code
stringlengths 81
54k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import tempfile
import unittest
from transformers import TaConfig, is_torch_available
from transformers.testing_utils import (
require_sentencepiece,
require_tokenizers,
require_torch,
slow,
torch_device,
)
from ...generation.test_utils import GenerationTesterMixin
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str]=99 , UpperCamelCase_ : Optional[int]=13 , UpperCamelCase_ : str=7 , UpperCamelCase_ : str=9 , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : Dict=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Optional[int]=37 , UpperCamelCase_ : Tuple=8 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : List[str]=0.0_02 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[str]=None , ) -> Any:
'''simple docstring'''
_lowercase : int = parent
_lowercase : Optional[int] = batch_size
_lowercase : Dict = encoder_seq_length
_lowercase : Union[str, Any] = decoder_seq_length
# For common tests
_lowercase : int = self.decoder_seq_length
_lowercase : Tuple = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[str] = use_labels
_lowercase : int = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : int = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Union[str, Any] = d_ff
_lowercase : Tuple = relative_attention_num_buckets
_lowercase : List[Any] = dropout_rate
_lowercase : Dict = initializer_factor
_lowercase : Optional[Any] = eos_token_id
_lowercase : str = pad_token_id
_lowercase : int = decoder_start_token_id
_lowercase : Dict = None
_lowercase : List[str] = decoder_layers
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
return TaConfig.from_pretrained('google/umt5-base' )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[int]=None , ) -> List[str]:
'''simple docstring'''
if attention_mask is None:
_lowercase : Any = input_ids.ne(config.pad_token_id )
if decoder_attention_mask is None:
_lowercase : List[str] = decoder_input_ids.ne(config.pad_token_id )
if head_mask is None:
_lowercase : Dict = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCamelCase_ )
if decoder_head_mask is None:
_lowercase : int = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase_ )
if cross_attn_head_mask is None:
_lowercase : List[str] = torch.ones(
config.num_decoder_layers , config.num_attention_heads , device=UpperCamelCase_ )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
_lowercase : List[str] = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size )
_lowercase : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
# we need to clamp the input ids here to avoid having pad token in between
# this is because for NllbMoe the position_ids are prepared such that
# all pad tokens have pos id = 2 and rest are between 2..seq_length
# and the seq_length here is seq_length - num_pad_tokens
# but when using past, there is no way of knowing if the past input ids had
# pad tokens in them, which results in incorrect seq_lenth and which in turn results in
# position_ids being off by num_pad_tokens in past input
_lowercase : Tuple = input_ids.clamp(self.pad_token_id + 1 )
_lowercase : Tuple = decoder_input_ids.clamp(self.pad_token_id + 1 )
_lowercase : Optional[Any] = self.get_config()
_lowercase : List[Any] = config.num_attention_heads
_lowercase : int = self.prepare_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return config, input_dict
def __UpperCAmelCase ( self : List[str] ) -> Any:
'''simple docstring'''
_lowercase , _lowercase : Optional[int] = self.prepare_config_and_inputs()
return config, inputs_dict
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
return TaConfig(
vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
return TaConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , ) -> Tuple:
'''simple docstring'''
_lowercase : Dict = UMTaModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : int = model(
input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , decoder_attention_mask=UpperCamelCase_ , )
_lowercase : Any = model(input_ids=UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ )
_lowercase : Tuple = result.last_hidden_state
_lowercase : Optional[int] = result.past_key_values
_lowercase : str = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) )
self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) )
# There should be `num_layers` key value embeddings stored in decoder_past
self.parent.assertEqual(len(UpperCamelCase_ ) , config.num_layers )
# There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple
self.parent.assertEqual(len(decoder_past[0] ) , 4 )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , ) -> Any:
'''simple docstring'''
_lowercase : str = UMTaModel(config=UpperCamelCase_ ).get_decoder().to(UpperCamelCase_ ).eval()
# first forward pass
_lowercase : Optional[Any] = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
_lowercase : Dict = model(UpperCamelCase_ )
_lowercase : Dict = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 )
_lowercase , _lowercase : Any = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowercase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size )
# append to next input_ids and
_lowercase : int = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowercase : Optional[int] = model(UpperCamelCase_ )['last_hidden_state']
_lowercase : str = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )['last_hidden_state']
# select random slice
_lowercase : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowercase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach()
_lowercase : Optional[int] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , ) -> Tuple:
'''simple docstring'''
_lowercase : Optional[int] = UMTaModel(config=UpperCamelCase_ ).to(UpperCamelCase_ ).half().eval()
_lowercase : Tuple = model(**UpperCamelCase_ )['last_hidden_state']
self.parent.assertFalse(torch.isnan(UpperCamelCase_ ).any().item() )
@require_torch
class lowerCamelCase__ ( A , A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (
(UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else ()
)
A_ = (UMTaForConditionalGeneration,) if is_torch_available() else ()
A_ = (
{
"""conversational""": UMTaForConditionalGeneration,
"""feature-extraction""": UMTaModel,
"""summarization""": UMTaForConditionalGeneration,
"""text2text-generation""": UMTaForConditionalGeneration,
"""translation""": UMTaForConditionalGeneration,
"""question-answering""": UMTaForQuestionAnswering,
}
if is_torch_available()
else {}
)
A_ = True
A_ = False
A_ = False
A_ = True
A_ = True
# The small UMT5 model needs higher percentages for CPU/MP tests
A_ = [0.8, 0.9]
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = UMTaModelTester(self )
@unittest.skip('Test has a segmentation fault on torch 1.8.0' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
_lowercase : Optional[int] = UMTaModel(config_and_inputs[0] ).to(UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmpdirname:
torch.onnx.export(
UpperCamelCase_ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F'''{tmpdirname}/t5_test.onnx''' , export_params=UpperCamelCase_ , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def __UpperCAmelCase ( self : str ) -> str:
'''simple docstring'''
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model_fpaa_forward(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = ['encoder_attentions', 'decoder_attentions', 'cross_attentions']
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
_lowercase : Dict = config_and_inputs[0]
_lowercase : Union[str, Any] = UMTaForConditionalGeneration(UpperCamelCase_ ).eval()
model.to(UpperCamelCase_ )
_lowercase : List[Any] = {
'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCamelCase_ ),
'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ ),
'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ ),
}
for attn_name, (name, mask) in zip(UpperCamelCase_ , head_masking.items() ):
_lowercase : Tuple = {name: mask}
# Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified
if name == "head_mask":
_lowercase : Dict = torch.ones(
config.num_decoder_layers , config.num_heads , device=UpperCamelCase_ )
_lowercase : Optional[Any] = model.generate(
config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , **UpperCamelCase_ , )
# We check the state of decoder_attentions and cross_attentions just from the last step
_lowercase : Dict = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1]
self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 )
@unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' )
def __UpperCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
pass
@require_torch
@require_sentencepiece
@require_tokenizers
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
@unittest.skip(
'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' )
def __UpperCAmelCase ( self : List[str] ) -> Any:
'''simple docstring'''
_lowercase : int = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCamelCase_ ).to(UpperCamelCase_ )
_lowercase : int = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCamelCase_ , legacy=UpperCamelCase_ )
_lowercase : List[str] = [
'Bonjour monsieur <extra_id_0> bien <extra_id_1>.',
'No se como puedo <extra_id_0>.',
'This is the reason why we <extra_id_0> them.',
'The <extra_id_0> walks in <extra_id_1>, seats',
'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.',
]
_lowercase : Dict = tokenizer(UpperCamelCase_ , return_tensors='pt' , padding=UpperCamelCase_ ).input_ids
# fmt: off
_lowercase : Optional[int] = torch.tensor(
[
[ 3_8530, 21_0703, 25_6299, 1410, 25_6298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 826, 321, 671, 2_5922, 25_6299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 1460, 339, 312, 1_9014, 1_0620, 758, 25_6299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0],
[ 517, 25_6299, 1_4869, 281, 301, 25_6298, 275, 11_9983,1, 0, 0, 0, 0, 0, 0, 0,0, 0],
[ 320, 25_6299, 1_4869, 281, 2234, 289, 2275, 333,6_1391, 289, 25_6298, 543, 25_6297, 16_8714, 329, 25_6296,274, 1],
] )
# fmt: on
torch.testing.assert_allclose(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Optional[int] = model.generate(input_ids.to(UpperCamelCase_ ) )
_lowercase : Tuple = [
'<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ ๐ <extra_id_56>ajลกietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajลกie</s>',
'<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> ํผํด[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
'<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>',
]
_lowercase : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
| 4 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Dict, Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .attention_processor import AttentionProcessor, AttnProcessor
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder
@dataclass
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = 42
class lowerCamelCase__ ( A , A ):
'''simple docstring'''
A_ = True
@register_to_config
def __init__( self : Dict , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_ : Tuple[int] = (64,) , UpperCamelCase_ : int = 1 , UpperCamelCase_ : str = "silu" , UpperCamelCase_ : int = 4 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : float = 0.1_82_15 , ) -> str:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
_lowercase : str = Encoder(
in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , )
# pass init params to Decoder
_lowercase : Optional[int] = Decoder(
in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , act_fn=UpperCamelCase_ , )
_lowercase : Optional[int] = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 )
_lowercase : Any = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 )
_lowercase : int = False
_lowercase : Union[str, Any] = False
# only relevant if vae tiling is enabled
_lowercase : Dict = self.config.sample_size
_lowercase : Any = (
self.config.sample_size[0]
if isinstance(self.config.sample_size , (list, tuple) )
else self.config.sample_size
)
_lowercase : str = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) )
_lowercase : List[Any] = 0.25
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=False ) -> Union[str, Any]:
'''simple docstring'''
if isinstance(UpperCamelCase_ , (Encoder, Decoder) ):
_lowercase : str = value
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : bool = True ) -> Optional[int]:
'''simple docstring'''
_lowercase : Optional[Any] = use_tiling
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
self.enable_tiling(UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = True
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = False
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __UpperCAmelCase ( self : Optional[int] ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
_lowercase : int = {}
def fn_recursive_add_processors(UpperCamelCase_ : str , UpperCamelCase_ : torch.nn.Module , UpperCamelCase_ : Dict[str, AttentionProcessor] ):
if hasattr(UpperCamelCase_ , 'set_processor' ):
_lowercase : List[str] = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return processors
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> int:
'''simple docstring'''
_lowercase : Tuple = len(self.attn_processors.keys() )
if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) != count:
raise ValueError(
F'''A dict of processors was passed, but the number of processors {len(UpperCamelCase_ )} does not match the'''
F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' )
def fn_recursive_attn_processor(UpperCamelCase_ : str , UpperCamelCase_ : torch.nn.Module , UpperCamelCase_ : List[Any] ):
if hasattr(UpperCamelCase_ , 'set_processor' ):
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
module.set_processor(UpperCamelCase_ )
else:
module.set_processor(processor.pop(F'''{name}.processor''' ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F'''{name}.{sub_name}''' , UpperCamelCase_ , UpperCamelCase_ )
for name, module in self.named_children():
fn_recursive_attn_processor(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
@apply_forward_hook
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> AutoencoderKLOutput:
'''simple docstring'''
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size):
return self.tiled_encode(UpperCamelCase_ , return_dict=UpperCamelCase_ )
if self.use_slicing and x.shape[0] > 1:
_lowercase : Optional[Any] = [self.encoder(UpperCamelCase_ ) for x_slice in x.split(1 )]
_lowercase : Optional[Any] = torch.cat(UpperCamelCase_ )
else:
_lowercase : Any = self.encoder(UpperCamelCase_ )
_lowercase : Tuple = self.quant_conv(UpperCamelCase_ )
_lowercase : Any = DiagonalGaussianDistribution(UpperCamelCase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size):
return self.tiled_decode(UpperCamelCase_ , return_dict=UpperCamelCase_ )
_lowercase : Tuple = self.post_quant_conv(UpperCamelCase_ )
_lowercase : int = self.decoder(UpperCamelCase_ )
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCamelCase_ )
@apply_forward_hook
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if self.use_slicing and z.shape[0] > 1:
_lowercase : int = [self._decode(UpperCamelCase_ ).sample for z_slice in z.split(1 )]
_lowercase : Dict = torch.cat(UpperCamelCase_ )
else:
_lowercase : List[str] = self._decode(UpperCamelCase_ ).sample
if not return_dict:
return (decoded,)
return DecoderOutput(sample=UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[int] = min(a.shape[2] , b.shape[2] , UpperCamelCase_ )
for y in range(UpperCamelCase_ ):
_lowercase : Optional[int] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent)
return b
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any ) -> str:
'''simple docstring'''
_lowercase : Tuple = min(a.shape[3] , b.shape[3] , UpperCamelCase_ )
for x in range(UpperCamelCase_ ):
_lowercase : Optional[int] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent)
return b
def __UpperCAmelCase ( self : str , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> AutoencoderKLOutput:
'''simple docstring'''
_lowercase : List[str] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) )
_lowercase : Dict = int(self.tile_latent_min_size * self.tile_overlap_factor )
_lowercase : List[Any] = self.tile_latent_min_size - blend_extent
# Split the image into 512x512 tiles and encode them separately.
_lowercase : int = []
for i in range(0 , x.shape[2] , UpperCamelCase_ ):
_lowercase : List[str] = []
for j in range(0 , x.shape[3] , UpperCamelCase_ ):
_lowercase : Dict = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size]
_lowercase : Dict = self.encoder(UpperCamelCase_ )
_lowercase : Optional[int] = self.quant_conv(UpperCamelCase_ )
row.append(UpperCamelCase_ )
rows.append(UpperCamelCase_ )
_lowercase : Any = []
for i, row in enumerate(UpperCamelCase_ ):
_lowercase : List[Any] = []
for j, tile in enumerate(UpperCamelCase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_lowercase : List[str] = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ )
if j > 0:
_lowercase : Any = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) )
_lowercase : Tuple = torch.cat(UpperCamelCase_ , dim=2 )
_lowercase : int = DiagonalGaussianDistribution(UpperCamelCase_ )
if not return_dict:
return (posterior,)
return AutoencoderKLOutput(latent_dist=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
_lowercase : str = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) )
_lowercase : List[Any] = int(self.tile_sample_min_size * self.tile_overlap_factor )
