipeline.to(__lowerCamelCase ) pipeline.set_progress_bar_config(disable=__lowerCamelCase ) _lowercase : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : Optional[Any] = pipe_prior( __lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=5 , negative_prompt='' , ).to_tuple() _lowercase : Union[str, Any] = pipeline( image=__lowerCamelCase , mask_image=__lowerCamelCase , image_embeds=__lowerCamelCase , negative_image_embeds=__lowerCamelCase , generator=__lowerCamelCase , num_inference_steps=100 , height=768 , width=768 , output_type='np' , ) _lowercase : Optional[int] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(__lowerCamelCase , __lowerCamelCase )
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class lowerCamelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=sys.maxsize ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = 'bilinear' _lowercase : str = max_size _lowercase : List[str] = short_edge_length def __call__( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = [] for img in imgs: _lowercase , _lowercase : Optional[Any] = img.shape[:2] # later: provide list and randomly choose index for resize _lowercase : Tuple = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 ) if size == 0: return img _lowercase : List[Any] = size * 1.0 / min(_lowercase , _lowercase ) if h < w: _lowercase , _lowercase : str = size, scale * w else: _lowercase , _lowercase : Optional[Any] = scale * h, size if max(_lowercase , _lowercase ) > self.max_size: _lowercase : Any = self.max_size * 1.0 / max(_lowercase , _lowercase ) _lowercase : str = newh * scale _lowercase : Dict = neww * scale _lowercase : Union[str, Any] = int(neww + 0.5 ) _lowercase : str = int(newh + 0.5 ) if img.dtype == np.uinta: _lowercase : Tuple = Image.fromarray(_lowercase ) _lowercase : Tuple = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR ) _lowercase : Optional[Any] = np.asarray(_lowercase ) else: _lowercase : Optional[int] = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw _lowercase : List[str] = nn.functional.interpolate( _lowercase , (newh, neww) , mode=self.interp_method , align_corners=_lowercase ).squeeze(0 ) img_augs.append(_lowercase ) return img_augs class lowerCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : int ) -> str: '''simple docstring''' _lowercase : str = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST ) _lowercase : Optional[int] = cfg.INPUT.FORMAT _lowercase : Union[str, Any] = cfg.SIZE_DIVISIBILITY _lowercase : int = cfg.PAD_VALUE _lowercase : Tuple = cfg.INPUT.MAX_SIZE_TEST _lowercase : Union[str, Any] = cfg.MODEL.DEVICE _lowercase : str = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase : str = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 ) _lowercase : Tuple = lambda UpperCamelCase_ : (x - self.pixel_mean) / self.pixel_std def __UpperCAmelCase ( self : Any , UpperCamelCase_ : str ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = tuple(max(_lowercase ) for s in zip(*[img.shape for img in images] ) ) _lowercase : int = [im.shape[-2:] for im in images] _lowercase : int = [ nn.functional.pad( _lowercase , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , ) for size, im in zip(_lowercase , _lowercase ) ] return torch.stack(_lowercase ), torch.tensor(_lowercase ) def __call__( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=False ) -> str: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowercase , _lowercase ): _lowercase : Optional[Any] = [images] if single_image: assert len(_lowercase ) == 1 for i in range(len(_lowercase ) ): if isinstance(images[i] , torch.Tensor ): images.insert(_lowercase , images.pop(_lowercase ).to(self.device ).float() ) elif not isinstance(images[i] , torch.Tensor ): images.insert( _lowercase , torch.as_tensor(img_tensorize(images.pop(_lowercase ) , input_format=self.input_format ) ) .to(self.device ) .float() , ) # resize smallest edge _lowercase : List[Any] = torch.tensor([im.shape[:2] for im in images] ) _lowercase : Optional[Any] = self.aug(_lowercase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic _lowercase : Tuple = [self.normalizer(_lowercase ) for x in images] # now pad them to do the following operations _lowercase , _lowercase : Any = self.pad(_lowercase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad _lowercase : List[str] = torch.true_divide(_lowercase , _lowercase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: assert torch.isfinite(UpperCamelCase__ ).all(), "Box tensor contains infinite or NaN!" _lowercase , _lowercase : str = box_size tensor[:, 0].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 1].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 2].clamp_(min=0, max=UpperCamelCase__ ) tensor[:, 3].clamp_(min=0, max=UpperCamelCase__ )
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _A : Union[str, Any] =pd.read_csv('''sample_data.csv''', header=None) _A : Tuple =df.shape[:1][0] # If you're using some other dataset input the target column _A : Optional[int] =df.iloc[:, 1:2] _A : List[Any] =actual_data.values.reshape(len_data, 1) _A : str =MinMaxScaler().fit_transform(actual_data) _A : List[Any] =1_0 _A : Union[str, Any] =5 _A : List[str] =2_0 _A : Dict =len_data - periods * look_back _A : List[str] =actual_data[:division] _A : Tuple =actual_data[division - look_back :] _A , _A : Dict =[], [] _A , _A : Optional[int] =[], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _A : List[str] =np.array(train_x) _A : Optional[Any] =np.array(test_x) _A : int =np.array([list(i.ravel()) for i in train_y]) _A : List[str] =np.array([list(i.ravel()) for i in test_y]) _A : Union[str, Any] =Sequential() model.add(LSTM(1_2_8, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(6_4, input_shape=(1_2_8, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _A : List[Any] =model.fit( x_train, y_train, epochs=1_5_0, verbose=1, shuffle=True, batch_size=4 ) _A : Optional[Any] =model.predict(x_test)
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline _A : str ={ "n_samples": 6_4, "horizon": 3_2, "num_inference_steps": 2_0, "n_guide_steps": 2, # can set to 0 for faster sampling, does not use value network "scale_grad_by_std": True, "scale": 0.1, "eta": 0.0, "t_grad_cutoff": 2, "device": "cpu", } if __name__ == "__main__": _A : Union[str, Any] ="hopper-medium-v2" _A : str =gym.make(env_name) _A : Any =ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) _A : List[Any] =env.reset() _A : Any =0 _A : Dict =0 _A : Optional[int] =1_0_0_0 _A : int =[obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy _A : Optional[int] =pipeline(obs, planning_horizon=3_2) # execute action in environment _A : List[Any] =env.step(denorm_actions) _A : Optional[Any] =env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) _A : Dict =next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> int: return 1 if input_a == input_a else 0 def __UpperCamelCase ( ) -> None: assert xnor_gate(0, 0 ) == 1 assert xnor_gate(0, 1 ) == 0 assert xnor_gate(1, 0 ) == 0 assert xnor_gate(1, 1 ) == 1 if __name__ == "__main__": print(xnor_gate(0, 0)) print(xnor_gate(0, 1)) print(xnor_gate(1, 0)) print(xnor_gate(1, 1))
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : str = "▁" , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[str, AddedToken] = "<unk>" , UpperCamelCase_ : Union[str, AddedToken] = "</s>" , UpperCamelCase_ : Union[str, AddedToken] = "<pad>" , ) -> Any: '''simple docstring''' _lowercase : Tuple = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } _lowercase : Tuple = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): _lowercase : str = token_dict['token'] _lowercase : Optional[Any] = Tokenizer(Unigram() ) _lowercase : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) _lowercase : str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ), pre_tokenizers.Digits(individual_digits=__UpperCamelCase ), pre_tokenizers.Punctuation(), ] ) _lowercase : int = decoders.Metaspace(replacement=__UpperCamelCase , add_prefix_space=__UpperCamelCase ) _lowercase : int = TemplateProcessing( single=F'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) _lowercase : Tuple = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(__UpperCamelCase , __UpperCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , UpperCamelCase_ : int = 8000 , UpperCamelCase_ : bool = True , ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) if isinstance(__UpperCamelCase , __UpperCamelCase ): _lowercase : str = [files] self._tokenizer.train(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Union[Iterator[str], Iterator[Iterator[str]]] , UpperCamelCase_ : int = 8000 , UpperCamelCase_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' _lowercase : Tuple = trainers.UnigramTrainer( vocab_size=__UpperCamelCase , special_tokens=self.special_tokens_list , show_progress=__UpperCamelCase , ) self._tokenizer.train_from_iterator(__UpperCamelCase , trainer=__UpperCamelCase ) self.add_unk_id() def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = json.loads(self._tokenizer.to_str() ) _lowercase : int = self.special_tokens['unk']['id'] _lowercase : Optional[int] = Tokenizer.from_str(json.dumps(__UpperCamelCase ) )
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _A : Optional[Any] =re.compile(r'''\s+''') def __UpperCamelCase ( _lowercase ) -> List[str]: return {"hash": hashlib.mda(re.sub(_lowercase, '', example['content'] ).encode('utf-8' ) ).hexdigest()} def __UpperCamelCase ( _lowercase ) -> Dict: _lowercase : Tuple = [len(_lowercase ) for line in example["""content"""].splitlines()] return {"line_mean": np.mean(_lowercase ), "line_max": max(_lowercase )} def __UpperCamelCase ( _lowercase ) -> str: _lowercase : int = np.mean([c.isalnum() for c in example['content']] ) return {"alpha_frac": alpha_frac} def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[Any]: if example["hash"] in uniques: uniques.remove(example['hash'] ) return True else: return False def __UpperCamelCase ( _lowercase, _lowercase=5 ) -> Tuple: _lowercase : Tuple = ["""auto-generated""", """autogenerated""", """automatically generated"""] _lowercase : Any = example["""content"""].splitlines() for _, line in zip(range(_lowercase ), _lowercase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def __UpperCamelCase ( _lowercase, _lowercase=5, _lowercase=0.0_5 ) -> List[str]: _lowercase : Optional[int] = ["""unit tests""", """test file""", """configuration file"""] _lowercase : Tuple = example["""content"""].splitlines() _lowercase : List[str] = 0 _lowercase : Dict = 0 # first test for _, line in zip(range(_lowercase ), _lowercase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowercase : Optional[Any] = example["""content"""].count('\n' ) _lowercase : Any = int(coeff * nlines ) for line in lines: count_config += line.lower().count('config' ) count_test += line.lower().count('test' ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def __UpperCamelCase ( _lowercase ) -> Optional[Any]: _lowercase : Any = ["""def """, """class """, """for """, """while """] _lowercase : Any = example["""content"""].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def __UpperCamelCase ( _lowercase, _lowercase=4 ) -> Tuple: _lowercase : int = example["""content"""].splitlines() _lowercase : Any = 0 for line in lines: counter += line.lower().count('=' ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : List[str] = tokenizer(example['content'], truncation=_lowercase )["""input_ids"""] _lowercase : str = len(example['content'] ) / len(_lowercase ) return {"ratio": ratio} def __UpperCamelCase ( _lowercase ) -> List[str]: _lowercase : Tuple = {} results.update(get_hash(_lowercase ) ) results.update(line_stats(_lowercase ) ) results.update(alpha_stats(_lowercase ) ) results.update(char_token_ratio(_lowercase ) ) results.update(is_autogenerated(_lowercase ) ) results.update(is_config_or_test(_lowercase ) ) results.update(has_no_keywords(_lowercase ) ) results.update(has_few_assignments(_lowercase ) ) return results def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> int: if not check_uniques(_lowercase, _lowercase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: with open(_lowercase, 'rb' ) as f_in: with gzip.open(str(_lowercase ) + '.gz', 'wb', compresslevel=6 ) as f_out: shutil.copyfileobj(_lowercase, _lowercase ) os.unlink(_lowercase ) # Settings _A : Any =HfArgumentParser(PreprocessingArguments) _A : Dict =parser.parse_args() if args.num_workers is None: _A : Any =multiprocessing.cpu_count() _A : Any =AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _A : List[Any] =time.time() _A : Optional[int] =load_dataset(args.dataset_name, split='''train''') print(F'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _A : List[Any] =time.time() _A : Tuple =ds.map(preprocess, num_proc=args.num_workers) print(F'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _A : List[Any] =set(ds.unique('''hash''')) _A : List[str] =len(uniques) / len(ds) print(F'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _A : Dict =time.time() _A : List[str] =ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(F'''Time to filter dataset: {time.time()-t_start:.2f}''') print(F'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _A : List[Any] =time.time() _A , _A : Optional[Any] =deduplicate_dataset(ds_filter, args.jaccard_threshold) print(F'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(F'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _A : Tuple =Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _A : Tuple =output_dir / '''data''' data_dir.mkdir(exist_ok=True) _A : Optional[int] =time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _A : Union[str, Any] =str(data_dir / F'''file-{file_number+1:012}.json''') _A : Dict =min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(F'''Time to save dataset: {time.time()-t_start:.2f}''')
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' import math def __UpperCamelCase ( _lowercase ) -> Optional[Any]: assert isinstance(lowerCAmelCase__, lowerCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False _lowercase : Union[str, Any] = range(3, int(math.sqrt(lowerCAmelCase__ ) + 1 ), 2 ) return not any(not number % i for i in odd_numbers ) def __UpperCamelCase ( _lowercase, _lowercase=1, **_lowercase ) -> Tuple: _lowercase : Union[str, Any] = factor * value _lowercase : List[Any] = value while not is_prime(lowerCAmelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1, **lowerCAmelCase__ ) return value
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' import math import flax.linen as nn import jax.numpy as jnp def __UpperCamelCase ( _lowercase, _lowercase, _lowercase = 1, _lowercase = 1, _lowercase = 1.0E4, _lowercase = False, _lowercase = 1.0, ) -> jnp.ndarray: assert timesteps.ndim == 1, "Timesteps should be a 1d-array" assert embedding_dim % 2 == 0, f'''Embedding dimension {embedding_dim} should be even''' _lowercase : str = float(embedding_dim // 2 ) _lowercase : Optional[int] = math.log(max_timescale / min_timescale ) / (num_timescales - freq_shift) _lowercase : Optional[int] = min_timescale * jnp.exp(jnp.arange(_lowercase, dtype=jnp.floataa ) * -log_timescale_increment ) _lowercase : Dict = jnp.expand_dims(_lowercase, 1 ) * jnp.expand_dims(_lowercase, 0 ) # scale embeddings _lowercase : List[str] = scale * emb if flip_sin_to_cos: _lowercase : Dict = jnp.concatenate([jnp.cos(_lowercase ), jnp.sin(_lowercase )], axis=1 ) else: _lowercase : Optional[int] = jnp.concatenate([jnp.sin(_lowercase ), jnp.cos(_lowercase )], axis=1 ) _lowercase : Tuple = jnp.reshape(_lowercase, [jnp.shape(_lowercase )[0], embedding_dim] ) return signal class lowerCamelCase__ ( nn.Module ): '''simple docstring''' A_ = 32 A_ = jnp.floataa @nn.compact def __call__( self : Optional[Any] , UpperCamelCase_ : Any ) -> str: '''simple docstring''' _lowercase : str = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_1' )(lowerCamelCase_ ) _lowercase : List[Any] = nn.silu(lowerCamelCase_ ) _lowercase : List[Any] = nn.Dense(self.time_embed_dim , dtype=self.dtype , name='linear_2' )(lowerCamelCase_ ) return temb class lowerCamelCase__ ( nn.Module ): '''simple docstring''' A_ = 32 A_ = False A_ = 1 @nn.compact def __call__( self : Dict , UpperCamelCase_ : Dict ) -> Union[str, Any]: '''simple docstring''' return get_sinusoidal_embeddings( lowerCamelCase_ , embedding_dim=self.dim , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.freq_shift )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> int: assert column_title.isupper() _lowercase : int = 0 _lowercase : Optional[int] = len(_lowercase ) - 1 _lowercase : Optional[Any] = 0 while index >= 0: _lowercase : Any = (ord(column_title[index] ) - 64) * pow(26, _lowercase ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> list[int]: if num <= 0: raise ValueError('Input must be a positive integer' ) _lowercase : int = [True] * (num + 1) _lowercase : int = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, __lowerCAmelCase ): _lowercase : Dict = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() _A : Optional[int] = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