_lowercase : Dict = self.tile_sample_min_size - blend_extent
# Split z into overlapping 64x64 tiles and decode them separately.
# The tiles have an overlap to avoid seams between tiles.
_lowercase : str = []
for i in range(0 , z.shape[2] , UpperCamelCase_ ):
_lowercase : Dict = []
for j in range(0 , z.shape[3] , UpperCamelCase_ ):
_lowercase : Optional[int] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size]
_lowercase : List[str] = self.post_quant_conv(UpperCamelCase_ )
_lowercase : Union[str, Any] = self.decoder(UpperCamelCase_ )
row.append(UpperCamelCase_ )
rows.append(UpperCamelCase_ )
_lowercase : int = []
for i, row in enumerate(UpperCamelCase_ ):
_lowercase : Optional[Any] = []
for j, tile in enumerate(UpperCamelCase_ ):
# blend the above tile and the left tile
# to the current tile and add the current tile to the result row
if i > 0:
_lowercase : Tuple = self.blend_v(rows[i - 1][j] , UpperCamelCase_ , UpperCamelCase_ )
if j > 0:
_lowercase : Optional[int] = self.blend_h(row[j - 1] , UpperCamelCase_ , UpperCamelCase_ )
result_row.append(tile[:, :, :row_limit, :row_limit] )
result_rows.append(torch.cat(UpperCamelCase_ , dim=3 ) )
_lowercase : Optional[int] = torch.cat(UpperCamelCase_ , dim=2 )
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[torch.Generator] = None , ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
_lowercase : List[Any] = sample
_lowercase : List[Any] = self.encode(UpperCamelCase_ ).latent_dist
if sample_posterior:
_lowercase : Optional[Any] = posterior.sample(generator=UpperCamelCase_ )
else:
_lowercase : str = posterior.mode()
_lowercase : Union[str, Any] = self.decode(UpperCamelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCamelCase_ )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Sequence
from typing import Literal
def __UpperCamelCase ( _lowercase, _lowercase ) -> str | Literal[False]:
_lowercase : str = list(_lowercase )
_lowercase : int = list(_lowercase )
_lowercase : Tuple = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count += 1
_lowercase : str = '_'
if count > 1:
return False
else:
return "".join(_lowercase )
def __UpperCamelCase ( _lowercase ) -> list[str]:
_lowercase : int = []
while True:
_lowercase : Dict = ['$'] * len(_lowercase )
_lowercase : Dict = []
for i in range(len(_lowercase ) ):
for j in range(i + 1, len(_lowercase ) ):
_lowercase : Union[str, Any] = compare_string(binary[i], binary[j] )
if k is False:
_lowercase : Union[str, Any] = '*'
_lowercase : Optional[Any] = '*'
temp.append('X' )
for i in range(len(_lowercase ) ):
if checka[i] == "$":
pi.append(binary[i] )
if len(_lowercase ) == 0:
return pi
_lowercase : Any = list(set(_lowercase ) )
def __UpperCamelCase ( _lowercase, _lowercase ) -> list[str]:
_lowercase : Optional[int] = []
for minterm in minterms:
_lowercase : Tuple = ''
for _ in range(_lowercase ):
_lowercase : Tuple = str(minterm % 2 ) + string
minterm //= 2
temp.append(_lowercase )
return temp
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> bool:
_lowercase : int = list(_lowercase )
_lowercase : List[Any] = list(_lowercase )
_lowercase : Any = 0
for i in range(len(_lowercase ) ):
if lista[i] != lista[i]:
count_n += 1
return count_n == count
def __UpperCamelCase ( _lowercase, _lowercase ) -> list[str]:
_lowercase : Optional[int] = []
_lowercase : Tuple = [0] * len(_lowercase )
for i in range(len(chart[0] ) ):
_lowercase : Tuple = 0
_lowercase : Optional[int] = -1
for j in range(len(_lowercase ) ):
if chart[j][i] == 1:
count += 1
_lowercase : List[Any] = j
if count == 1:
_lowercase : Union[str, Any] = 1
for i in range(len(_lowercase ) ):
if select[i] == 1:
for j in range(len(chart[0] ) ):
if chart[i][j] == 1:
for k in range(len(_lowercase ) ):
_lowercase : Union[str, Any] = 0
temp.append(prime_implicants[i] )
while True:
_lowercase : Tuple = 0
_lowercase : Tuple = -1
_lowercase : Tuple = 0
for i in range(len(_lowercase ) ):
_lowercase : int = chart[i].count(1 )
if count_n > max_n:
_lowercase : Any = count_n
_lowercase : List[Any] = i
if max_n == 0:
return temp
temp.append(prime_implicants[rem] )
for i in range(len(chart[0] ) ):
if chart[rem][i] == 1:
for j in range(len(_lowercase ) ):
_lowercase : Any = 0
def __UpperCamelCase ( _lowercase, _lowercase ) -> list[list[int]]:
_lowercase : Optional[Any] = [[0 for x in range(len(_lowercase ) )] for x in range(len(_lowercase ) )]
for i in range(len(_lowercase ) ):
_lowercase : int = prime_implicants[i].count('_' )
for j in range(len(_lowercase ) ):
if is_for_table(prime_implicants[i], binary[j], _lowercase ):
_lowercase : List[str] = 1
return chart
def __UpperCamelCase ( ) -> None:
_lowercase : Tuple = int(input('Enter the no. of variables\n' ) )
_lowercase : Optional[int] = [
float(_lowercase )
for x in input(
'Enter the decimal representation of Minterms \'Spaces Separated\'\n' ).split()
]
_lowercase : Dict = decimal_to_binary(_lowercase, _lowercase )
_lowercase : List[Any] = check(_lowercase )
print('Prime Implicants are:' )
print(_lowercase )
_lowercase : str = prime_implicant_chart(_lowercase, _lowercase )
_lowercase : Dict = selection(_lowercase, _lowercase )
print('Essential Prime Implicants are:' )
print(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 4 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> list[int]:
if num <= 0:
raise ValueError('Input must be a positive integer' )
_lowercase : int = [True] * (num + 1)
_lowercase : Union[str, Any] = 2
while p * p <= num:
if primes[p]:
for i in range(p * p, num + 1, _lowercase ):
_lowercase : Union[str, Any] = False
p += 1
return [prime for prime in range(2, num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
_A : Any =int(input('''Enter a positive integer: ''').strip())
print(prime_sieve_eratosthenes(user_num))
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Dict =['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] =['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
import yaml
_A : List[Any] ='''docs/source/en/_toctree.yml'''
def __UpperCamelCase ( _lowercase ) -> Optional[int]:
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for doc in model_doc:
counts[doc["local"]] += 1
_lowercase : List[Any] = [key for key, value in counts.items() if value > 1]
_lowercase : str = []
for duplicate_key in duplicates:
_lowercase : Dict = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} )
if len(_lowercase ) > 1:
raise ValueError(
f'''{duplicate_key} is present several times in the documentation table of content at '''
'`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the '
'others.' )
# Only add this once
new_doc.append({'local': duplicate_key, 'title': titles[0]} )
# Add none duplicate-keys
new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] )
# Sort
return sorted(_lowercase, key=lambda _lowercase : s["title"].lower() )
def __UpperCamelCase ( _lowercase=False ) -> str:
with open(_lowercase, encoding='utf-8' ) as f:
_lowercase : Optional[Any] = yaml.safe_load(f.read() )
# Get to the API doc
_lowercase : Tuple = 0
while content[api_idx]["title"] != "API":
api_idx += 1
_lowercase : List[Any] = content[api_idx]['sections']
# Then to the model doc
_lowercase : Union[str, Any] = 0
while api_doc[model_idx]["title"] != "Models":
model_idx += 1
_lowercase : Optional[int] = api_doc[model_idx]['sections']
_lowercase : List[str] = [(idx, section) for idx, section in enumerate(_lowercase ) if 'sections' in section]
_lowercase : Any = False
for idx, modality_doc in modalities_docs:
_lowercase : Optional[Any] = modality_doc['sections']
_lowercase : Any = clean_model_doc_toc(_lowercase )
if old_modality_doc != new_modality_doc:
_lowercase : Any = True
if overwrite:
_lowercase : List[Any] = new_modality_doc
if diff:
if overwrite:
_lowercase : Any = model_doc
_lowercase : Optional[int] = api_doc
with open(_lowercase, 'w', encoding='utf-8' ) as f:
f.write(yaml.dump(_lowercase, allow_unicode=_lowercase ) )
else:
raise ValueError(
'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_A : Optional[int] =parser.parse_args()
check_model_doc(args.fix_and_overwrite)
| 4 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 | 1 |
'''simple docstring'''
import math
def __UpperCamelCase ( _lowercase ) -> int:
if not isinstance(_lowercase, _lowercase ):
_lowercase : Any = f'''Input value of [number={number}] must be an integer'''
raise TypeError(_lowercase )
if number < 1:
_lowercase : Optional[int] = f'''Input value of [number={number}] must be > 0'''
raise ValueError(_lowercase )
elif number == 1:
return 3
elif number == 2:
return 5
else:
_lowercase : Union[str, Any] = int(math.log(number // 3, 2 ) ) + 2
_lowercase : Dict = [3, 5]
_lowercase : List[str] = 2
_lowercase : str = 3
for block in range(1, _lowercase ):
for _ in range(_lowercase ):
proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] )
proth_index += 1
increment *= 2
return proth_list[number - 1]
if __name__ == "__main__":
import doctest
doctest.testmod()
for number in range(1_1):
_A : int =0
try:
_A : Union[str, Any] =proth(number)
except ValueError:
print(F'''ValueError: there is no {number}th Proth number''')
continue
print(F'''The {number}th Proth number: {value}''')
| 4 |
'''simple docstring'''
from __future__ import annotations
import requests
def __UpperCamelCase ( _lowercase ) -> dict:
_lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowercase ).json()
def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]:
_lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
_lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def __UpperCamelCase ( _lowercase = 10 ) -> str:
_lowercase : Tuple = hackernews_top_stories(_lowercase )
return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Dict ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """megatron-bert"""
def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Optional[Any] = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : List[Any] = position_embedding_type
_lowercase : Optional[Any] = use_cache
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class lowerCamelCase__ :
'''simple docstring'''
A_ = BlenderbotSmallConfig
A_ = {}
A_ = """gelu"""
def __init__( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Any=True , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : str=99 , UpperCamelCase_ : Optional[int]=32 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Union[str, Any]=37 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Dict=20 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Any=1 , UpperCamelCase_ : Optional[int]=0 , ) -> str:
'''simple docstring'''
_lowercase : Tuple = parent
_lowercase : Optional[Any] = batch_size
_lowercase : Union[str, Any] = seq_length
_lowercase : Dict = is_training
_lowercase : List[str] = use_labels
_lowercase : int = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Optional[int] = num_attention_heads
_lowercase : Any = intermediate_size
_lowercase : str = hidden_dropout_prob
_lowercase : Tuple = attention_probs_dropout_prob
_lowercase : Optional[Any] = max_position_embeddings
_lowercase : str = eos_token_id
_lowercase : List[str] = pad_token_id
_lowercase : str = bos_token_id
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_lowercase : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_lowercase : Dict = tf.concat([input_ids, eos_tensor] , axis=1 )
_lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : Any = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_lowercase : int = prepare_blenderbot_small_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
return config, inputs_dict
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = TFBlenderbotSmallModel(config=UpperCamelCase_ ).get_decoder()
_lowercase : str = inputs_dict['input_ids']
_lowercase : Union[str, Any] = input_ids[:1, :]
_lowercase : List[str] = inputs_dict['attention_mask'][:1, :]
_lowercase : Optional[Any] = inputs_dict['head_mask']
_lowercase : Optional[int] = 1
# first forward pass
_lowercase : Any = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ )
_lowercase , _lowercase : Tuple = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_lowercase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size )
_lowercase : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_lowercase : str = tf.concat([input_ids, next_tokens] , axis=-1 )
_lowercase : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_lowercase : Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0]
_lowercase : Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_lowercase : Union[str, Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_lowercase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx]
_lowercase : Any = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=None, ) -> Tuple:
if attention_mask is None:
_lowercase : Any = tf.cast(tf.math.not_equal(_lowercase, config.pad_token_id ), tf.inta )
if decoder_attention_mask is None:
_lowercase : Optional[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ),
], axis=-1, )
if head_mask is None:
_lowercase : str = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_lowercase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_lowercase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
A_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
A_ = (
{
"""conversational""": TFBlenderbotSmallForConditionalGeneration,
"""feature-extraction""": TFBlenderbotSmallModel,
"""summarization""": TFBlenderbotSmallForConditionalGeneration,
"""text2text-generation""": TFBlenderbotSmallForConditionalGeneration,
"""translation""": TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
A_ = True
A_ = False
A_ = False
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
_lowercase : Union[str, Any] = TFBlenderbotSmallModelTester(self )
_lowercase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Dict:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : str = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ )
@require_tokenizers
@require_tf
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
A_ = [
"""Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like """
""" i'm going to throw up.\nand why is that?"""