0
'''simple docstring''' from math import isqrt, loga def __UpperCamelCase ( _lowercase ) -> list[int]: _lowercase : int = [True] * max_number for i in range(2, isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2, a_, a_ ): _lowercase : int = False return [i for i in range(2, a_ ) if is_prime[i]] def __UpperCamelCase ( _lowercase = 80_0800, _lowercase = 80_0800 ) -> int: _lowercase : str = degree * loga(a_ ) _lowercase : Tuple = int(a_ ) _lowercase : int = calculate_prime_numbers(a_ ) _lowercase : List[Any] = 0 _lowercase : Optional[Any] = 0 _lowercase : Dict = len(a_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
712
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: if mass < 0: raise ValueError('The mass of a body cannot be negative' ) return 0.5 * mass * abs(UpperCAmelCase__ ) * abs(UpperCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
0
'''simple docstring''' _A : str =[0, 2, 4, 6, 8] _A : List[Any] =[1, 3, 5, 7, 9] def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase ) -> int: if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 _lowercase : List[str] = 0 for digit in range(10 ): _lowercase : List[Any] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, UpperCAmelCase__, UpperCAmelCase__ ) return result _lowercase : List[Any] = 0 for digita in range(10 ): _lowercase : Dict = digita if (remainder + digita) % 2 == 0: _lowercase : List[Any] = ODD_DIGITS else: _lowercase : Optional[Any] = EVEN_DIGITS for digita in other_parity_digits: _lowercase : Any = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, UpperCAmelCase__, UpperCAmelCase__, ) return result def __UpperCamelCase ( _lowercase = 9 ) -> int: _lowercase : Union[str, Any] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(UpperCAmelCase__, 0, [0] * length, UpperCAmelCase__ ) return result if __name__ == "__main__": print(F'''{solution() = }''')
714
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(A ) , """Tatoeba directory does not exist.""" ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase , _lowercase : str = self.resolver.write_model_card('opus-mt-he-en' , dry_run=UpperCamelCase_ ) assert mmeta["long_pair"] == "heb-eng"
715
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
0
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class lowerCamelCase__ : '''simple docstring''' A_ = 42 # setable values A_ = 42 A_ = 42 A_ = None @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' return cls(common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ ) @dataclass class lowerCamelCase__ ( __UpperCAmelCase ): '''simple docstring''' A_ = 42 class lowerCamelCase__ ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' A_ = [e.name for e in FlaxKarrasDiffusionSchedulers] A_ = 42 @property def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return True @register_to_config def __init__( self : Any , UpperCamelCase_ : Any = 1000 , UpperCamelCase_ : List[Any] = 0.00_01 , UpperCamelCase_ : Tuple = 0.02 , UpperCamelCase_ : Dict = "linear" , UpperCamelCase_ : int = None , UpperCamelCase_ : Tuple = "fixed_small" , UpperCamelCase_ : Dict = True , UpperCamelCase_ : Optional[int] = "epsilon" , UpperCamelCase_ : List[str] = jnp.floataa , ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = dtype def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[int] = None ) -> Tuple: '''simple docstring''' if common is None: _lowercase : Any = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution _lowercase : Any = jnp.array(1.0 , dtype=self.dtype ) _lowercase : Dict = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=UpperCamelCase_ , init_noise_sigma=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] = None ) -> Optional[Any]: '''simple docstring''' return sample def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] = () ) -> List[str]: '''simple docstring''' _lowercase : Dict = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 _lowercase : List[Any] = (jnp.arange(0 , UpperCamelCase_ ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=UpperCamelCase_ , timesteps=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any=None , UpperCamelCase_ : Tuple=None ) -> int: '''simple docstring''' _lowercase : Dict = state.common.alphas_cumprod[t] _lowercase : Dict = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowercase : Union[str, Any] = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: _lowercase : List[Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": _lowercase : Tuple = jnp.clip(UpperCamelCase_ , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": _lowercase : Union[str, Any] = jnp.log(jnp.clip(UpperCamelCase_ , a_min=1E-20 ) ) elif variance_type == "fixed_large": _lowercase : Dict = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log _lowercase : Dict = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": _lowercase : Union[str, Any] = variance _lowercase : str = state.common.betas[t] _lowercase : List[Any] = (predicted_variance + 1) / 2 _lowercase : Optional[Any] = frac * max_log + (1 - frac) * min_log return variance def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Union[str, Any] = True , ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = timestep if key is None: _lowercase : List[str] = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: _lowercase , _lowercase : List[str] = jnp.split(UpperCamelCase_ , sample.shape[1] , axis=1 ) else: _lowercase : Optional[int] = None # 1. compute alphas, betas _lowercase : Any = state.common.alphas_cumprod[t] _lowercase : int = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) _lowercase : List[Any] = 1 - alpha_prod_t _lowercase : int = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowercase : str = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowercase : List[str] = model_output elif self.config.prediction_type == "v_prediction": _lowercase : Optional[Any] = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ''' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: _lowercase : List[Any] = jnp.clip(UpperCamelCase_ , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase : Union[str, Any] = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t _lowercase : str = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase : Any = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): _lowercase : str = jax.random.split(UpperCamelCase_ , num=1 ) _lowercase : int = jax.random.normal(UpperCamelCase_ , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(UpperCamelCase_ , UpperCamelCase_ , predicted_variance=UpperCamelCase_ ) ** 0.5) * noise _lowercase : int = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) _lowercase : Dict = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=UpperCamelCase_ , state=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , ) -> int: '''simple docstring''' return add_noise_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , ) -> int: '''simple docstring''' return get_velocity_common(state.common , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __len__( self : int ) -> Dict: '''simple docstring''' return self.config.num_train_timesteps