]
A_ = """facebook/blenderbot_small-90M"""
@cached_property
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
'''simple docstring'''
return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' )
@cached_property
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_lowercase : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.tokenizer(self.src_text , return_tensors='tf' )
_lowercase : List[Any] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase_ , )
_lowercase : Optional[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
)
| 4 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Tuple = args.pruning_method
_lowercase : int = args.threshold
_lowercase : str = args.model_name_or_path.rstrip('/' )
_lowercase : Dict = args.target_model_path
print(f'''Load fine-pruned model from {model_name_or_path}''' )
_lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) )
_lowercase : List[Any] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_lowercase : Optional[int] = tensor
print(f'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_lowercase : List[str] = tensor
print(f'''Copied layer {name}''' )
elif "bias" in name:
_lowercase : Dict = tensor
print(f'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase )
_lowercase : Optional[Any] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_lowercase : Optional[Any] = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase )
_lowercase : str = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_lowercase : str = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase )
_lowercase : Optional[int] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_lowercase : Optional[int] = name[:-6]
_lowercase : List[str] = model[f'''{prefix_}mask_scores''']
_lowercase , _lowercase : Union[str, Any] = -0.1, 1.1
_lowercase : str = torch.sigmoid(_lowercase )
_lowercase : int = s * (r - l) + l
_lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 )
_lowercase : Union[str, Any] = tensor * mask
print(f'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
_lowercase : List[Any] = os.path.join(
os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' )
if not os.path.isdir(_lowercase ):
shutil.copytree(_lowercase, _lowercase )
print(f'''\nCreated folder {target_model_path}''' )
torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pruning_method''',
choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''],
type=str,
required=True,
help=(
'''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'''
''' sigmoied_threshold = Soft movement pruning)'''
),
)
parser.add_argument(
'''--threshold''',
type=float,
required=False,
help=(
'''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'''
'''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'''
'''Not needed for `l0`'''
),
)
parser.add_argument(
'''--model_name_or_path''',
type=str,
required=True,
help='''Folder containing the model that was previously fine-pruned''',
)
parser.add_argument(
'''--target_model_path''',
default=None,
type=str,
required=False,
help='''Folder containing the model that was previously fine-pruned''',
)
_A : List[Any] =parser.parse_args()
main(args)
| 4 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_A : Any ={'''configuration_mmbt''': ['''MMBTConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Optional[Any] =['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings''']
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
_A : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
'''simple docstring'''
import gc
import importlib.metadata
import tempfile
import unittest
from packaging import version
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
from transformers.testing_utils import (
is_torch_available,
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
def __UpperCamelCase ( _lowercase ) -> Optional[Any]:
if model.config.model_type == "gpt2":
return model.transformer.h[0].mlp.c_fc
return model.transformer.h[0].mlp.dense_ah_to_h
if is_torch_available():
import torch
import torch.nn as nn
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : List[str] , UpperCamelCase_ : nn.Module , UpperCamelCase_ : int ) -> int:
'''simple docstring'''
super().__init__()
_lowercase : Dict = module
_lowercase : Optional[Any] = nn.Sequential(
nn.Linear(module.in_features , UpperCamelCase_ , bias=UpperCamelCase_ ) , nn.Linear(UpperCamelCase_ , module.out_features , bias=UpperCamelCase_ ) , )
_lowercase : Union[str, Any] = (2.0 / (5 * min(module.in_features , module.out_features ))) ** 0.5
nn.init.normal_(self.adapter[0].weight , std=UpperCamelCase_ )
nn.init.zeros_(self.adapter[1].weight )
self.adapter.to(module.weight.device )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.module(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) + self.adapter(UpperCamelCase_ )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
A_ = """bigscience/bloom-1b7"""
# Constant values
A_ = 2.1_09_65_95_52_69_25_74
A_ = """Hello my name is"""
A_ = set()
EXPECTED_OUTPUTS.add("""Hello my name is John and I am a professional photographer. I""" )
EXPECTED_OUTPUTS.add("""Hello my name is John.\nI am a friend of your father.\n""" )
EXPECTED_OUTPUTS.add("""Hello my name is John Doe, I am a student at the University""" )
A_ = 10
def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = AutoTokenizer.from_pretrained(self.model_name )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
super().setUp()
# Models and tokenizer
_lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , torch_dtype=torch.floataa , device_map='auto' )
_lowercase : int = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
del self.model_fpaa
del self.model_abit
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = self.model_abit.config
self.assertTrue(hasattr(UpperCamelCase_ , 'quantization_config' ) )
_lowercase : int = config.to_dict()
_lowercase : Union[str, Any] = config.to_diff_dict()
_lowercase : Optional[Any] = config.to_json_string()
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
_lowercase : Any = self.model_fpaa.get_memory_footprint()
_lowercase : str = self.model_abit.get_memory_footprint()
self.assertAlmostEqual(mem_fpaa / mem_abit , self.EXPECTED_RELATIVE_DIFFERENCE )
_lowercase : Optional[Any] = get_some_linear_layer(self.model_abit )
self.assertTrue(linear.weight.__class__ == Paramsabit )
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
from transformers import TaPreTrainedModel
self.model_fpaa.get_memory_footprint()
self.model_abit.get_memory_footprint()
for name, module in self.model_abit.named_modules():
if isinstance(UpperCamelCase_ , torch.nn.Linear ):
if name not in ["lm_head"] + TaPreTrainedModel._keep_in_fpaa_modules:
# 4-bit parameters are packed in uint8 variables
self.assertTrue(module.weight.dtype == torch.uinta )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
_lowercase : Union[str, Any] = self.tokenizer(self.input_text , return_tensors='pt' )
_lowercase : List[Any] = self.model_abit.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
def __UpperCAmelCase ( self : Dict ) -> List[Any]:
'''simple docstring'''
_lowercase : Tuple = BitsAndBytesConfig()
_lowercase : Optional[int] = True
_lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=UpperCamelCase_ , device_map='auto' )
_lowercase : str = self.tokenizer(self.input_text , return_tensors='pt' )
_lowercase : Tuple = model_abit_from_config.generate(
input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_sequences[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
def __UpperCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
with self.assertRaises(UpperCamelCase_ ), tempfile.TemporaryDirectory() as tmpdirname:
self.model_abit.save_pretrained(UpperCamelCase_ )
def __UpperCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = BitsAndBytesConfig()
with self.assertRaises(UpperCamelCase_ ):
_lowercase : int = AutoModelForCausalLM.from_pretrained(
self.model_name , quantization_config=UpperCamelCase_ , load_in_abit=UpperCamelCase_ , device_map='auto' , bnb_abit_quant_type='nf4' , )
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
with self.assertRaises(UpperCamelCase_ ):
# Tries with `str`
self.model_abit.to('cpu' )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `dtype``
self.model_abit.to(torch.floataa )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.to(torch.device('cuda:0' ) )
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.float()
with self.assertRaises(UpperCamelCase_ ):
# Tries with a `device`
self.model_abit.half()
# Test if we did not break anything
_lowercase : int = self.tokenizer(self.input_text , return_tensors='pt' )
_lowercase : Union[str, Any] = self.model_fpaa.to(torch.floataa )
_lowercase : Tuple = self.model_fpaa.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
# Check this does not throw an error
_lowercase : Tuple = self.model_fpaa.to('cpu' )
# Check this does not throw an error
_lowercase : Dict = self.model_fpaa.half()
# Check this does not throw an error
_lowercase : Tuple = self.model_fpaa.float()
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
'''simple docstring'''
_lowercase : Tuple = AutoModelForSeqaSeqLM.from_pretrained('t5-small' , load_in_abit=UpperCamelCase_ , device_map='auto' )
self.assertTrue(model.decoder.block[0].layer[2].DenseReluDense.wo.weight.dtype == torch.floataa )
@require_bitsandbytes
@require_accelerate
@require_torch
@require_torch_gpu
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls : Tuple ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = 't5-small'
_lowercase : Tuple = 'google/flan-t5-small' # flan-t5 uses dense-act instead of dense-relu-dense
_lowercase : Optional[int] = AutoTokenizer.from_pretrained(cls.model_name )
_lowercase : Union[str, Any] = 'Translate in German: Hello, my dog is cute'
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
from transformers import TaForConditionalGeneration
_lowercase : Union[str, Any] = TaForConditionalGeneration._keep_in_fpaa_modules
_lowercase : Optional[Any] = None
# test with `t5-small`
_lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
_lowercase : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowercase : Optional[Any] = model.generate(**UpperCamelCase_ )
# test with `flan-t5-small`
_lowercase : Dict = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
_lowercase : str = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowercase : int = model.generate(**UpperCamelCase_ )
_lowercase : Optional[Any] = modules
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
import bitsandbytes as bnb
from transformers import TaForConditionalGeneration
# test with `t5-small`
_lowercase : List[Any] = TaForConditionalGeneration.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
# there was a bug with decoders - this test checks that it is fixed
self.assertTrue(isinstance(model.decoder.block[0].layer[0].SelfAttention.q , bnb.nn.Linearabit ) )
_lowercase : Optional[Any] = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowercase : List[Any] = model.generate(**UpperCamelCase_ )
# test with `flan-t5-small`
_lowercase : List[str] = TaForConditionalGeneration.from_pretrained(
self.dense_act_model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
_lowercase : Any = self.tokenizer(self.input_text , return_tensors='pt' ).to(0 )
_lowercase : List[Any] = model.generate(**UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
super().setUp()
# model_name
_lowercase : str = 'bigscience/bloom-560m'
_lowercase : str = 't5-small'
# Different types of model
_lowercase : Tuple = AutoModel.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
# Sequence classification model
_lowercase : Optional[int] = AutoModelForSequenceClassification.from_pretrained(
self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
# CausalLM model
_lowercase : Tuple = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
# Seq2seq model
_lowercase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained(
self.seq_to_seq_name , load_in_abit=UpperCamelCase_ , device_map='auto' )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
del self.base_model
del self.sequence_model
del self.model_abit
del self.seq_to_seq_model
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
from bitsandbytes.nn import Paramsabit
self.assertTrue(self.base_model.h[-1].mlp.dense_ah_to_h.weight.__class__ == Paramsabit )
# Other heads should be nn.Parameter
self.assertTrue(self.model_abit.lm_head.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.sequence_model.score.weight.__class__ == torch.nn.Parameter )
self.assertTrue(self.seq_to_seq_model.lm_head.weight.__class__ == torch.nn.Parameter )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : Tuple ) -> Dict:
'''simple docstring'''
super().setUp()
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
del self.pipe
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
_lowercase : str = pipeline(
'text-generation' , model=self.model_name , model_kwargs={'device_map': 'auto', 'load_in_4bit': True, 'torch_dtype': torch.floataa} , max_new_tokens=self.MAX_NEW_TOKENS , )
# Real second forward pass
_lowercase : int = self.pipe(self.input_text )
self.assertIn(pipeline_output[0]['generated_text'] , self.EXPECTED_OUTPUTS )
@require_torch_multi_gpu
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
super().setUp()
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = AutoModelForCausalLM.from_pretrained(
self.model_name , load_in_abit=UpperCamelCase_ , device_map='balanced' )
# Check correct device map
self.assertEqual(set(model_parallel.hf_device_map.values() ) , {0, 1} )
# Check that inference pass works on the model
_lowercase : int = self.tokenizer(self.input_text , return_tensors='pt' )
# Second real batch
_lowercase : str = model_parallel.generate(input_ids=encoded_input['input_ids'].to(0 ) , max_new_tokens=10 )
self.assertIn(self.tokenizer.decode(output_parallel[0] , skip_special_tokens=UpperCamelCase_ ) , self.EXPECTED_OUTPUTS )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Union[str, Any] = 'facebook/opt-350m'
super().setUp()
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
if version.parse(importlib.metadata.version('bitsandbytes' ) ) < version.parse('0.37.0' ):
return
# Step 1: freeze all parameters
_lowercase : Optional[int] = AutoModelForCausalLM.from_pretrained(self.model_name , load_in_abit=UpperCamelCase_ )
self.assertEqual(set(model.hf_device_map.values() ) , {torch.cuda.current_device()} )
for param in model.parameters():
_lowercase : List[Any] = False # freeze the model - train adapters later
if param.ndim == 1:
# cast the small parameters (e.g. layernorm) to fp32 for stability
_lowercase : int = param.data.to(torch.floataa )
# Step 2: add adapters
for _, module in model.named_modules():
if "OPTAttention" in repr(type(UpperCamelCase_ ) ):
_lowercase : Optional[Any] = LoRALayer(module.q_proj , rank=16 )
_lowercase : Optional[int] = LoRALayer(module.k_proj , rank=16 )
_lowercase : Tuple = LoRALayer(module.v_proj , rank=16 )
# Step 3: dummy batch
_lowercase : Dict = self.tokenizer('Test batch ' , return_tensors='pt' ).to(0 )
# Step 4: Check if the gradient is not None
with torch.cuda.amp.autocast():
_lowercase : List[str] = model.forward(**UpperCamelCase_ )
out.logits.norm().backward()
for module in model.modules():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
self.assertTrue(module.adapter[1].weight.grad is not None )
self.assertTrue(module.adapter[1].weight.grad.norm().item() > 0 )
elif isinstance(UpperCamelCase_ , nn.Embedding ):
self.assertTrue(module.weight.grad is None )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """gpt2-xl"""
A_ = 3.31_91_85_48_54_15_21_87
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 | 1 |
'''simple docstring'''
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : str ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = tempfile.mkdtemp()
# fmt: off
_lowercase : Union[str, Any] = ['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest']
# fmt: on
_lowercase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
_lowercase : List[Any] = {
'do_resize': True,
'size': {'height': 18, 'width': 18},
'do_normalize': True,
'image_mean': [0.5, 0.5, 0.5],
'image_std': [0.5, 0.5, 0.5],
}
_lowercase : Any = os.path.join(self.tmpdirname , UpperCamelCase_ )
with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : Any , **UpperCamelCase_ : List[str] ) -> Optional[int]:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[Any] , **UpperCamelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def __UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )]
_lowercase : Union[str, Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Union[str, Any] = self.get_tokenizer()
_lowercase : Optional[Any] = self.get_image_processor()
_lowercase : Optional[int] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
processor.save_pretrained(self.tmpdirname )
_lowercase : str = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
_lowercase : str = VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
_lowercase : List[str] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' )
_lowercase : Tuple = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 )
_lowercase : int = VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=UpperCamelCase_ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = self.get_image_processor()
_lowercase : Dict = self.get_tokenizer()
_lowercase : List[str] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
_lowercase : Union[str, Any] = self.prepare_image_inputs()
_lowercase : Any = image_processor(UpperCamelCase_ , return_tensors='np' )
_lowercase : str = processor(images=UpperCamelCase_ , return_tensors='np' )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def __UpperCAmelCase ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = self.get_image_processor()
_lowercase : Dict = self.get_tokenizer()
_lowercase : Dict = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
_lowercase : int = 'lower newer'
_lowercase : Tuple = processor(text=UpperCamelCase_ )
_lowercase : Union[str, Any] = tokenizer(UpperCamelCase_ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __UpperCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
_lowercase : Tuple = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
_lowercase : List[Any] = 'lower newer'
_lowercase : Optional[int] = self.prepare_image_inputs()
_lowercase : Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] )
# test if it raises when no input is passed
with self.assertRaises(UpperCamelCase_ ):
processor()
def __UpperCAmelCase ( self : str ) -> Any:
'''simple docstring'''
_lowercase : Tuple = self.get_image_processor()
_lowercase : str = self.get_tokenizer()
_lowercase : int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
_lowercase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
_lowercase : Union[str, Any] = processor.batch_decode(UpperCamelCase_ )
_lowercase : List[str] = tokenizer.batch_decode(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Dict:
'''simple docstring'''
_lowercase : str = self.get_image_processor()
_lowercase : Tuple = self.get_tokenizer()
_lowercase : str = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ )
_lowercase : Any = 'lower newer'
_lowercase : str = self.prepare_image_inputs()
_lowercase : Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 4 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 | 1 |
'''simple docstring'''
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class lowerCamelCase__ ( A ):
'''simple docstring'''
@slow
@require_torch
def __UpperCAmelCase ( self : Any ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' )
_lowercase : Tuple = BertTokenizer.from_pretrained('bert-base-uncased' )
_lowercase : Optional[Any] = bertabert.config.encoder.vocab_size
_lowercase : Optional[Any] = tokenizer.sep_token_id
_lowercase : Any = tokenizer.cls_token_id
_lowercase : Tuple = 128
_lowercase : Any = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' )
_lowercase : Tuple = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' )
_lowercase : Any = train_dataset.select(range(32 ) )
_lowercase : str = val_dataset.select(range(16 ) )
_lowercase : Optional[Any] = 4
def _map_to_encoder_decoder_inputs(UpperCamelCase_ : Dict ):
# Tokenizer will automatically set [BOS] <text> [EOS]
_lowercase : int = tokenizer(batch['article'] , padding='max_length' , truncation=UpperCamelCase_ , max_length=512 )
_lowercase : List[str] = tokenizer(batch['highlights'] , padding='max_length' , truncation=UpperCamelCase_ , max_length=128 )
_lowercase : Dict = inputs.input_ids
_lowercase : str = inputs.attention_mask
_lowercase : List[Any] = outputs.input_ids
_lowercase : Optional[Any] = outputs.input_ids.copy()
_lowercase : Optional[int] = [
[-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels']
]
_lowercase : Any = outputs.attention_mask
assert all(len(UpperCamelCase_ ) == 512 for x in inputs.input_ids )
assert all(len(UpperCamelCase_ ) == 128 for x in outputs.input_ids )
return batch
def _compute_metrics(UpperCamelCase_ : Union[str, Any] ):
_lowercase : int = pred.label_ids
_lowercase : Tuple = pred.predictions
# all unnecessary tokens are removed
_lowercase : Optional[int] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
_lowercase : List[Any] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
_lowercase : Tuple = sum([int(pred_str[i] == label_str[i] ) for i in range(len(UpperCamelCase_ ) )] ) / len(UpperCamelCase_ )
return {"accuracy": accuracy}
# map train dataset
_lowercase : Union[str, Any] = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['article', 'highlights'] , )
train_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
# same for validation dataset
_lowercase : Union[str, Any] = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=UpperCamelCase_ , batch_size=UpperCamelCase_ , remove_columns=['article', 'highlights'] , )
val_dataset.set_format(
type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , )
_lowercase : Dict = self.get_auto_remove_tmp_dir()
_lowercase : Union[str, Any] = SeqaSeqTrainingArguments(
output_dir=UpperCamelCase_ , per_device_train_batch_size=UpperCamelCase_ , per_device_eval_batch_size=UpperCamelCase_ , predict_with_generate=UpperCamelCase_ , evaluation_strategy='steps' , do_train=UpperCamelCase_ , do_eval=UpperCamelCase_ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
_lowercase : List[Any] = SeqaSeqTrainer(
model=UpperCamelCase_ , args=UpperCamelCase_ , compute_metrics=_compute_metrics , train_dataset=UpperCamelCase_ , eval_dataset=UpperCamelCase_ , tokenizer=UpperCamelCase_ , )
# start training
trainer.train()
| 4 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from .tokenization_lxmert import LxmertTokenizer
_A : str ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_A : str ={
'''vocab_file''': {
'''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''',
},
'''tokenizer_file''': {
'''unc-nlp/lxmert-base-uncased''': (
'''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
_A : Any ={
'''unc-nlp/lxmert-base-uncased''': 5_1_2,
}
_A : List[str] ={
'''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True},
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_INIT_CONFIGURATION
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = LxmertTokenizer
def __init__( self : int , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : str="[UNK]" , UpperCamelCase_ : Optional[Any]="[SEP]" , UpperCamelCase_ : List[str]="[PAD]" , UpperCamelCase_ : int="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Optional[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , UpperCamelCase_ ) != tokenize_chinese_chars
):
_lowercase : str = getattr(UpperCamelCase_ , normalizer_state.pop('type' ) )
_lowercase : Dict = do_lower_case
_lowercase : Optional[int] = strip_accents
_lowercase : List[Any] = tokenize_chinese_chars
_lowercase : str = normalizer_class(**UpperCamelCase_ )
_lowercase : Optional[int] = do_lower_case
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict=None ) -> Optional[Any]:
'''simple docstring'''
_lowercase : int = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_lowercase : Union[str, Any] = [self.sep_token_id]
_lowercase : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
_lowercase : str = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 4 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __UpperCamelCase ( _lowercase ) -> None:
_lowercase , _lowercase : List[Any] = analyze_text(_lowercase )
_lowercase : Any = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
_lowercase : Union[str, Any] = sum(single_char_strings.values() )
# one length string
_lowercase : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_lowercase : Any = single_char_strings[ch]
_lowercase : int = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_lowercase : str = sum(two_char_strings.values() )
_lowercase : str = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_lowercase : Optional[Any] = cha + cha
if sequence in two_char_strings:
_lowercase : int = two_char_strings[sequence]
_lowercase : Optional[int] = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]:
_lowercase : Optional[Any] = Counter() # type: ignore
_lowercase : List[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __UpperCamelCase ( ) -> List[Any]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 4 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' )
_lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' )
_lowercase : List[Any] = 'The dog is cute and lives in the garden house'
_lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] )
_lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_lowercase : Tuple = jnp.array(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
_lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state']
self.assertEqual(output.shape , UpperCamelCase_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
| 4 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_A : Union[str, Any] ={'''configuration_timm_backbone''': ['''TimmBackboneConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =['''TimmBackbone''']
if TYPE_CHECKING:
from .configuration_timm_backbone import TimmBackboneConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timm_backbone import TimmBackbone
else:
import sys
_A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A : int =logging.get_logger(__name__)
_A : Union[str, Any] ={
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_vision_model"""
def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Optional[Any] = hidden_size
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : Tuple = patch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = attention_dropout
_lowercase : int = layer_norm_eps
_lowercase : Optional[int] = hidden_act
_lowercase : str = qkv_bias
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_qformer"""
def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : List[Any] = num_attention_heads
_lowercase : Optional[int] = hidden_act
_lowercase : Union[str, Any] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Dict = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = layer_norm_eps
_lowercase : List[str] = position_embedding_type
_lowercase : str = cross_attention_frequency
_lowercase : int = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Optional[int] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip"""
A_ = True
def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
if vision_config is None:
_lowercase : Any = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
_lowercase : List[Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
_lowercase : List[Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
_lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ )
_lowercase : str = self.text_config.tie_word_embeddings
_lowercase : int = self.text_config.is_encoder_decoder
_lowercase : Tuple = num_query_tokens
_lowercase : str = self.vision_config.hidden_size
_lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_lowercase : List[Any] = 1.0
_lowercase : int = 0.02
@classmethod
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : Optional[int] = self.vision_config.to_dict()
_lowercase : Optional[Any] = self.qformer_config.to_dict()
_lowercase : Tuple = self.text_config.to_dict()
_lowercase : Dict = self.__class__.model_type
return output
| 4 | 1 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [10, 20, 30, 40, 50, 60]
_lowercase : Tuple = [2, 4, 6, 8, 10, 12]
_lowercase : Optional[Any] = 100
self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
self.assertRaisesRegex(
UpperCamelCase_ , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_A : List[str] ='''pt'''
elif is_tf_available():
_A : Tuple ='''tf'''
else:
_A : Optional[int] ='''jax'''
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = ByTaTokenizer
A_ = False
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
_lowercase : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
_lowercase : Dict = []
for i in range(len(UpperCamelCase_ ) ):
try:
_lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) )
_lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) )
if max_length is not None and len(UpperCamelCase_ ) > max_length:
_lowercase : List[Any] = toks[:max_length]
if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0:
while len(UpperCamelCase_ ) < min_length:
_lowercase : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Dict = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
if " " not in output_txt and len(UpperCamelCase_ ) > 1:
_lowercase : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ )
)
if with_prefix_space:
_lowercase : Union[str, Any] = ' ' + output_txt
_lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
return output_txt, output_ids
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowercase : List[str] = self.ta_base_tokenizer
_lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
_lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.ta_base_tokenizer
_lowercase : Tuple = 'Unicode โฌ.'
_lowercase : List[Any] = tokenizer(UpperCamelCase_ )
_lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : List[str] = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'Unicode โฌ.</s>' )
_lowercase : Any = tokenizer('e รจ รฉ รช รซ' )
_lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : Tuple = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'e รจ รฉ รช รซ</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e รจ รฉ รช รซ' ) ) , 'e รจ รฉ รช รซ</s>' )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = self.ta_base_tokenizer
_lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
if FRAMEWORK != "jax":
_lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = self.ta_base_tokenizer
_lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , UpperCamelCase_ )
self.assertIn('attention_mask' , UpperCamelCase_ )
self.assertNotIn('decoder_input_ids' , UpperCamelCase_ )
self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.ta_base_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : str = tokenizer(
text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
_lowercase : str = self.ta_base_tokenizer
_lowercase : str = ['A long paragraph for summarization. </s>']
_lowercase : Optional[int] = ['Summary of the text. </s>']
# fmt: off
_lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] )
self.assertEqual(UpperCamelCase_ , batch['labels'][0] )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_lowercase : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[Any] = tempfile.mkdtemp()
_lowercase : Any = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
shutil.rmtree(UpperCamelCase_ )
_lowercase : str = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : int = json.load(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(UpperCamelCase_ )
_lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )]
_lowercase : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : int = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[Any] = tokenizer_class.from_pretrained(
UpperCamelCase_ , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
_lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
_lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Optional[int] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_lowercase : Optional[int] = 0
_lowercase : int = tokenizer.convert_ids_to_tokens(
UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
for attr in attributes_list:
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
| 4 | 1 |
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_A : List[str] ='''\
Text data.
Second line of data.'''
_A : Optional[int] ='''file'''
@pytest.fixture(scope='session' )
def __UpperCamelCase ( _lowercase ) -> Dict:
_lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd')
_lowercase : Union[str, Any] = bytes(_lowercase, 'utf-8' )
with zstd.open(_lowercase, 'wb' ) as f:
f.write(_lowercase )
return path
@pytest.fixture
def __UpperCamelCase ( _lowercase ) -> Any:
with open(os.path.join(tmpfs.local_root_dir, _lowercase ), 'w' ) as f:
f.write(_lowercase )
return FILE_PATH
@pytest.mark.parametrize('compression_format', ['gzip', 'xz', 'zstd'] )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> Any:
_lowercase : Any = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path}
_lowercase : List[Any] = input_paths[compression_format]
_lowercase : Union[str, Any] = tmp_path / 'cache'
_lowercase : Union[str, Any] = DownloadConfig(cache_dir=_lowercase, extract_compressed_file=_lowercase )
_lowercase : Optional[int] = cached_path(_lowercase, download_config=_lowercase )
with open(_lowercase ) as f:
_lowercase : List[str] = f.read()
with open(_lowercase ) as f:
_lowercase : Optional[int] = f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('default_extracted', [True, False] )
@pytest.mark.parametrize('default_cache_dir', [True, False] )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> Tuple:
_lowercase : Optional[Any] = 'custom_cache'
_lowercase : Tuple = 'custom_extracted_dir'
_lowercase : List[str] = tmp_path / 'custom_extracted_path'
if default_extracted:
_lowercase : Union[str, Any] = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted')
else:
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR', _lowercase )
monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH', str(_lowercase ) )
_lowercase : List[Any] = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
_lowercase : List[Any] = xz_file
_lowercase : Any = (
DownloadConfig(extract_compressed_file=_lowercase )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir, extract_compressed_file=_lowercase )
)
_lowercase : Tuple = cached_path(_lowercase, download_config=_lowercase )
assert Path(_lowercase ).parent.parts[-2:] == expected
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
# absolute path
_lowercase : Tuple = str(Path(_lowercase ).resolve() )
assert cached_path(_lowercase ) == text_file
# relative path
_lowercase : Dict = str(Path(_lowercase ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(_lowercase ) == text_file
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
# absolute path
_lowercase : List[Any] = str(tmp_path.resolve() / '__missing_file__.txt' )
with pytest.raises(_lowercase ):
cached_path(_lowercase )
# relative path
_lowercase : Tuple = './__missing_file__.txt'
with pytest.raises(_lowercase ):
cached_path(_lowercase )
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : List[Any] = get_from_cache(f'''tmp://{tmpfs_file}''' )
with open(_lowercase ) as f:
_lowercase : Optional[Any] = f.read()
assert output_file_content == FILE_CONTENT
@patch('datasets.config.HF_DATASETS_OFFLINE', _lowercase )
def __UpperCamelCase ( ) -> Dict:
with pytest.raises(_lowercase ):
cached_path('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE', _lowercase )
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_lowercase ):
http_get('https://huggingface.co', temp_file=_lowercase )
with pytest.raises(_lowercase ):
http_head('https://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE', _lowercase )
def __UpperCamelCase ( _lowercase ) -> Optional[Any]:
_lowercase : str = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_lowercase ):
ftp_get('ftp://huggingface.co', temp_file=_lowercase )
with pytest.raises(_lowercase ):
ftp_head('ftp://huggingface.co' )
@patch('datasets.config.HF_DATASETS_OFFLINE', _lowercase )
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'file.html'
with pytest.raises(_lowercase ):
fsspec_get('s3://huggingface.co', temp_file=_lowercase )
with pytest.raises(_lowercase ):
fsspec_head('s3://huggingface.co' )
| 4 |
'''simple docstring'''
_A : Dict ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
from typing import Any
import requests
_A : int ='''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
_A : int =BASE_URL + '''/user'''
# https://github.com/settings/tokens
_A : List[Any] =os.environ.get('''USER_TOKEN''', '''''')
def __UpperCamelCase ( _lowercase ) -> dict[Any, Any]:
_lowercase : int = {
'Authorization': f'''token {auth_token}''',
'Accept': 'application/vnd.github.v3+json',
}
return requests.get(_lowercase, headers=_lowercase ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(F'''{key}: {value}''')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 4 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : int = torch.exp(_lowercase )
_lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i)
_lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowercase ) - B / A
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_lowercase : int = config.output_attentions
_lowercase : int = config.output_hidden_states
_lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int:
'''simple docstring'''
if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowercase : Optional[Any] = x
else:
_lowercase : Optional[int] = x
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = ()
_lowercase : List[Any] = ()
_lowercase : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowercase : Optional[int] = all_hidden_states + (hidden_states,)
_lowercase : str = layer_module(
UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = layer_outputs[0]
if self.output_attentions:
_lowercase : Tuple = all_attentions + (layer_outputs[1],)
_lowercase : Optional[int] = (hidden_states,)
if self.output_hidden_states:
_lowercase : str = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[int] = current_outputs + (all_attentions,)
_lowercase : List[Any] = self.highway[i](UpperCamelCase_ )
# logits, pooled_output
if not self.training:
_lowercase : Dict = highway_exit[0]
_lowercase : Tuple = entropy(UpperCamelCase_ )
_lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowercase : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCamelCase_ , i + 1 )
else:
_lowercase : Optional[int] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowercase : str = all_hidden_states + (hidden_states,)
_lowercase : Optional[Any] = (hidden_states,)
if self.output_hidden_states:
_lowercase : Dict = outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[Any] = outputs + (all_attentions,)
_lowercase : Optional[int] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : int = config
_lowercase : int = BertEmbeddings(UpperCamelCase_ )
_lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ )
_lowercase : Any = BertPooler(UpperCamelCase_ )
self.init_weights()
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.embeddings.word_embeddings
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = value
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ )
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_lowercase : Any = input_ids.size()
elif inputs_embeds is not None:
_lowercase : Any = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if encoder_attention_mask is None:
_lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if token_type_ids is None:
_lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowercase : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowercase : int = encoder_attention_mask[:, None, None, :]
_lowercase : str = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers )
_lowercase : Dict = self.embeddings(
input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ )
_lowercase : List[Any] = self.encoder(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )
_lowercase : int = encoder_outputs[0]
_lowercase : str = self.pooler(UpperCamelCase_ )
_lowercase : List[Any] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = message
_lowercase : Dict = exit_layer # start from 1!