716
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
0
'''simple docstring''' import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline _A : Optional[Any] =version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase=False, ) -> Tuple: output_path.parent.mkdir(parents=_lowercase, exist_ok=_lowercase ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( _lowercase, _lowercase, f=output_path.as_posix(), input_names=_lowercase, output_names=_lowercase, dynamic_axes=_lowercase, do_constant_folding=_lowercase, use_external_data_format=_lowercase, enable_onnx_checker=_lowercase, opset_version=_lowercase, ) else: export( _lowercase, _lowercase, f=output_path.as_posix(), input_names=_lowercase, output_names=_lowercase, dynamic_axes=_lowercase, do_constant_folding=_lowercase, opset_version=_lowercase, ) @torch.no_grad() def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase = False ) -> Dict: _lowercase : Dict = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): _lowercase : str = '''cuda''' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: _lowercase : int = '''cpu''' _lowercase : Dict = StableDiffusionPipeline.from_pretrained(_lowercase, torch_dtype=_lowercase ).to(_lowercase ) _lowercase : str = Path(_lowercase ) # TEXT ENCODER _lowercase : List[str] = pipeline.text_encoder.config.max_position_embeddings _lowercase : Any = pipeline.text_encoder.config.hidden_size _lowercase : Tuple = pipeline.tokenizer( 'A sample prompt', padding='max_length', max_length=pipeline.tokenizer.model_max_length, truncation=_lowercase, return_tensors='pt', ) onnx_export( pipeline.text_encoder, model_args=(text_input.input_ids.to(device=_lowercase, dtype=torch.intaa )), output_path=output_path / 'text_encoder' / 'model.onnx', ordered_input_names=['input_ids'], output_names=['last_hidden_state', 'pooler_output'], dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, }, opset=_lowercase, ) del pipeline.text_encoder # UNET _lowercase : Any = pipeline.unet.config.in_channels _lowercase : Tuple = pipeline.unet.config.sample_size _lowercase : Union[str, Any] = output_path / '''unet''' / '''model.onnx''' onnx_export( pipeline.unet, model_args=( torch.randn(2, _lowercase, _lowercase, _lowercase ).to(device=_lowercase, dtype=_lowercase ), torch.randn(2 ).to(device=_lowercase, dtype=_lowercase ), torch.randn(2, _lowercase, _lowercase ).to(device=_lowercase, dtype=_lowercase ), False, ), output_path=_lowercase, ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'], output_names=['out_sample'], dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, }, opset=_lowercase, use_external_data_format=_lowercase, ) _lowercase : Any = str(unet_path.absolute().as_posix() ) _lowercase : Any = os.path.dirname(_lowercase ) _lowercase : Any = onnx.load(_lowercase ) # clean up existing tensor files shutil.rmtree(_lowercase ) os.mkdir(_lowercase ) # collate external tensor files into one onnx.save_model( _lowercase, _lowercase, save_as_external_data=_lowercase, all_tensors_to_one_file=_lowercase, location='weights.pb', convert_attribute=_lowercase, ) del pipeline.unet # VAE ENCODER _lowercase : Dict = pipeline.vae _lowercase : Optional[int] = vae_encoder.config.in_channels _lowercase : Union[str, Any] = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder _lowercase : List[str] = lambda _lowercase, _lowercase : vae_encoder.encode(_lowercase, _lowercase )[0].sample() onnx_export( _lowercase, model_args=( torch.randn(1, _lowercase, _lowercase, _lowercase ).to(device=_lowercase, dtype=_lowercase ), False, ), output_path=output_path / 'vae_encoder' / 'model.onnx', ordered_input_names=['sample', 'return_dict'], output_names=['latent_sample'], dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, }, opset=_lowercase, ) # VAE DECODER _lowercase : List[Any] = pipeline.vae _lowercase : Tuple = vae_decoder.config.latent_channels _lowercase : List[str] = vae_decoder.config.out_channels # forward only through the decoder part _lowercase : Optional[Any] = vae_encoder.decode onnx_export( _lowercase, model_args=( torch.randn(1, _lowercase, _lowercase, _lowercase ).to(device=_lowercase, dtype=_lowercase ), False, ), output_path=output_path / 'vae_decoder' / 'model.onnx', ordered_input_names=['latent_sample', 'return_dict'], output_names=['sample'], dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, }, opset=_lowercase, ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: _lowercase : int = pipeline.safety_checker _lowercase : str = safety_checker.config.vision_config.num_channels _lowercase : int = safety_checker.config.vision_config.image_size _lowercase : Optional[Any] = safety_checker.forward_onnx onnx_export( pipeline.safety_checker, model_args=( torch.randn( 1, _lowercase, _lowercase, _lowercase, ).to(device=_lowercase, dtype=_lowercase ), torch.randn(1, _lowercase, _lowercase, _lowercase ).to(device=_lowercase, dtype=_lowercase ), ), output_path=output_path / 'safety_checker' / 'model.onnx', ordered_input_names=['clip_input', 'images'], output_names=['out_images', 'has_nsfw_concepts'], dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, }, opset=_lowercase, ) del pipeline.safety_checker _lowercase : List[Any] = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) _lowercase : List[str] = pipeline.feature_extractor else: _lowercase : Union[str, Any] = None _lowercase : int = None _lowercase : List[str] = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ), vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ), text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ), tokenizer=pipeline.tokenizer, unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ), scheduler=pipeline.scheduler, safety_checker=_lowercase, feature_extractor=_lowercase, requires_safety_checker=safety_checker is not None, ) onnx_pipeline.save_pretrained(_lowercase ) print('ONNX pipeline saved to', _lowercase ) del pipeline del onnx_pipeline _lowercase : Tuple = OnnxStableDiffusionPipeline.from_pretrained(_lowercase, provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=1_4, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') _A : List[str] =parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : List[str] =logging.get_logger(__name__) _A : Optional[int] ={ 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class lowerCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' A_ = """nllb-moe""" A_ = ["""past_key_values"""] A_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : str , UpperCamelCase_ : Any=12_8112 , UpperCamelCase_ : Dict=1024 , UpperCamelCase_ : str=12 , UpperCamelCase_ : List[Any]=4096 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : Dict=4096 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : List[str]=0.05 , UpperCamelCase_ : Optional[int]=0.05 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : Union[str, Any]=1024 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : List[Any]="float32" , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : int=128 , UpperCamelCase_ : List[str]=64 , UpperCamelCase_ : int=4 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : Tuple=0.0_01 , UpperCamelCase_ : Dict=0.0_01 , UpperCamelCase_ : List[Any]="all" , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Optional[Any]=1.0 , UpperCamelCase_ : List[Any]=0.2 , UpperCamelCase_ : str=1 , UpperCamelCase_ : Union[str, Any]=0 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Optional[Any]=False , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' _lowercase : List[Any] = vocab_size _lowercase : int = max_position_embeddings _lowercase : Dict = d_model _lowercase : Optional[int] = encoder_ffn_dim _lowercase : int = encoder_layers _lowercase : Union[str, Any] = encoder_attention_heads _lowercase : List[Any] = decoder_ffn_dim _lowercase : Tuple = decoder_layers _lowercase : int = decoder_attention_heads _lowercase : List[str] = dropout _lowercase : List[Any] = attention_dropout _lowercase : Dict = activation_dropout _lowercase : Any = activation_function _lowercase : Dict = init_std _lowercase : int = encoder_layerdrop _lowercase : str = decoder_layerdrop _lowercase : Optional[Any] = use_cache _lowercase : List[str] = encoder_layers _lowercase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase : List[str] = router_z_loss_coef _lowercase : int = router_aux_loss_coef _lowercase : List[Any] = decoder_sparse_step _lowercase : List[Any] = encoder_sparse_step _lowercase : List[str] = num_experts _lowercase : Any = expert_capacity _lowercase : Dict = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) _lowercase : int = router_dtype _lowercase : Optional[Any] = router_ignore_padding_tokens _lowercase : Optional[Any] = batch_prioritized_routing _lowercase : List[str] = second_expert_policy _lowercase : int = normalize_router_prob_before_dropping _lowercase : List[Any] = moe_eval_capacity_token_fraction _lowercase : int = moe_token_dropout _lowercase : List[str] = output_router_logits super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