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
super().__init__()
_lowercase : Optional[Any] = BertPooler(UpperCamelCase_ )
_lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowercase : int = nn.Linear(config.hidden_size , config.num_labels )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
_lowercase : str = encoder_outputs[0]
_lowercase : int = self.pooler(UpperCamelCase_ )
# "return" pooler_output
# BertModel
_lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowercase : Dict = bmodel_output[1]
_lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ )
_lowercase : str = self.classifier(UpperCamelCase_ )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : Dict = config.num_labels
_lowercase : Any = config.num_hidden_layers
_lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ )
_lowercase : Any = nn.Dropout(config.hidden_dropout_prob )
_lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = self.num_layers
try:
_lowercase : Tuple = self.bert(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowercase : List[Any] = outputs[1]
_lowercase : int = self.dropout(UpperCamelCase_ )
_lowercase : Optional[int] = self.classifier(UpperCamelCase_ )
_lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowercase : Union[str, Any] = e.message
_lowercase : Any = e.exit_layer
_lowercase : Optional[int] = outputs[0]
if not self.training:
_lowercase : Union[str, Any] = entropy(UpperCamelCase_ )
_lowercase : Tuple = []
_lowercase : Tuple = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowercase : Tuple = MSELoss()
_lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Union[str, Any] = CrossEntropyLoss()
_lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowercase : Optional[Any] = []
for highway_exit in outputs[-1]:
_lowercase : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCamelCase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowercase : Union[str, Any] = MSELoss()
_lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Dict = CrossEntropyLoss()
_lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCamelCase_ )
if train_highway:
_lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowercase : Optional[Any] = (loss,) + outputs
if not self.training:
_lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowercase : Dict = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
def __UpperCamelCase ( _lowercase ) -> int:
if not nums:
return 0
_lowercase : Tuple = nums[0]
_lowercase : Optional[int] = 0
for num in nums[1:]:
_lowercase , _lowercase : int = (
max_excluding + num,
max(_lowercase, _lowercase ),
)
return max(_lowercase, _lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [10, 20, 30, 40, 50, 60]
_lowercase : Tuple = [2, 4, 6, 8, 10, 12]
_lowercase : Optional[Any] = 100
self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
self.assertRaisesRegex(
UpperCamelCase_ , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_A : Dict =logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""pixel_values"""]
def __init__( self : Tuple , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 255 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Union[str, Any] , ) -> None:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Union[str, Any] = size if size is not None else {'shortest_edge': 224}
_lowercase : str = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
_lowercase : List[str] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
_lowercase : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ , param_name='crop_size' )
_lowercase : List[str] = do_resize
_lowercase : int = size
_lowercase : int = resample
_lowercase : Union[str, Any] = do_center_crop
_lowercase : Optional[int] = crop_size
_lowercase : Optional[int] = do_rescale
_lowercase : List[str] = rescale_factor
_lowercase : Optional[Any] = do_normalize
_lowercase : Union[str, Any] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_lowercase : Any = image_std if image_std is not None else OPENAI_CLIP_STD
_lowercase : List[Any] = do_convert_rgb
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : int , ) -> np.ndarray:
'''simple docstring'''
_lowercase : Dict = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_lowercase : Optional[Any] = get_resize_output_image_size(UpperCamelCase_ , size=size['shortest_edge'] , default_to_square=UpperCamelCase_ )
return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[Any] = get_size_dict(UpperCamelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase_ , size=(size['height'], size['width']) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : int , ) -> List[str]:
'''simple docstring'''
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Optional[int] , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : int = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_ : Optional[int] , ) -> PIL.Image.Image:
'''simple docstring'''
_lowercase : Union[str, Any] = do_resize if do_resize is not None else self.do_resize
_lowercase : Tuple = size if size is not None else self.size
_lowercase : Tuple = get_size_dict(UpperCamelCase_ , param_name='size' , default_to_square=UpperCamelCase_ )
_lowercase : Dict = resample if resample is not None else self.resample
_lowercase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size
_lowercase : Optional[int] = get_size_dict(UpperCamelCase_ , param_name='crop_size' , default_to_square=UpperCamelCase_ )
_lowercase : Any = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : Any = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : Any = image_mean if image_mean is not None else self.image_mean
_lowercase : Optional[Any] = image_std if image_std is not None else self.image_std
_lowercase : Optional[int] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_lowercase : int = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_lowercase : Optional[Any] = [convert_to_rgb(UpperCamelCase_ ) for image in images]
# All transformations expect numpy arrays.
_lowercase : Optional[Any] = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
_lowercase : List[str] = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_center_crop:
_lowercase : Optional[int] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
if do_rescale:
_lowercase : str = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
_lowercase : Dict = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
_lowercase : List[str] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
_lowercase : int = {'pixel_values': images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Tuple =['''XLNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =['''XLNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLNetForMultipleChoice''',
'''XLNetForQuestionAnswering''',
'''XLNetForQuestionAnsweringSimple''',
'''XLNetForSequenceClassification''',
'''XLNetForTokenClassification''',
'''XLNetLMHeadModel''',
'''XLNetModel''',
'''XLNetPreTrainedModel''',
'''load_tf_weights_in_xlnet''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLNetForMultipleChoice''',
'''TFXLNetForQuestionAnsweringSimple''',
'''TFXLNetForSequenceClassification''',
'''TFXLNetForTokenClassification''',
'''TFXLNetLMHeadModel''',
'''TFXLNetMainLayer''',
'''TFXLNetModel''',
'''TFXLNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
_A : List[str] =logging.get_logger(__name__)
if is_vision_available():
import PIL
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""pixel_values"""]
def __init__( self : List[str] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 255 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Dict , ) -> None:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Any = size if size is not None else {'shortest_edge': 224}
_lowercase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
_lowercase : Union[str, Any] = crop_size if crop_size is not None else {'height': 224, 'width': 224}
_lowercase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ , param_name='crop_size' )
_lowercase : Optional[Any] = do_resize
_lowercase : Dict = size
_lowercase : Any = resample
_lowercase : Tuple = do_center_crop
_lowercase : Dict = crop_size
_lowercase : Tuple = do_rescale
_lowercase : Tuple = rescale_factor
_lowercase : Tuple = do_normalize
_lowercase : str = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
_lowercase : Tuple = image_std if image_std is not None else OPENAI_CLIP_STD
_lowercase : Union[str, Any] = do_convert_rgb
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Dict , ) -> np.ndarray:
'''simple docstring'''
_lowercase : Dict = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
_lowercase : Any = get_resize_output_image_size(UpperCamelCase_ , size=size['shortest_edge'] , default_to_square=UpperCamelCase_ )
return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ) -> np.ndarray:
'''simple docstring'''
_lowercase : Any = get_size_dict(UpperCamelCase_ )
if "height" not in size or "width" not in size:
raise ValueError(F'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' )
return center_crop(UpperCamelCase_ , size=(size['height'], size['width']) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : List[str] , ) -> int:
'''simple docstring'''
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Tuple , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : int = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[ChannelDimension] = ChannelDimension.FIRST , **UpperCamelCase_ : Optional[Any] , ) -> PIL.Image.Image:
'''simple docstring'''
_lowercase : Dict = do_resize if do_resize is not None else self.do_resize
_lowercase : Tuple = size if size is not None else self.size
_lowercase : List[str] = get_size_dict(UpperCamelCase_ , param_name='size' , default_to_square=UpperCamelCase_ )
_lowercase : Any = resample if resample is not None else self.resample
_lowercase : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop
_lowercase : Tuple = crop_size if crop_size is not None else self.crop_size
_lowercase : Any = get_size_dict(UpperCamelCase_ , param_name='crop_size' , default_to_square=UpperCamelCase_ )
_lowercase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : List[str] = image_mean if image_mean is not None else self.image_mean
_lowercase : Tuple = image_std if image_std is not None else self.image_std
_lowercase : Dict = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
_lowercase : int = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None:
raise ValueError('Size must be specified if do_resize is True.' )
if do_center_crop and crop_size is None:
raise ValueError('Crop size must be specified if do_center_crop is True.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
_lowercase : int = [convert_to_rgb(UpperCamelCase_ ) for image in images]
# All transformations expect numpy arrays.
_lowercase : Any = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
_lowercase : Optional[Any] = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_center_crop:
_lowercase : List[Any] = [self.center_crop(image=UpperCamelCase_ , size=UpperCamelCase_ ) for image in images]
if do_rescale:
_lowercase : Optional[Any] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
_lowercase : List[str] = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
_lowercase : int = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
_lowercase : Union[str, Any] = {'pixel_values': images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """markuplm"""
def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[Any] = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : List[Any] = type_vocab_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Optional[int] = layer_norm_eps
_lowercase : Optional[Any] = position_embedding_type
_lowercase : str = use_cache
_lowercase : str = classifier_dropout
# additional properties
_lowercase : int = max_depth
_lowercase : Dict = max_xpath_tag_unit_embeddings
_lowercase : str = max_xpath_subs_unit_embeddings
_lowercase : List[str] = tag_pad_id
_lowercase : Optional[int] = subs_pad_id
_lowercase : Any = xpath_unit_hidden_size
| 4 | 1 |
'''simple docstring'''
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
_lowercase : int = 384
_lowercase : Union[str, Any] = 7
if "tiny" in model_name:
_lowercase : Optional[Any] = 96
_lowercase : Dict = (2, 2, 6, 2)
_lowercase : Dict = (3, 6, 12, 24)
elif "small" in model_name:
_lowercase : Union[str, Any] = 96
_lowercase : Dict = (2, 2, 18, 2)
_lowercase : Dict = (3, 6, 12, 24)
elif "base" in model_name:
_lowercase : Any = 128
_lowercase : Optional[Any] = (2, 2, 18, 2)
_lowercase : str = (4, 8, 16, 32)
_lowercase : List[Any] = 12
_lowercase : Any = 512
elif "large" in model_name:
_lowercase : List[str] = 192
_lowercase : List[Any] = (2, 2, 18, 2)
_lowercase : Union[str, Any] = (6, 12, 24, 48)
_lowercase : int = 12
_lowercase : int = 768
# set label information
_lowercase : List[Any] = 150
_lowercase : List[str] = 'huggingface/label-files'
_lowercase : str = 'ade20k-id2label.json'
_lowercase : List[Any] = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type='dataset' ), 'r' ) )
_lowercase : Optional[Any] = {int(_lowercase ): v for k, v in idalabel.items()}
_lowercase : str = {v: k for k, v in idalabel.items()}
_lowercase : Optional[Any] = SwinConfig(
embed_dim=_lowercase, depths=_lowercase, num_heads=_lowercase, window_size=_lowercase, out_features=['stage1', 'stage2', 'stage3', 'stage4'], )
_lowercase : Tuple = UperNetConfig(
backbone_config=_lowercase, auxiliary_in_channels=_lowercase, num_labels=_lowercase, idalabel=_lowercase, labelaid=_lowercase, )
return config
def __UpperCamelCase ( _lowercase ) -> int:
_lowercase : Any = []
# fmt: off
# stem
rename_keys.append(('backbone.patch_embed.projection.weight', 'backbone.embeddings.patch_embeddings.projection.weight') )
rename_keys.append(('backbone.patch_embed.projection.bias', 'backbone.embeddings.patch_embeddings.projection.bias') )
rename_keys.append(('backbone.patch_embed.norm.weight', 'backbone.embeddings.norm.weight') )
rename_keys.append(('backbone.patch_embed.norm.bias', 'backbone.embeddings.norm.bias') )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') )
rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') )
if i < 3:
rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') )
rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') )
rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') )
rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') )
# decode head
rename_keys.extend(
[
('decode_head.conv_seg.weight', 'decode_head.classifier.weight'),
('decode_head.conv_seg.bias', 'decode_head.classifier.bias'),
('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'),
('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'),
] )
# fmt: on
return rename_keys
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[Any]:
_lowercase : Optional[int] = dct.pop(_lowercase )
_lowercase : List[str] = val
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[int] = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )]
for i in range(len(backbone_config.depths ) ):
_lowercase : Dict = num_features[i]
for j in range(backbone_config.depths[i] ):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
_lowercase : Optional[int] = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' )
_lowercase : str = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_lowercase : Dict = in_proj_weight[:dim, :]
_lowercase : List[str] = in_proj_bias[: dim]
_lowercase : Dict = in_proj_weight[
dim : dim * 2, :
]
_lowercase : List[Any] = in_proj_bias[
dim : dim * 2
]
_lowercase : Optional[int] = in_proj_weight[
-dim :, :
]
_lowercase : int = in_proj_bias[-dim :]
# fmt: on
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase , _lowercase : Dict = x.shape
_lowercase : Dict = x.reshape(_lowercase, 4, in_channel // 4 )
_lowercase : Optional[Any] = x[:, [0, 2, 1, 3], :].transpose(1, 2 ).reshape(_lowercase, _lowercase )
return x
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase , _lowercase : Optional[int] = x.shape
_lowercase : Optional[Any] = x.reshape(_lowercase, in_channel // 4, 4 )
_lowercase : str = x[:, :, [0, 2, 1, 3]].transpose(1, 2 ).reshape(_lowercase, _lowercase )
return x
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : str = x.shape[0]
_lowercase : List[Any] = x.reshape(4, in_channel // 4 )
_lowercase : Union[str, Any] = x[[0, 2, 1, 3], :].transpose(0, 1 ).reshape(_lowercase )
return x
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Dict = x.shape[0]
_lowercase : Any = x.reshape(in_channel // 4, 4 )
_lowercase : List[str] = x[:, [0, 2, 1, 3]].transpose(0, 1 ).reshape(_lowercase )
return x
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = {
'upernet-swin-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth',
'upernet-swin-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth',
'upernet-swin-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth',
'upernet-swin-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth',
}
_lowercase : Dict = model_name_to_url[model_name]
_lowercase : Any = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu', file_name=_lowercase )[
'state_dict'
]
for name, param in state_dict.items():
print(_lowercase, param.shape )
_lowercase : str = get_upernet_config(_lowercase )
_lowercase : List[Any] = UperNetForSemanticSegmentation(_lowercase )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
_lowercase : Tuple = state_dict.pop(_lowercase )
if "bn" in key:
_lowercase : str = key.replace('bn', 'batch_norm' )
_lowercase : Union[str, Any] = val
# rename keys
_lowercase : str = create_rename_keys(_lowercase )
for src, dest in rename_keys:
rename_key(_lowercase, _lowercase, _lowercase )
read_in_q_k_v(_lowercase, config.backbone_config )
# fix downsample parameters
for key, value in state_dict.items():
if "downsample" in key:
if "reduction" in key:
_lowercase : Any = reverse_correct_unfold_reduction_order(_lowercase )
if "norm" in key:
_lowercase : Tuple = reverse_correct_unfold_norm_order(_lowercase )
model.load_state_dict(_lowercase )
# verify on image
_lowercase : List[str] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg'
_lowercase : List[Any] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : str = SegformerImageProcessor()
_lowercase : Optional[int] = processor(_lowercase, return_tensors='pt' ).pixel_values
with torch.no_grad():
_lowercase : str = model(_lowercase )
_lowercase : Tuple = outputs.logits
print(logits.shape )
print('First values of logits:', logits[0, 0, :3, :3] )
# assert values
if model_name == "upernet-swin-tiny":
_lowercase : Dict = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] )
elif model_name == "upernet-swin-small":
_lowercase : Union[str, Any] = torch.tensor(
[[-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.1_9_2_1, -7.1_9_2_1, -6.9_5_3_2], [-7.0_9_0_8, -7.0_9_0_8, -6.8_5_3_4]] )
elif model_name == "upernet-swin-base":
_lowercase : int = torch.tensor(
[[-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.5_8_5_1, -6.5_8_5_1, -6.4_3_3_0], [-6.4_7_6_3, -6.4_7_6_3, -6.3_2_5_4]] )
elif model_name == "upernet-swin-large":
_lowercase : Any = torch.tensor(
[[-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.5_2_9_7, -7.5_2_9_7, -7.3_8_0_2], [-7.4_0_4_4, -7.4_0_4_4, -7.2_5_8_6]] )
print('Logits:', outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], _lowercase, atol=1E-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
print(f'''Pushing model and processor for {model_name} to hub''' )
model.push_to_hub(f'''openmmlab/{model_name}''' )
processor.push_to_hub(f'''openmmlab/{model_name}''' )
if __name__ == "__main__":
_A : Optional[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''upernet-swin-tiny''',
type=str,
choices=[F'''upernet-swin-{size}''' for size in ['''tiny''', '''small''', '''base''', '''large''']],
help='''Name of the Swin + UperNet model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the ๐ค hub.'''
)
_A : Optional[Any] =parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : int=2 , UpperCamelCase_ : List[Any]=8 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : int=True , UpperCamelCase_ : Any=99 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : Optional[Any]=5 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : Optional[int]=36 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : Any = parent
_lowercase : Tuple = batch_size
_lowercase : Dict = seq_length
_lowercase : str = is_training
_lowercase : Tuple = use_input_mask
_lowercase : int = use_token_type_ids
_lowercase : str = use_labels
_lowercase : Any = vocab_size
_lowercase : Tuple = hidden_size
_lowercase : Optional[Any] = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : int = intermediate_size
_lowercase : int = hidden_act
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Any = attention_probs_dropout_prob
_lowercase : int = max_position_embeddings
_lowercase : Optional[Any] = type_vocab_size
_lowercase : Dict = type_sequence_label_size
_lowercase : Tuple = initializer_range
_lowercase : str = num_labels
_lowercase : str = num_choices
_lowercase : Optional[int] = scope
def __UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
_lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_input_mask:
_lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Tuple = None
_lowercase : Tuple = None
_lowercase : Any = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : List[Any] = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
return MraConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : List[str] = self.get_config()
_lowercase : Optional[int] = 300
return config
def __UpperCAmelCase ( self : Any ) -> Any:
'''simple docstring'''
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : Any = self.prepare_config_and_inputs()
_lowercase : Union[str, Any] = True
_lowercase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def __UpperCAmelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Any = MraModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
_lowercase : Optional[int] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
_lowercase : Tuple = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = True
_lowercase : Union[str, Any] = MraModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Optional[Any] = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )
_lowercase : Optional[Any] = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , )
_lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = MraForMaskedLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
_lowercase : Union[str, Any] = MraForQuestionAnswering(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Union[str, Any] = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> List[str]:
'''simple docstring'''
_lowercase : Union[str, Any] = self.num_labels
_lowercase : Dict = MraForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Optional[int] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int ) -> Optional[int]:
'''simple docstring'''
_lowercase : Dict = self.num_labels
_lowercase : int = MraForTokenClassification(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = self.num_choices
_lowercase : int = MraForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : Dict = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
_lowercase : Tuple = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
_lowercase : int = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : str = config_and_inputs
_lowercase : List[str] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
A_ = False
A_ = False
A_ = False
A_ = False
A_ = ()
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
_lowercase : Tuple = MraModelTester(self )
_lowercase : Optional[int] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 )
def __UpperCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
_lowercase : Optional[int] = type
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_lowercase : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> List[Any]:
'''simple docstring'''
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> str:
'''simple docstring'''
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> str:
'''simple docstring'''
_lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = MraModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@unittest.skip(reason='MRA does not output attentions' )
def __UpperCAmelCase ( self : Optional[Any] ) -> str:
'''simple docstring'''
return
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = MraModel.from_pretrained('uw-madison/mra-base-512-4' )
_lowercase : Optional[Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowercase : str = model(UpperCamelCase_ )[0]
_lowercase : str = torch.Size((1, 256, 768) )
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : List[Any] = torch.tensor(
[[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
_lowercase : Optional[int] = MraForMaskedLM.from_pretrained('uw-madison/mra-base-512-4' )
_lowercase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 )
with torch.no_grad():
_lowercase : Union[str, Any] = model(UpperCamelCase_ )[0]
_lowercase : int = 5_0265
_lowercase : Optional[int] = torch.Size((1, 256, vocab_size) )
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : Dict = torch.tensor(
[[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
@slow
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Union[str, Any] = MraForMaskedLM.from_pretrained('uw-madison/mra-base-4096-8-d3' )
_lowercase : Optional[int] = torch.arange(4096 ).unsqueeze(0 )
with torch.no_grad():
_lowercase : List[str] = model(UpperCamelCase_ )[0]
_lowercase : Optional[Any] = 5_0265
_lowercase : Dict = torch.Size((1, 4096, vocab_size) )
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = torch.tensor(
[[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_A : Union[str, Any] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> None:
'''simple docstring'''
warnings.warn(
'The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'
' use YolosImageProcessor instead.' , UpperCamelCase_ , )
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
| 4 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 | 1 |
'''simple docstring'''
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Tuple =logging.get_logger(__name__)
_A : Dict ={
'''microsoft/unispeech-sat-base-100h-libri-ft''': (
'''https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'''
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """unispeech-sat"""
def __init__( self : List[Any] , UpperCamelCase_ : Any=32 , UpperCamelCase_ : List[Any]=768 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : Optional[int]=3072 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : str=1E-5 , UpperCamelCase_ : Dict="group" , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Dict=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase_ : Optional[Any]=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase_ : Tuple=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase_ : Optional[Any]=False , UpperCamelCase_ : List[Any]=128 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : str=True , UpperCamelCase_ : Optional[int]=0.05 , UpperCamelCase_ : List[Any]=10 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Optional[int]=10 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[Any]=320 , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : List[Any]=100 , UpperCamelCase_ : int=256 , UpperCamelCase_ : Tuple=256 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Tuple="mean" , UpperCamelCase_ : int=False , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : List[Any]=256 , UpperCamelCase_ : List[Any]=(512, 512, 512, 512, 1500) , UpperCamelCase_ : Optional[int]=(5, 3, 3, 1, 1) , UpperCamelCase_ : Optional[Any]=(1, 2, 3, 1, 1) , UpperCamelCase_ : List[Any]=512 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Dict=1 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=504 , **UpperCamelCase_ : int , ) -> List[Any]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ )
_lowercase : int = hidden_size
_lowercase : Union[str, Any] = feat_extract_norm
_lowercase : Union[str, Any] = feat_extract_activation
_lowercase : Optional[Any] = list(UpperCamelCase_ )
_lowercase : Optional[int] = list(UpperCamelCase_ )
_lowercase : Dict = list(UpperCamelCase_ )
_lowercase : Tuple = conv_bias
_lowercase : Dict = num_conv_pos_embeddings
_lowercase : List[Any] = num_conv_pos_embedding_groups
_lowercase : List[Any] = len(self.conv_dim )
_lowercase : List[str] = num_hidden_layers
_lowercase : List[Any] = intermediate_size
_lowercase : List[Any] = hidden_act
_lowercase : int = num_attention_heads
_lowercase : Dict = hidden_dropout
_lowercase : Optional[Any] = attention_dropout
_lowercase : List[str] = activation_dropout
_lowercase : List[Any] = feat_proj_dropout
_lowercase : Optional[int] = final_dropout
_lowercase : List[str] = layerdrop
_lowercase : Optional[Any] = layer_norm_eps
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = vocab_size
_lowercase : List[str] = num_clusters
_lowercase : Tuple = do_stable_layer_norm
_lowercase : Any = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
_lowercase : Tuple = apply_spec_augment
_lowercase : List[str] = mask_time_prob
_lowercase : List[str] = mask_time_length
_lowercase : Dict = mask_time_min_masks
_lowercase : List[str] = mask_feature_prob
_lowercase : Optional[int] = mask_feature_length
_lowercase : Tuple = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
_lowercase : List[Any] = num_codevectors_per_group
_lowercase : Optional[int] = num_codevector_groups
_lowercase : str = contrastive_logits_temperature
_lowercase : Union[str, Any] = feat_quantizer_dropout
_lowercase : Tuple = num_negatives
_lowercase : Dict = codevector_dim
_lowercase : Tuple = proj_codevector_dim
_lowercase : Optional[int] = diversity_loss_weight
# ctc loss
_lowercase : List[Any] = ctc_loss_reduction
_lowercase : Dict = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
_lowercase : Any = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
_lowercase : Union[str, Any] = list(UpperCamelCase_ )
_lowercase : str = list(UpperCamelCase_ )
_lowercase : Tuple = list(UpperCamelCase_ )
_lowercase : Optional[Any] = xvector_output_dim
@property
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Dict =['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] =['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
import argparse
import csv
import logging
import os
import random
import numpy as np
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset
from tqdm import tqdm, trange
from transformers import (
CONFIG_NAME,
WEIGHTS_NAME,
AdamW,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTTokenizer,
get_linear_schedule_with_warmup,
)
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO
)
_A : str =logging.getLogger(__name__)
def __UpperCamelCase ( _lowercase, _lowercase ) -> int:
_lowercase : Any = np.argmax(_lowercase, axis=1 )
return np.sum(outputs == labels )
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
with open(_lowercase, encoding='utf_8' ) as f:
_lowercase : List[str] = csv.reader(_lowercase )
_lowercase : Tuple = []
next(_lowercase ) # skip the first line
for line in tqdm(_lowercase ):
output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) )
return output
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> Dict:
_lowercase : Any = []
for dataset in encoded_datasets:
_lowercase : int = len(_lowercase )
_lowercase : List[str] = np.zeros((n_batch, 2, input_len), dtype=np.intaa )
_lowercase : Optional[int] = np.zeros((n_batch, 2), dtype=np.intaa )
_lowercase : str = np.full((n_batch, 2, input_len), fill_value=-100, dtype=np.intaa )
_lowercase : Any = np.zeros((n_batch,), dtype=np.intaa )
for (
i,
(story, conta, conta, mc_label),
) in enumerate(_lowercase ):
_lowercase : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_lowercase : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token]
_lowercase : Optional[int] = with_conta
_lowercase : List[Any] = with_conta
_lowercase : Optional[int] = len(_lowercase ) - 1
_lowercase : Optional[Any] = len(_lowercase ) - 1
_lowercase : List[Any] = with_conta
_lowercase : Tuple = with_conta
_lowercase : Any = mc_label
_lowercase : List[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels)
tensor_datasets.append(tuple(torch.tensor(_lowercase ) for t in all_inputs ) )
return tensor_datasets
def __UpperCamelCase ( ) -> List[Any]:
_lowercase : Tuple = argparse.ArgumentParser()
parser.add_argument('--model_name', type=_lowercase, default='openai-gpt', help='pretrained model name' )
parser.add_argument('--do_train', action='store_true', help='Whether to run training.' )
parser.add_argument('--do_eval', action='store_true', help='Whether to run eval on the dev set.' )
parser.add_argument(
'--output_dir', default=_lowercase, type=_lowercase, required=_lowercase, help='The output directory where the model predictions and checkpoints will be written.', )
parser.add_argument('--train_dataset', type=_lowercase, default='' )
parser.add_argument('--eval_dataset', type=_lowercase, default='' )
parser.add_argument('--seed', type=_lowercase, default=42 )
parser.add_argument('--num_train_epochs', type=_lowercase, default=3 )
parser.add_argument('--train_batch_size', type=_lowercase, default=8 )
parser.add_argument('--eval_batch_size', type=_lowercase, default=16 )
parser.add_argument('--adam_epsilon', default=1E-8, type=_lowercase, help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm', type=_lowercase, default=1 )
parser.add_argument(
'--max_steps', default=-1, type=_lowercase, help=(
'If > 0: set total number of training steps to perform. Override num_train_epochs.'
), )
parser.add_argument(
'--gradient_accumulation_steps', type=_lowercase, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.', )
parser.add_argument('--learning_rate', type=_lowercase, default=6.2_5E-5 )
parser.add_argument('--warmup_steps', default=0, type=_lowercase, help='Linear warmup over warmup_steps.' )
parser.add_argument('--lr_schedule', type=_lowercase, default='warmup_linear' )
parser.add_argument('--weight_decay', type=_lowercase, default=0.0_1 )
parser.add_argument('--lm_coef', type=_lowercase, default=0.9 )
parser.add_argument('--n_valid', type=_lowercase, default=374 )
parser.add_argument('--server_ip', type=_lowercase, default='', help='Can be used for distant debugging.' )
parser.add_argument('--server_port', type=_lowercase, default='', help='Can be used for distant debugging.' )
_lowercase : Dict = parser.parse_args()
print(_lowercase )
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=_lowercase )
ptvsd.wait_for_attach()
random.seed(args.seed )
np.random.seed(args.seed )
torch.manual_seed(args.seed )
torch.cuda.manual_seed_all(args.seed )
_lowercase : int = torch.device('cuda' if torch.cuda.is_available() else 'cpu' )
_lowercase : Union[str, Any] = torch.cuda.device_count()
logger.info('device: {}, n_gpu {}'.format(_lowercase, _lowercase ) )
if not args.do_train and not args.do_eval:
raise ValueError('At least one of `do_train` or `do_eval` must be True.' )
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
# Load tokenizer and model
# This loading functions also add new tokens and embeddings called `special tokens`
# These new embeddings will be fine-tuned on the RocStories dataset
_lowercase : Union[str, Any] = ['_start_', '_delimiter_', '_classify_']
_lowercase : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name )
tokenizer.add_tokens(_lowercase )
_lowercase : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase )
_lowercase : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name )
model.resize_token_embeddings(len(_lowercase ) )
model.to(_lowercase )
# Load and encode the datasets
def tokenize_and_encode(_lowercase ):
if isinstance(_lowercase, _lowercase ):
return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(_lowercase ) )
elif isinstance(_lowercase, _lowercase ):
return obj
return [tokenize_and_encode(_lowercase ) for o in obj]
logger.info('Encoding dataset...' )
_lowercase : Any = load_rocstories_dataset(args.train_dataset )
_lowercase : List[str] = load_rocstories_dataset(args.eval_dataset )
_lowercase : Dict = (train_dataset, eval_dataset)
_lowercase : Optional[int] = tokenize_and_encode(_lowercase )
# Compute the max input length for the Transformer
_lowercase : Optional[Any] = model.config.n_positions // 2 - 2
_lowercase : List[Any] = max(
len(story[:max_length] ) + max(len(conta[:max_length] ), len(conta[:max_length] ) ) + 3
for dataset in encoded_datasets
for story, conta, conta, _ in dataset )
_lowercase : List[str] = min(_lowercase, model.config.n_positions ) # Max size of input for the pre-trained model
# Prepare inputs tensors and dataloaders
_lowercase : Optional[int] = pre_process_datasets(_lowercase, _lowercase, _lowercase, *_lowercase )
_lowercase , _lowercase : Union[str, Any] = tensor_datasets[0], tensor_datasets[1]
_lowercase : Any = TensorDataset(*_lowercase )
_lowercase : Optional[Any] = RandomSampler(_lowercase )
_lowercase : Union[str, Any] = DataLoader(_lowercase, sampler=_lowercase, batch_size=args.train_batch_size )
_lowercase : Optional[int] = TensorDataset(*_lowercase )
_lowercase : List[Any] = SequentialSampler(_lowercase )
_lowercase : Optional[Any] = DataLoader(_lowercase, sampler=_lowercase, batch_size=args.eval_batch_size )
# Prepare optimizer
if args.do_train:
if args.max_steps > 0:
_lowercase : Tuple = args.max_steps
_lowercase : List[str] = args.max_steps // (len(_lowercase ) // args.gradient_accumulation_steps) + 1
else:
_lowercase : Dict = len(_lowercase ) // args.gradient_accumulation_steps * args.num_train_epochs
_lowercase : Optional[int] = list(model.named_parameters() )
_lowercase : Any = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
_lowercase : Tuple = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )],
'weight_decay': args.weight_decay,
},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0},
]