0
import os import sys _A : List[Any] =os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _A : Any =[ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> List[str]: return AutoConfig.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> List[Any]: return AutoTokenizer.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModel.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> int: return AutoModel.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> Optional[Any]: return AutoModelForCausalLM.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> int: return AutoModelForMaskedLM.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> Any: return AutoModelForSequenceClassification.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def __UpperCamelCase ( *_lowercase, **_lowercase ) -> Optional[int]: return AutoModelForQuestionAnswering.from_pretrained(*UpperCamelCase__, **UpperCamelCase__ )
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule _A : Optional[int] ={'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
720
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def __UpperCamelCase ( ) -> Optional[int]: _lowercase : Optional[Any] = 'https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg' _lowercase : Tuple = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) return image def __UpperCamelCase ( _lowercase ) -> str: _lowercase : Optional[int] = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.embeddings.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.embeddings.layernorm.bias') ) # fmt: on return rename_keys def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: _lowercase : int = dct.pop(_lowercase ) _lowercase : int = val def __UpperCamelCase ( _lowercase, _lowercase ) -> Any: for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _lowercase : Optional[Any] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) _lowercase : Optional[int] = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict _lowercase : int = torch.cat((q_bias, torch.zeros_like(_lowercase, requires_grad=_lowercase ), v_bias) ) _lowercase : Union[str, Any] = qkv_bias def __UpperCamelCase ( _lowercase ) -> str: _lowercase : int = 364 if 'coco' in model_name else 224 _lowercase : int = InstructBlipVisionConfig(image_size=_lowercase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: _lowercase : Dict = TaConfig.from_pretrained('google/flan-t5-xl', dense_act_fn='gelu', bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _lowercase : Union[str, Any] = TaConfig.from_pretrained('google/flan-t5-xxl', dense_act_fn='gelu', bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: _lowercase : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-7b-hf', vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: _lowercase : Dict = LlamaConfig.from_pretrained('decapoda-research/llama-13b-hf', vocab_size=3_2001 ).to_dict() else: raise ValueError('Model name not supported' ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 _lowercase : Optional[int] = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() _lowercase : Optional[int] = InstructBlipConfig(vision_config=_lowercase, text_config=_lowercase, qformer_config=_lowercase ) return config, image_size @torch.no_grad() def __UpperCamelCase ( _lowercase, _lowercase=None, _lowercase=False ) -> Optional[Any]: _lowercase : List[Any] = AutoTokenizer.from_pretrained('bert-base-uncased', truncation_side='left' ) qformer_tokenizer.add_special_tokens({'bos_token': '[DEC]'} ) if "t5" in model_name: _lowercase : List[str] = TaTokenizerFast.from_pretrained('google/flan-t5-xl', truncation_side='left' ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) _lowercase : List[Any] = LlamaTokenizerFast.from_pretrained( 'huggyllama/llama-7b', truncation_side='left', bos_token='</s>', unk_token='</s>' ) tokenizer.add_special_tokens({'pad_token': '[PAD]'} ) _lowercase , _lowercase : int = get_blipa_config(_lowercase ) _lowercase : List[Any] = InstructBlipForConditionalGeneration(_lowercase ).eval() _lowercase : Dict = { 'instructblip-vicuna-7b': ('blip2_vicuna_instruct', 'vicuna7b'), 'instructblip-vicuna-13b': ('blip2_vicuna_instruct', 'vicuna13b'), 'instructblip-flan-t5-xl': ('blip2_t5_instruct', 'flant5xl'), 'instructblip-flan-t5-xxl': ('blip2_t5_instruct', 'flant5xxl'), } _lowercase , _lowercase : Dict = model_name_to_original[model_name] # load original model print('Loading original model...' ) _lowercase : Optional[int] = 'cuda:1' if torch.cuda.is_available() else 'cpu' _lowercase : str = 'cuda:2' if torch.cuda.is_available() else 'cpu' _lowercase , _lowercase , _lowercase : Any = load_model_and_preprocess( name=_lowercase, model_type=_lowercase, is_eval=_lowercase, device=_lowercase ) original_model.eval() print('Done!' ) # update state dict keys _lowercase : Optional[int] = original_model.state_dict() _lowercase : Optional[int] = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase, _lowercase, _lowercase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _lowercase : List[Any] = state_dict.pop(_lowercase ) if key.startswith('Qformer.bert' ): _lowercase : List[Any] = key.replace('Qformer.bert', 'qformer' ) if "attention.self" in key: _lowercase : Tuple = key.replace('self', 'attention' ) if "llm_proj" in key: _lowercase : int = key.replace('llm_proj', 'language_projection' ) if "t5_proj" in key: _lowercase : List[str] = key.replace('t5_proj', 'language_projection' ) if key.startswith('llm_model' ): _lowercase : List[Any] = key.replace('llm_model', 'language_model' ) if key.startswith('t5' ): _lowercase : Union[str, Any] = key.replace('t5', 'language' ) _lowercase : Tuple = val # read in qv biases read_in_q_v_bias(_lowercase, _lowercase ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(_lowercase, strict=_lowercase ) _lowercase : Any = load_demo_image() _lowercase : Tuple = 'What is unusual about this image?' # create processor _lowercase : Union[str, Any] = BlipImageProcessor( size={'height': image_size, 'width': image_size}, image_mean=_lowercase, image_std=_lowercase ) _lowercase : Union[str, Any] = InstructBlipProcessor( image_processor=_lowercase, tokenizer=_lowercase, qformer_tokenizer=_lowercase, ) _lowercase : Tuple = processor(images=_lowercase, text=_lowercase, return_tensors='pt' ).to(_lowercase ) # make sure processor creates exact same pixel values _lowercase : int = vis_processors['eval'](_lowercase ).unsqueeze(0 ).to(_lowercase ) _lowercase : Dict = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ), _lowercase ) original_model.to(_lowercase ) hf_model.to(_lowercase ) with torch.no_grad(): if "vicuna" in model_name: _lowercase : Optional[int] = original_model({'image': original_pixel_values, 'text_input': [prompt]} ).logits _lowercase : List[Any] = hf_model(**_lowercase ).logits else: _lowercase : str = original_model( {'image': original_pixel_values, 'text_input': [prompt], 'text_output': ['\n']} ).logits _lowercase : str = tokenizer('\n', return_tensors='pt' ).input_ids.to(_lowercase ) _lowercase : int = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id, -100 ) _lowercase : Any = hf_model(**_lowercase, labels=_lowercase ).logits print('First values of original logits:', original_logits[0, :3, :3] ) print('First values of HF logits:', logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape _lowercase : Optional[int] = 1E-4 if 'vicuna' in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ), _lowercase, atol=_lowercase ) print('Looks ok!' ) print('Generating with original model...' ) _lowercase : str = original_model.generate({'image': original_pixel_values, 'prompt': prompt}, num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print('Generating with HF model...' ) _lowercase : Tuple = hf_model.generate( **_lowercase, do_sample=_lowercase, num_beams=5, max_length=256, min_length=1, top_p=0.9, repetition_penalty=1.5, length_penalty=1.0, temperature=1, ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? _lowercase : int = 2 print('Original generation:', _lowercase ) _lowercase : Any = processor.batch_decode(_lowercase, skip_special_tokens=_lowercase ) _lowercase : str = [text.strip() for text in output_text] print('HF generation:', _lowercase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(_lowercase ) hf_model.save_pretrained(_lowercase ) if push_to_hub: processor.push_to_hub(f'''Salesforce/{model_name}''' ) hf_model.push_to_hub(f'''Salesforce/{model_name}''' ) if __name__ == "__main__": _A : List[str] =argparse.ArgumentParser() _A : Optional[int] =[ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) _A : Any =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
0
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version _A : Union[str, Any] =logging.getLogger(__name__) require_version('''pytorch_lightning>=1.0.4''') _A : List[Any] ={ '''base''': AutoModel, '''sequence-classification''': AutoModelForSequenceClassification, '''question-answering''': AutoModelForQuestionAnswering, '''pretraining''': AutoModelForPreTraining, '''token-classification''': AutoModelForTokenClassification, '''language-modeling''': AutoModelWithLMHead, '''summarization''': AutoModelForSeqaSeqLM, '''translation''': AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization _A : Optional[int] ={ '''linear''': get_linear_schedule_with_warmup, '''cosine''': get_cosine_schedule_with_warmup, '''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup, '''polynomial''': get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } _A : Any =sorted(arg_to_scheduler.keys()) _A : Dict ='''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}''' class lowerCamelCase__ ( pl.LightningModule ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : argparse.Namespace , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : List[str]="base" , UpperCamelCase_ : int=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Tuple , ) -> Optional[int]: '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(UpperCamelCase_ ) _lowercase : List[Any] = 0 _lowercase : Any = Path(self.hparams.output_dir ) _lowercase : str = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _lowercase : List[Any] = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase_ , **UpperCamelCase_ , ) else: _lowercase : PretrainedConfig = config _lowercase : Dict = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , UpperCamelCase_ , UpperCamelCase_ ): assert hasattr(self.config , UpperCamelCase_ ), F'''model config doesn\'t have a `{p}` attribute''' setattr(self.config , UpperCamelCase_ , getattr(self.hparams , UpperCamelCase_ ) ) if tokenizer is None: _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase_ , ) else: _lowercase : PreTrainedTokenizer = tokenizer _lowercase : Any = MODEL_MODES[mode] if model is None: _lowercase : Union[str, Any] = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase_ , ) else: _lowercase : str = model def __UpperCAmelCase ( self : Union[str, Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : str ) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = self.model_type.from_pretrained(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' _lowercase : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler] _lowercase : List[str] = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _lowercase : Optional[int] = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.model _lowercase : int = ['bias', 'LayerNorm.weight'] _lowercase : int = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _lowercase : Dict = Adafactor( UpperCamelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase_ , relative_step=UpperCamelCase_ ) else: _lowercase : str = AdamW( UpperCamelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _lowercase : Any = optimizer _lowercase : str = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' return self.validation_step(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : str ) -> str: '''simple docstring''' return self.validation_end(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _lowercase : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' if stage == "test": _lowercase : str = len(self.test_dataloader().dataset ) else: _lowercase : Union[str, Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=UpperCamelCase_ ) _lowercase : str = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ) -> List[Any]: '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' return self.train_loader def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( UpperCamelCase_ , list(filter(UpperCamelCase_ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict[str, Any] ) -> None: '''simple docstring''' _lowercase : Tuple = self.output_dir.joinpath('best_tfmr' ) _lowercase : List[str] = self.step_count self.model.save_pretrained(UpperCamelCase_ ) self.tokenizer.save_pretrained(UpperCamelCase_ ) @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=UpperCamelCase_ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(UpperCamelCase_ ).parent / 'test_run' / 'cache' ) , type=UpperCamelCase_ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=UpperCamelCase_ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=UpperCamelCase_ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=UpperCamelCase_ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=UpperCamelCase_ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=UpperCamelCase_ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=UpperCamelCase_ , metavar=UpperCamelCase_ , type=UpperCamelCase_ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=UpperCamelCase_ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=UpperCamelCase_ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=UpperCamelCase_ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=UpperCamelCase_ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=UpperCamelCase_ ) parser.add_argument('--train_batch_size' , default=32 , type=UpperCamelCase_ ) parser.add_argument('--eval_batch_size' , default=32 , type=UpperCamelCase_ ) parser.add_argument('--adafactor' , action='store_true' ) class lowerCamelCase__ ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class lowerCamelCase__ ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(UpperCamelCase_ ) class lowerCamelCase__ ( pl.Callback ): '''simple docstring''' def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ) -> List[str]: '''simple docstring''' _lowercase : List[str] = trainer.lr_schedulers[0]['scheduler'] _lowercase : Union[str, Any] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(UpperCamelCase_ ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> Any: '''simple docstring''' rank_zero_info('***** Validation results *****' ) _lowercase : Optional[int] = trainer.callback_metrics # Log results for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> List[str]: '''simple docstring''' rank_zero_info('***** Test results *****' ) _lowercase : int = trainer.callback_metrics # Log and save results to file _lowercase : List[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(UpperCamelCase_ , 'w' ) as writer: for key in sorted(UpperCamelCase_ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) ) def __UpperCamelCase ( _lowercase, _lowercase ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir', default=str(Path(_lowercase ).parent / 'test_run' / 'model_checkpoints' ), type=_lowercase, help='The output directory where the model predictions and checkpoints will be written.', ) parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit', ) parser.add_argument( '--fp16_opt_level', type=_lowercase, default='O2', help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ), ) parser.add_argument('--n_tpu_cores', dest='tpu_cores', type=_lowercase ) parser.add_argument('--max_grad_norm', dest='gradient_clip_val', default=1.0, type=_lowercase, help='Max gradient norm' ) parser.add_argument('--do_train', action='store_true', help='Whether to run training.' ) parser.add_argument('--do_predict', action='store_true', help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps', dest='accumulate_grad_batches', type=_lowercase, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.', ) parser.add_argument('--seed', type=_lowercase, default=42, help='random seed for initialization' ) parser.add_argument( '--data_dir', default=str(Path(_lowercase ).parent / 'test_run' / 'dummy-train-data' ), type=_lowercase, help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.', ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=None, _lowercase=True, _lowercase=[], _lowercase=None, _lowercase=None, **_lowercase, ) -> int: pl.seed_everything(args.seed ) # init model _lowercase : Any = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=_lowercase ) # add custom checkpoints if checkpoint_callback is None: _lowercase : str = pl.callbacks.ModelCheckpoint( filepath=args.output_dir, prefix='checkpoint', monitor='val_loss', mode='min', save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(_lowercase ) if logging_callback is None: _lowercase : str = LoggingCallback() _lowercase : Optional[int] = {} if args.fpaa: _lowercase : Any = 16 if args.gpus > 1: _lowercase : List[Any] = 'auto' _lowercase : List[Any] = 'ddp' _lowercase : Dict = args.accumulate_grad_batches _lowercase : List[str] = None _lowercase : List[str] = 'auto' _lowercase : Any = pl.Trainer.from_argparse_args( _lowercase, weights_summary=_lowercase, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=_lowercase, val_check_interval=1, num_sanity_val_steps=2, **_lowercase, ) if args.do_train: trainer.fit(_lowercase ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase__ ( A , A , A , unittest.TestCase ): '''simple docstring''' A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} ) A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) _lowercase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) _lowercase : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : Tuple = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase : Any = CLIPTextModel(UpperCamelCase_ ) _lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase : List[Any] = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=0 ) -> Dict: '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : Any = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : Union[str, Any] = 2 _lowercase : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ) _lowercase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _lowercase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : str = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) _lowercase : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : Dict ) -> Any: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowerCamelCase__ ( A , A , unittest.TestCase ): '''simple docstring''' A_ = StableDiffusionControlNetImgaImgPipeline A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS A_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(UpperCamelCase_ : Optional[int] ): if isinstance(UpperCamelCase_ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) _lowercase : List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) _lowercase : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(UpperCamelCase_ ) torch.manual_seed(0 ) _lowercase : Optional[int] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) _lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ ) _lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) _lowercase : Tuple = MultiControlNetModel([controlneta, controlneta] ) _lowercase : Any = { 'unet': unet, 'controlnet': controlnet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=0 ) -> int: '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : List[Any] = 2 _lowercase : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ), ] _lowercase : int = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) _lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _lowercase : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) ) _lowercase : str = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', 'image': image, 'control_image': control_image, } return inputs def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' _lowercase : Dict = self.get_dummy_components() _lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) _lowercase : Tuple = 10.0 _lowercase : List[Any] = 4 _lowercase : Any = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Union[str, Any] = steps _lowercase : Optional[int] = scale _lowercase : Optional[int] = pipe(**UpperCamelCase_ )[0] _lowercase : Dict = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Tuple = steps _lowercase : Any = scale _lowercase : List[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] _lowercase : int = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Optional[int] = steps _lowercase : Any = scale _lowercase : Dict = pipe(**UpperCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] _lowercase : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : List[Any] = steps _lowercase : List[Any] = scale _lowercase : Optional[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : List[str] ) -> Dict: '''simple docstring''' self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' _lowercase : int = self.get_dummy_components() _lowercase : Any = self.pipeline_class(**UpperCamelCase_ ) pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(UpperCamelCase_ ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' ) _lowercase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , safety_checker=UpperCamelCase_ , controlnet=UpperCamelCase_ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) _lowercase : Union[str, Any] = 'evil space-punk bird' _lowercase : Optional[int] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) ) _lowercase : str = load_image( 'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) ) _lowercase : str = pipe( UpperCamelCase_ , UpperCamelCase_ , control_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , num_inference_steps=50 , strength=0.6 , ) _lowercase : Optional[int] = output.images[0] assert image.shape == (512, 512, 3) _lowercase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' ) assert np.abs(expected_image - image ).max() < 9E-2
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """gpt_bigcode""" A_ = ["""past_key_values"""] A_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase_ : List[str]=5_0257 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : str=None , UpperCamelCase_ : int="gelu_pytorch_tanh" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[Any]=1E-5 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=5_0256 , UpperCamelCase_ : Tuple=5_0256 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : int=True , **UpperCamelCase_ : str , ) -> str: '''simple docstring''' _lowercase : List[str] = vocab_size _lowercase : Optional[int] = n_positions _lowercase : Any = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Optional[Any] = n_head _lowercase : Dict = n_inner _lowercase : Dict = activation_function _lowercase : Union[str, Any] = resid_pdrop _lowercase : Union[str, Any] = embd_pdrop _lowercase : str = attn_pdrop _lowercase : Optional[int] = layer_norm_epsilon _lowercase : List[Any] = initializer_range _lowercase : Any = scale_attn_weights _lowercase : Any = use_cache _lowercase : int = attention_softmax_in_fpaa _lowercase : Optional[Any] = scale_attention_softmax_in_fpaa _lowercase : str = multi_query _lowercase : List[Any] = bos_token_id _lowercase : Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' from __future__ import annotations import os from typing import Any import requests _A : int ='''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user _A : int =BASE_URL + '''/user''' # https://github.com/settings/tokens _A : List[Any] =os.environ.get('''USER_TOKEN''', '''''') def __UpperCamelCase ( _lowercase ) -> dict[Any, Any]: _lowercase : int = { 'Authorization': f'''token {auth_token}''', 'Accept': 'application/vnd.github.v3+json', } return requests.get(_lowercase, headers=_lowercase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' import os def __UpperCamelCase ( _lowercase = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(_lowercase ), _lowercase ) ) as input_file: _lowercase : Optional[Any] = [ [int(_lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase : Any = len(_lowercase ) _lowercase : Dict = len(matrix[0] ) _lowercase : Tuple = [[-1 for _ in range(_lowercase )] for _ in range(_lowercase )] for i in range(_lowercase ): _lowercase : Union[str, Any] = matrix[i][0] for j in range(1, _lowercase ): for i in range(_lowercase ): _lowercase : Tuple = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, _lowercase ): _lowercase : List[str] = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): _lowercase : Optional[Any] = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase__ ( A ): '''simple docstring''' A_ = 42 class lowerCamelCase__ ( A , A ): '''simple docstring''' @register_to_config def __init__( self : Any , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_ : Tuple[int] = (64,) , UpperCamelCase_ : int = 1 , UpperCamelCase_ : str = "silu" , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : float = 0.1_82_15 , UpperCamelCase_ : str = "group" , ) -> Optional[Any]: '''simple docstring''' super().__init__() # pass init params to Encoder _lowercase : List[str] = Encoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , ) _lowercase : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : Tuple = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) _lowercase : List[str] = VectorQuantizer(UpperCamelCase_ , UpperCamelCase_ , beta=0.25 , remap=UpperCamelCase_ , sane_index_shape=UpperCamelCase_ ) _lowercase : Optional[Any] = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 ) # pass init params to Decoder _lowercase : Tuple = Decoder( in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , norm_type=UpperCamelCase_ , ) @apply_forward_hook def __UpperCAmelCase ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> VQEncoderOutput: '''simple docstring''' _lowercase : List[str] = self.encoder(UpperCamelCase_ ) _lowercase : Optional[int] = self.quant_conv(UpperCamelCase_ ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase_ ) @apply_forward_hook def __UpperCAmelCase ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' if not force_not_quantize: _lowercase : int = self.quantize(UpperCamelCase_ ) else: _lowercase : Optional[Any] = h _lowercase : Tuple = self.post_quant_conv(UpperCamelCase_ ) _lowercase : List[str] = self.decoder(UpperCamelCase_ , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: '''simple docstring''' _lowercase : Any = sample _lowercase : Optional[int] = self.encode(UpperCamelCase_ ).latents _lowercase : List[Any] = self.decode(UpperCamelCase_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase_ )
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _lowercase ) -> int: if not nums: return 0 _lowercase : Tuple = nums[0] _lowercase : Optional[int] = 0 for num in nums[1:]: _lowercase : int = ( max_excluding + num, max(_lowercase, _lowercase ), ) return max(_lowercase, _lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' import argparse from collections import defaultdict import yaml _A : List[Any] ='''docs/source/en/_toctree.yml''' def __UpperCamelCase ( _lowercase ) -> Optional[int]: _lowercase : Union[str, Any] = defaultdict(_lowercase ) for doc in model_doc: counts[doc["local"]] += 1 _lowercase : List[Any] = [key for key, value in counts.items() if value > 1] _lowercase : str = [] for duplicate_key in duplicates: _lowercase : Dict = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_lowercase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_lowercase, key=lambda _lowercase : s["title"].lower() ) def __UpperCamelCase ( _lowercase=False ) -> str: with open(_lowercase, encoding='utf-8' ) as f: _lowercase : Optional[Any] = yaml.safe_load(f.read() ) # Get to the API doc _lowercase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowercase : List[Any] = content[api_idx]['sections'] # Then to the model doc _lowercase : Union[str, Any] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowercase : Optional[int] = api_doc[model_idx]['sections'] _lowercase : List[str] = [(idx, section) for idx, section in enumerate(_lowercase ) if 'sections' in section] _lowercase : Any = False for idx, modality_doc in modalities_docs: _lowercase : Optional[Any] = modality_doc['sections'] _lowercase : Any = clean_model_doc_toc(_lowercase ) if old_modality_doc != new_modality_doc: _lowercase : Any = True if overwrite: _lowercase : List[Any] = new_modality_doc if diff: if overwrite: _lowercase : Any = model_doc _lowercase : Optional[int] = api_doc with open(_lowercase, 'w', encoding='utf-8' ) as f: f.write(yaml.dump(_lowercase, allow_unicode=_lowercase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _A : Optional[int] =parser.parse_args() check_model_doc(args.fix_and_overwrite)
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' from __future__ import annotations def __UpperCamelCase ( _lowercase ) -> bool: if len(_lowercase ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) _lowercase : int = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' from __future__ import annotations import os from collections.abc import Mapping _A : str =tuple[int, int] class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : set[int] , UpperCamelCase_ : Mapping[EdgeT, int] ) -> None: '''simple docstring''' _lowercase : set[int] = vertices _lowercase : dict[EdgeT, int] = { (min(UpperCamelCase_ ), max(UpperCamelCase_ )): weight for edge, weight in edges.items() } def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : EdgeT , UpperCamelCase_ : int ) -> None: '''simple docstring''' self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) _lowercase : List[Any] = weight def __UpperCAmelCase ( self : Any ) -> Graph: '''simple docstring''' _lowercase : Graph = Graph({min(self.vertices )} , {} ) _lowercase : EdgeT _lowercase : int _lowercase : EdgeT _lowercase : int while len(subgraph.vertices ) < len(self.vertices ): _lowercase : Any = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: _lowercase : Optional[Any] = edge _lowercase : List[Any] = weight subgraph.add_edge(UpperCamelCase_ , UpperCamelCase_ ) return subgraph def __UpperCamelCase ( _lowercase = "p107_network.txt" ) -> int: _lowercase : str = os.path.abspath(os.path.dirname(_lowercase ) ) _lowercase : str = os.path.join(_lowercase, _lowercase ) _lowercase : dict[EdgeT, int] = {} _lowercase : list[str] _lowercase : int _lowercase : int with open(_lowercase ) as f: _lowercase : List[str] = f.read().strip().split('\n' ) _lowercase : Optional[int] = [line.split(',' ) for line in data] for edgea in range(1, len(_lowercase ) ): for edgea in range(_lowercase ): if adjaceny_matrix[edgea][edgea] != "-": _lowercase : Dict = int(adjaceny_matrix[edgea][edgea] ) _lowercase : Graph = Graph(set(range(len(_lowercase ) ) ), _lowercase ) _lowercase : Graph = graph.prims_algorithm() _lowercase : int = sum(graph.edges.values() ) _lowercase : int = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F'''{solution() = }''')
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0