_lowercase : Tuple = AdamW(_lowercase, lr=args.learning_rate, eps=args.adam_epsilon )
_lowercase : Optional[int] = get_linear_schedule_with_warmup(
_lowercase, num_warmup_steps=args.warmup_steps, num_training_steps=_lowercase )
if args.do_train:
_lowercase , _lowercase , _lowercase : int = 0, 0, None
model.train()
for _ in trange(int(args.num_train_epochs ), desc='Epoch' ):
_lowercase : Optional[Any] = 0
_lowercase : Union[str, Any] = 0
_lowercase : Dict = tqdm(_lowercase, desc='Training' )
for step, batch in enumerate(_lowercase ):
_lowercase : Dict = tuple(t.to(_lowercase ) for t in batch )
_lowercase , _lowercase , _lowercase , _lowercase : Dict = batch
_lowercase : Optional[Any] = model(_lowercase, mc_token_ids=_lowercase, lm_labels=_lowercase, mc_labels=_lowercase )
_lowercase : Any = args.lm_coef * losses[0] + losses[1]
loss.backward()
optimizer.step()
scheduler.step()
optimizer.zero_grad()
tr_loss += loss.item()
_lowercase : str = (
loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item()
)
nb_tr_steps += 1
_lowercase : Dict = 'Training loss: {:.2e} lr: {:.2e}'.format(_lowercase, scheduler.get_lr()[0] )
# Save a trained model
if args.do_train:
# Save a trained model, configuration and tokenizer
_lowercase : List[str] = model.module if hasattr(_lowercase, 'module' ) else model # Only save the model itself
# If we save using the predefined names, we can load using `from_pretrained`
_lowercase : Optional[int] = os.path.join(args.output_dir, _lowercase )
_lowercase : List[Any] = os.path.join(args.output_dir, _lowercase )
torch.save(model_to_save.state_dict(), _lowercase )
model_to_save.config.to_json_file(_lowercase )
tokenizer.save_vocabulary(args.output_dir )
# Load a trained model and vocabulary that you have fine-tuned
_lowercase : List[str] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir )
_lowercase : Dict = OpenAIGPTTokenizer.from_pretrained(args.output_dir )
model.to(_lowercase )
if args.do_eval:
model.eval()
_lowercase , _lowercase : List[Any] = 0, 0
_lowercase , _lowercase : List[str] = 0, 0
for batch in tqdm(_lowercase, desc='Evaluating' ):
_lowercase : str = tuple(t.to(_lowercase ) for t in batch )
_lowercase , _lowercase , _lowercase , _lowercase : Any = batch
with torch.no_grad():
_lowercase , _lowercase , _lowercase , _lowercase : Tuple = model(
_lowercase, mc_token_ids=_lowercase, lm_labels=_lowercase, mc_labels=_lowercase )
_lowercase : List[str] = mc_logits.detach().cpu().numpy()
_lowercase : Any = mc_labels.to('cpu' ).numpy()
_lowercase : int = accuracy(_lowercase, _lowercase )
eval_loss += mc_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
nb_eval_examples += input_ids.size(0 )
nb_eval_steps += 1
_lowercase : Tuple = eval_loss / nb_eval_steps
_lowercase : Optional[int] = eval_accuracy / nb_eval_examples
_lowercase : Tuple = tr_loss / nb_tr_steps if args.do_train else None
_lowercase : List[Any] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss}
_lowercase : Optional[Any] = os.path.join(args.output_dir, 'eval_results.txt' )
with open(_lowercase, 'w' ) as writer:
logger.info('***** Eval results *****' )
for key in sorted(result.keys() ):
logger.info(' %s = %s', _lowercase, str(result[key] ) )
writer.write('%s = %s\n' % (key, str(result[key] )) )
if __name__ == "__main__":
main()
| 4 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import os
from collections.abc import Mapping
_A : str =tuple[int, int]
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : List[Any] , UpperCamelCase_ : set[int] , UpperCamelCase_ : Mapping[EdgeT, int] ) -> None:
'''simple docstring'''
_lowercase : set[int] = vertices
_lowercase : dict[EdgeT, int] = {
(min(UpperCamelCase_ ), max(UpperCamelCase_ )): weight for edge, weight in edges.items()
}
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : EdgeT , UpperCamelCase_ : int ) -> None:
'''simple docstring'''
self.vertices.add(edge[0] )
self.vertices.add(edge[1] )
_lowercase : List[Any] = weight
def __UpperCAmelCase ( self : Any ) -> Graph:
'''simple docstring'''
_lowercase : Graph = Graph({min(self.vertices )} , {} )
_lowercase : EdgeT
_lowercase : int
_lowercase : EdgeT
_lowercase : int
while len(subgraph.vertices ) < len(self.vertices ):
_lowercase : Any = max(self.edges.values() ) + 1
for edge, weight in self.edges.items():
if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices):
if weight < min_weight:
_lowercase : Optional[Any] = edge
_lowercase : List[Any] = weight
subgraph.add_edge(UpperCamelCase_ , UpperCamelCase_ )
return subgraph
def __UpperCamelCase ( _lowercase = "p107_network.txt" ) -> int:
_lowercase : str = os.path.abspath(os.path.dirname(_lowercase ) )
_lowercase : str = os.path.join(_lowercase, _lowercase )
_lowercase : dict[EdgeT, int] = {}
_lowercase : list[str]
_lowercase : int
_lowercase : int
with open(_lowercase ) as f:
_lowercase : List[str] = f.read().strip().split('\n' )
_lowercase : Optional[int] = [line.split(',' ) for line in data]
for edgea in range(1, len(_lowercase ) ):
for edgea in range(_lowercase ):
if adjaceny_matrix[edgea][edgea] != "-":
_lowercase : Dict = int(adjaceny_matrix[edgea][edgea] )
_lowercase : Graph = Graph(set(range(len(_lowercase ) ) ), _lowercase )
_lowercase : Graph = graph.prims_algorithm()
_lowercase : int = sum(graph.edges.values() )
_lowercase : int = sum(subgraph.edges.values() )
return initial_total - optimal_total
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 | 1 |
'''simple docstring'''
from collections import defaultdict
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
_lowercase : List[str] = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
_lowercase : int = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(UpperCamelCase_ ) )
]
_lowercase : Optional[int] = defaultdict(UpperCamelCase_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
_lowercase : Union[str, Any] = (1 << len(UpperCamelCase_ )) - 1
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
_lowercase : List[str] = self.count_ways_until(UpperCamelCase_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
_lowercase : Dict = total_ways_util
return self.dp[mask][task_no]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict ) -> List[Any]:
'''simple docstring'''
for i in range(len(UpperCamelCase_ ) ):
for j in task_performed[i]:
self.task[j].append(UpperCamelCase_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
_A : Dict =5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
_A : List[str] =[[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 4 |
'''simple docstring'''
from __future__ import annotations
import requests
def __UpperCamelCase ( _lowercase ) -> dict:
_lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowercase ).json()
def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]:
_lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
_lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def __UpperCamelCase ( _lowercase = 10 ) -> str:
_lowercase : Tuple = hackernews_top_stories(_lowercase )
return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
'''simple docstring'''
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
_A : Optional[Any] ='''bert-base-cased'''
_A : List[Any] ='''google/pegasus-xsum'''
_A : Optional[int] =[''' Sam ate lunch today.''', '''Sams lunch ingredients.''']
_A : Any =['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee''']
_A : Optional[int] ='''patrickvonplaten/t5-tiny-random'''
_A : int ='''sshleifer/bart-tiny-random'''
_A : str ='''sshleifer/tiny-mbart'''
_A : List[Any] ='''sshleifer/tiny-marian-en-de'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : str = '\n'.join(_lowercase )
Path(_lowercase ).open('w' ).writelines(_lowercase )
def __UpperCamelCase ( _lowercase ) -> List[Any]:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(_lowercase, f'''{split}.source''' ), _lowercase )
_dump_articles(os.path.join(_lowercase, f'''{split}.target''' ), _lowercase )
return tmp_dir
class lowerCamelCase__ ( A ):
'''simple docstring'''
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ )
_lowercase : Tuple = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase : List[Any] = max(len(tokenizer.encode(UpperCamelCase_ ) ) for a in ARTICLES )
_lowercase : Dict = max(len(tokenizer.encode(UpperCamelCase_ ) ) for a in SUMMARIES )
_lowercase : int = 4
_lowercase : Union[str, Any] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
_lowercase , _lowercase : str = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
_lowercase : Dict = SeqaSeqDataset(
UpperCamelCase_ , data_dir=UpperCamelCase_ , type_path='train' , max_source_length=UpperCamelCase_ , max_target_length=UpperCamelCase_ , src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , )
_lowercase : List[str] = DataLoader(UpperCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(UpperCamelCase_ , UpperCamelCase_ )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
_lowercase : List[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase_ )
_lowercase : Dict = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase : str = max(len(tokenizer.encode(UpperCamelCase_ ) ) for a in ARTICLES )
_lowercase : List[Any] = max(len(tokenizer.encode(UpperCamelCase_ ) ) for a in SUMMARIES )
_lowercase : List[Any] = 4
_lowercase : Optional[int] = LegacySeqaSeqDataset(
UpperCamelCase_ , data_dir=UpperCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=UpperCamelCase_ , )
_lowercase : Any = DataLoader(UpperCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Tuple = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
_lowercase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
_lowercase : Dict = tmp_dir.joinpath('train.source' ).open().readlines()
_lowercase : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(UpperCamelCase_ , UpperCamelCase_ , 128 , UpperCamelCase_ )
_lowercase : Dict = {x.name for x in tmp_dir.iterdir()}
_lowercase : Optional[int] = {x.name for x in save_dir.iterdir()}
_lowercase : List[Any] = save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(UpperCamelCase_ ) < len(UpperCamelCase_ )
assert len(UpperCamelCase_ ) == 1
assert len(packed_examples[0] ) == sum(len(UpperCamelCase_ ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' )
def __UpperCAmelCase ( self : Any ) -> Any:
'''simple docstring'''
if not FAIRSEQ_AVAILABLE:
return
_lowercase , _lowercase , _lowercase : int = self._get_dataset(max_len=64 )
_lowercase : List[Any] = 64
_lowercase : List[Any] = ds.make_dynamic_sampler(UpperCamelCase_ , required_batch_size_multiple=UpperCamelCase_ )
_lowercase : Union[str, Any] = [len(UpperCamelCase_ ) for x in batch_sampler]
assert len(set(UpperCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(UpperCamelCase_ ) == len(UpperCamelCase_ ) # no dropped or added examples
_lowercase : List[Any] = DataLoader(UpperCamelCase_ , batch_sampler=UpperCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase : Optional[int] = []
_lowercase : Optional[Any] = []
for batch in data_loader:
_lowercase : str = batch['input_ids'].shape
_lowercase : str = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
_lowercase : Optional[Any] = np.product(batch['input_ids'].shape )
num_src_per_batch.append(UpperCamelCase_ )
if num_src_tokens > (max_tokens * 1.1):
failures.append(UpperCamelCase_ )
assert num_src_per_batch[0] == max(UpperCamelCase_ )
if failures:
raise AssertionError(F'''too many tokens in {len(UpperCamelCase_ )} batches''' )
def __UpperCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
_lowercase , _lowercase , _lowercase : str = self._get_dataset(max_len=512 )
_lowercase : Any = 2
_lowercase : List[Any] = ds.make_sortish_sampler(UpperCamelCase_ , shuffle=UpperCamelCase_ )
_lowercase : Union[str, Any] = DataLoader(UpperCamelCase_ , batch_size=UpperCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase : int = DataLoader(UpperCamelCase_ , batch_size=UpperCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=UpperCamelCase_ )
_lowercase : List[Any] = tokenizer.pad_token_id
def count_pad_tokens(UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any]="input_ids" ):
return [batch[k].eq(UpperCamelCase_ ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(UpperCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(UpperCamelCase_ , k='labels' ) )
assert sum(count_pad_tokens(UpperCamelCase_ ) ) < sum(count_pad_tokens(UpperCamelCase_ ) )
assert len(UpperCamelCase_ ) == len(UpperCamelCase_ )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[Any]=1000 , UpperCamelCase_ : str=128 ) -> Union[str, Any]:
'''simple docstring'''
if os.getenv('USE_REAL_DATA' , UpperCamelCase_ ):
_lowercase : List[str] = 'examples/seq2seq/wmt_en_ro'
_lowercase : Any = max_len * 2 * 64
if not Path(UpperCamelCase_ ).joinpath('train.len' ).exists():
save_len_file(UpperCamelCase_ , UpperCamelCase_ )
else:
_lowercase : Optional[int] = 'examples/seq2seq/test_data/wmt_en_ro'
_lowercase : List[str] = max_len * 4
save_len_file(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Dict = AutoTokenizer.from_pretrained(UpperCamelCase_ )
_lowercase : List[str] = SeqaSeqDataset(
UpperCamelCase_ , data_dir=UpperCamelCase_ , type_path='train' , max_source_length=UpperCamelCase_ , max_target_length=UpperCamelCase_ , n_obs=UpperCamelCase_ , )
return ds, max_tokens, tokenizer
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
_lowercase , _lowercase , _lowercase : List[str] = self._get_dataset()
_lowercase : List[str] = set(DistributedSortishSampler(UpperCamelCase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=UpperCamelCase_ ) )
_lowercase : Any = set(DistributedSortishSampler(UpperCamelCase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=UpperCamelCase_ ) )
assert idsa.intersection(UpperCamelCase_ ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
_lowercase : Tuple = AutoTokenizer.from_pretrained(UpperCamelCase_ , use_fast=UpperCamelCase_ )
if tok_name == MBART_TINY:
_lowercase : Any = SeqaSeqDataset(
UpperCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , )
_lowercase : int = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
_lowercase : str = SeqaSeqDataset(
UpperCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , )
_lowercase : Optional[Any] = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(UpperCamelCase_ ) == 1 if tok_name == BART_TINY else len(UpperCamelCase_ ) == 0
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Dict ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """megatron-bert"""
def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Optional[Any] = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : List[Any] = position_embedding_type
_lowercase : Optional[Any] = use_cache
| 4 | 1 |
'''simple docstring'''
from io import BytesIO
from typing import List, Union
import requests
from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_decord_available():
import numpy as np
from decord import VideoReader
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
_A : List[Any] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Any , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Tuple ) -> Optional[int]:
'''simple docstring'''
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
requires_backends(self , 'decord' )
self.check_model_type(UpperCamelCase_ )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : List[Any]=None ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if frame_sampling_rate is not None:
_lowercase : str = frame_sampling_rate
if num_frames is not None:
_lowercase : int = num_frames
_lowercase : str = {}
if top_k is not None:
_lowercase : Any = top_k
return preprocess_params, {}, postprocess_params
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[str, List[str]] , **UpperCamelCase_ : str ) -> int:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=1 ) -> Dict:
'''simple docstring'''
if num_frames is None:
_lowercase : str = self.model.config.num_frames
if video.startswith('http://' ) or video.startswith('https://' ):
_lowercase : Tuple = BytesIO(requests.get(UpperCamelCase_ ).content )
_lowercase : str = VideoReader(UpperCamelCase_ )
videoreader.seek(0 )
_lowercase : Any = 0
_lowercase : Dict = num_frames * frame_sampling_rate - 1
_lowercase : Optional[int] = np.linspace(UpperCamelCase_ , UpperCamelCase_ , num=UpperCamelCase_ , dtype=np.intaa )
_lowercase : Union[str, Any] = videoreader.get_batch(UpperCamelCase_ ).asnumpy()
_lowercase : Dict = list(UpperCamelCase_ )
_lowercase : Optional[Any] = self.image_processor(UpperCamelCase_ , return_tensors=self.framework )
return model_inputs
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = self.model(**UpperCamelCase_ )
return model_outputs
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=5 ) -> Optional[Any]:
'''simple docstring'''
if top_k > self.model.config.num_labels:
_lowercase : Optional[int] = self.model.config.num_labels
if self.framework == "pt":
_lowercase : List[Any] = model_outputs.logits.softmax(-1 )[0]
_lowercase , _lowercase : Tuple = probs.topk(UpperCamelCase_ )
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = scores.tolist()
_lowercase : Optional[int] = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCamelCase_ , UpperCamelCase_ )]
| 4 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Tuple = args.pruning_method
_lowercase : int = args.threshold
_lowercase : str = args.model_name_or_path.rstrip('/' )
_lowercase : Dict = args.target_model_path
print(f'''Load fine-pruned model from {model_name_or_path}''' )
_lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) )
_lowercase : List[Any] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_lowercase : Optional[int] = tensor
print(f'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_lowercase : List[str] = tensor
print(f'''Copied layer {name}''' )
elif "bias" in name:
_lowercase : Dict = tensor
print(f'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase )
_lowercase : Optional[Any] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_lowercase : Optional[Any] = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase )
_lowercase : str = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_lowercase : str = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase )
_lowercase : Optional[int] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_lowercase : Optional[int] = name[:-6]
_lowercase : List[str] = model[f'''{prefix_}mask_scores''']
_lowercase , _lowercase : Union[str, Any] = -0.1, 1.1
_lowercase : str = torch.sigmoid(_lowercase )
_lowercase : int = s * (r - l) + l
_lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 )
_lowercase : Union[str, Any] = tensor * mask
print(f'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
_lowercase : List[Any] = os.path.join(
os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' )
if not os.path.isdir(_lowercase ):
shutil.copytree(_lowercase, _lowercase )
print(f'''\nCreated folder {target_model_path}''' )
torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pruning_method''',
choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''],
type=str,
required=True,
help=(
'''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'''
''' sigmoied_threshold = Soft movement pruning)'''
),
)
parser.add_argument(
'''--threshold''',
type=float,
required=False,
help=(
'''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'''
'''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'''
'''Not needed for `l0`'''
),
)
parser.add_argument(
'''--model_name_or_path''',
type=str,
required=True,
help='''Folder containing the model that was previously fine-pruned''',
)
parser.add_argument(
'''--target_model_path''',
default=None,
type=str,
required=False,
help='''Folder containing the model that was previously fine-pruned''',
)
_A : List[Any] =parser.parse_args()
main(args)
| 4 | 1 |
'''simple docstring'''
import os
import sys
import unittest
_A : Tuple =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, '''utils'''))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_A : Union[str, Any] =os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''')
_A : Dict =os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''')
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = get_test_to_tester_mapping(UpperCamelCase_ )
_lowercase : Optional[int] = get_test_to_tester_mapping(UpperCamelCase_ )
_lowercase : str = {'BertModelTest': 'BertModelTester'}
_lowercase : List[Any] = {
'BlipModelTest': 'BlipModelTester',
'BlipTextImageModelTest': 'BlipTextImageModelsModelTester',
'BlipTextModelTest': 'BlipTextModelTester',
'BlipTextRetrievalModelTest': 'BlipTextRetrievalModelTester',
'BlipVQAModelTest': 'BlipVQAModelTester',
'BlipVisionModelTest': 'BlipVisionModelTester',
}
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : Union[str, Any] = get_model_to_test_mapping(UpperCamelCase_ )
_lowercase : int = get_model_to_test_mapping(UpperCamelCase_ )
_lowercase : Union[str, Any] = {
'BertForMaskedLM': ['BertModelTest'],
'BertForMultipleChoice': ['BertModelTest'],
'BertForNextSentencePrediction': ['BertModelTest'],
'BertForPreTraining': ['BertModelTest'],
'BertForQuestionAnswering': ['BertModelTest'],
'BertForSequenceClassification': ['BertModelTest'],
'BertForTokenClassification': ['BertModelTest'],
'BertLMHeadModel': ['BertModelTest'],
'BertModel': ['BertModelTest'],
}
_lowercase : Optional[int] = {
'BlipForConditionalGeneration': ['BlipTextImageModelTest'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTest'],
'BlipForQuestionAnswering': ['BlipVQAModelTest'],
'BlipModel': ['BlipModelTest'],
'BlipTextModel': ['BlipTextModelTest'],
'BlipVisionModel': ['BlipVisionModelTest'],
}
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
def __UpperCAmelCase ( self : int ) -> str:
'''simple docstring'''
_lowercase : Dict = get_model_to_tester_mapping(UpperCamelCase_ )
_lowercase : Union[str, Any] = get_model_to_tester_mapping(UpperCamelCase_ )
_lowercase : int = {
'BertForMaskedLM': ['BertModelTester'],
'BertForMultipleChoice': ['BertModelTester'],
'BertForNextSentencePrediction': ['BertModelTester'],
'BertForPreTraining': ['BertModelTester'],
'BertForQuestionAnswering': ['BertModelTester'],
'BertForSequenceClassification': ['BertModelTester'],
'BertForTokenClassification': ['BertModelTester'],
'BertLMHeadModel': ['BertModelTester'],
'BertModel': ['BertModelTester'],
}
_lowercase : Union[str, Any] = {
'BlipForConditionalGeneration': ['BlipTextImageModelsModelTester'],
'BlipForImageTextRetrieval': ['BlipTextRetrievalModelTester'],
'BlipForQuestionAnswering': ['BlipVQAModelTester'],
'BlipModel': ['BlipModelTester'],
'BlipTextModel': ['BlipTextModelTester'],
'BlipVisionModel': ['BlipVisionModelTester'],
}
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(get_test_info.to_json(UpperCamelCase_ ) , UpperCamelCase_ )
| 4 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Union[str, Any] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features"""]
def __init__( self : Optional[int] , UpperCamelCase_ : Union[str, Any]=80 , UpperCamelCase_ : Optional[int]=1_6000 , UpperCamelCase_ : Dict=160 , UpperCamelCase_ : Dict=30 , UpperCamelCase_ : Optional[Any]=400 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Tuple=False , **UpperCamelCase_ : Optional[Any] , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[str] = n_fft
_lowercase : List[Any] = hop_length
_lowercase : Optional[Any] = chunk_length
_lowercase : Optional[int] = chunk_length * sampling_rate
_lowercase : List[Any] = self.n_samples // hop_length
_lowercase : List[Any] = sampling_rate
_lowercase : Optional[Any] = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCamelCase_ , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : np.array ) -> np.ndarray:
'''simple docstring'''
_lowercase : Optional[int] = spectrogram(
UpperCamelCase_ , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , )
_lowercase : Union[str, Any] = log_spec[:, :-1]
_lowercase : Dict = np.maximum(UpperCamelCase_ , log_spec.max() - 8.0 )
_lowercase : Tuple = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def __UpperCAmelCase ( UpperCamelCase_ : List[np.ndarray] , UpperCamelCase_ : List[np.ndarray] , UpperCamelCase_ : float = 0.0 ) -> List[np.ndarray]:
'''simple docstring'''
if attention_mask is not None:
_lowercase : List[str] = np.array(UpperCamelCase_ , np.intaa )
_lowercase : Optional[Any] = []
for vector, length in zip(UpperCamelCase_ , attention_mask.sum(-1 ) ):
_lowercase : List[Any] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_lowercase : str = padding_value
normed_input_values.append(UpperCamelCase_ )
else:
_lowercase : Optional[int] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def __call__( self : Tuple , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : Optional[bool] = None , UpperCamelCase_ : Optional[str] = "max_length" , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[bool] = None , **UpperCamelCase_ : int , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : List[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : Tuple = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : List[str] = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : List[str] = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : Tuple = [np.asarray([raw_speech] ).T]
_lowercase : Dict = BatchFeature({'input_features': raw_speech} )
# convert into correct format for padding
_lowercase : Any = self.pad(
UpperCamelCase_ , padding=UpperCamelCase_ , max_length=max_length if max_length else self.n_samples , truncation=UpperCamelCase_ , pad_to_multiple_of=UpperCamelCase_ , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
_lowercase : str = self.zero_mean_unit_var_norm(
padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , )
_lowercase : Optional[Any] = np.stack(padded_inputs['input_features'] , axis=0 )
# make sure list is in array format
_lowercase : str = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 )
_lowercase : List[Any] = [self._np_extract_fbank_features(UpperCamelCase_ ) for waveform in input_features[0]]
if isinstance(input_features[0] , UpperCamelCase_ ):
_lowercase : Any = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_features]
else:
_lowercase : List[str] = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
_lowercase : Optional[Any] = padded_inputs['attention_mask'][:, :: self.hop_length]
if return_tensors is not None:
_lowercase : Optional[Any] = padded_inputs.convert_to_tensors(UpperCamelCase_ )
return padded_inputs
def __UpperCAmelCase ( self : Dict ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = copy.deepcopy(self.__dict__ )
_lowercase : Any = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Any=13 , UpperCamelCase_ : str=7 , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=99 , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=16 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Optional[Any]=0.02 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : int=4 , UpperCamelCase_ : Any=None , ) -> List[str]:
'''simple docstring'''
_lowercase : Any = parent
_lowercase : Tuple = batch_size
_lowercase : List[Any] = seq_length
_lowercase : Any = is_training
_lowercase : List[Any] = use_token_type_ids
_lowercase : Any = use_labels
_lowercase : Dict = vocab_size
_lowercase : Dict = hidden_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : str = intermediate_size
_lowercase : List[Any] = hidden_act
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Any = attention_probs_dropout_prob
_lowercase : Union[str, Any] = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Union[str, Any] = type_sequence_label_size
_lowercase : Optional[int] = initializer_range
_lowercase : str = num_labels
_lowercase : Tuple = num_choices
_lowercase : str = scope
_lowercase : List[str] = self.vocab_size - 1
def __UpperCAmelCase ( self : Tuple ) -> int:
'''simple docstring'''
_lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : Optional[Any] = None
_lowercase : List[str] = None
_lowercase : Union[str, Any] = None
if self.use_labels:
_lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_lowercase : int = ids_tensor([self.batch_size] , self.num_choices )
_lowercase : List[str] = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
_lowercase : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict , *UpperCamelCase_ : str ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[int] = OpenAIGPTModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : str = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ )
_lowercase : List[str] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )
_lowercase : List[Any] = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , *UpperCamelCase_ : Optional[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Tuple = OpenAIGPTLMHeadModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Tuple = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , *UpperCamelCase_ : Union[str, Any] ) -> Dict:
'''simple docstring'''
_lowercase : int = OpenAIGPTDoubleHeadsModel(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Any = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any , *UpperCamelCase_ : List[str] ) -> Any:
'''simple docstring'''
_lowercase : Dict = self.num_labels
_lowercase : Optional[int] = OpenAIGPTForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Any = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : Tuple = config_and_inputs
_lowercase : str = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'head_mask': head_mask,
}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
A_ = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
A_ = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> Union[str, Any]:
'''simple docstring'''
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int]=False ) -> List[Any]:
'''simple docstring'''
_lowercase : List[str] = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
_lowercase : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase_ , )
_lowercase : Optional[int] = inputs_dict['labels']
_lowercase : Optional[Any] = inputs_dict['labels']
_lowercase : Optional[int] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=UpperCamelCase_ , )
_lowercase : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ )
return inputs_dict
def __UpperCAmelCase ( self : List[str] ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = OpenAIGPTModelTester(self )
_lowercase : Tuple = ConfigTester(self , config_class=UpperCamelCase_ , n_embd=37 )
def __UpperCAmelCase ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : Optional[int] = OpenAIGPTModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
_lowercase : Any = OpenAIGPTLMHeadModel.from_pretrained('openai-gpt' )
model.to(UpperCamelCase_ )
_lowercase : Optional[int] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=UpperCamelCase_ ) # the president is
_lowercase : Optional[int] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
4_0477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
_lowercase : Optional[Any] = model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ )
self.assertListEqual(output_ids[0].tolist() , UpperCamelCase_ )
| 4 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 | 1 |
'''simple docstring'''
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def __UpperCamelCase ( _lowercase, _lowercase = True, _lowercase = math.inf, _lowercase = -math.inf, _lowercase = math.inf, _lowercase = -math.inf, _lowercase = False, _lowercase = 100, _lowercase = 0.0_1, _lowercase = 1, ) -> Any:
_lowercase : Dict = False
_lowercase : Optional[Any] = search_prob
_lowercase : Any = start_temperate
_lowercase : int = []
_lowercase : List[Any] = 0
_lowercase : List[Any] = None
while not search_end:
_lowercase : int = current_state.score()
if best_state is None or current_score > best_state.score():
_lowercase : int = current_state
scores.append(_lowercase )
iterations += 1
_lowercase : Tuple = None
_lowercase : List[str] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
_lowercase : Optional[Any] = random.randint(0, len(_lowercase ) - 1 ) # picking a random neighbor
_lowercase : List[Any] = neighbors.pop(_lowercase )
_lowercase : List[str] = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
_lowercase : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
_lowercase : str = picked_neighbor
else:
_lowercase : str = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
_lowercase : List[Any] = picked_neighbor
_lowercase : Any = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
_lowercase : Dict = True
else:
_lowercase : int = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(_lowercase ), _lowercase )
plt.xlabel('Iterations' )
plt.ylabel('Function values' )
plt.show()
return best_state
if __name__ == "__main__":
def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
_A : Dict =SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
_A : Optional[Any] =simulated_annealing(
prob, find_max=False, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
'''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
_A : Union[str, Any] =SearchProblem(x=1_2, y=4_7, step_size=1, function_to_optimize=test_fa)
_A : Optional[Any] =simulated_annealing(
prob, find_max=True, max_x=1_0_0, min_x=5, max_y=5_0, min_y=-5, visualization=True
)
print(
'''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 '''
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
return (3 * x**2) - (6 * y)
_A : Any =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_A : Union[str, Any] =simulated_annealing(prob, find_max=False, visualization=True)
print(
'''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
_A : List[str] =SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
_A : Any =simulated_annealing(prob, find_max=True, visualization=True)
print(
'''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: '''
F'''{local_min.score()}'''
)
| 4 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 | 1 |
'''simple docstring'''
import itertools
from dataclasses import dataclass
from typing import List, Optional
import pyarrow as pa
import pyarrow.parquet as pq
import datasets
from datasets.table import table_cast
_A : Dict =datasets.utils.logging.get_logger(__name__)
@dataclass
class lowerCamelCase__ ( datasets.BuilderConfig ):
'''simple docstring'''
A_ = 1_0000
A_ = None
A_ = None
class lowerCamelCase__ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
A_ = ParquetConfig
def __UpperCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_lowercase : Dict = dl_manager.download_and_extract(self.config.data_files )
if isinstance(UpperCamelCase_ , (str, list, tuple) ):
_lowercase : Any = data_files
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : Optional[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowercase : Any = [dl_manager.iter_files(UpperCamelCase_ ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_lowercase : Tuple = []
for split_name, files in data_files.items():
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_lowercase : Union[str, Any] = [dl_manager.iter_files(UpperCamelCase_ ) for file in files]
# Infer features is they are stoed in the arrow schema
if self.info.features is None:
for file in itertools.chain.from_iterable(UpperCamelCase_ ):
with open(UpperCamelCase_ , 'rb' ) as f:
_lowercase : int = datasets.Features.from_arrow_schema(pq.read_schema(UpperCamelCase_ ) )
break
splits.append(datasets.SplitGenerator(name=UpperCamelCase_ , gen_kwargs={'files': files} ) )
return splits
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : pa.Table ) -> pa.Table:
'''simple docstring'''
if self.info.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_lowercase : Dict = table_cast(UpperCamelCase_ , self.info.features.arrow_schema )
return pa_table
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : List[Any] = self.info.features.arrow_schema if self.info.features is not None else None
if self.info.features is not None and self.config.columns is not None:
if sorted(field.name for field in schema ) != sorted(self.config.columns ):
raise ValueError(
F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' )
for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCamelCase_ ) ):
with open(UpperCamelCase_ , 'rb' ) as f:
_lowercase : Optional[Any] = pq.ParquetFile(UpperCamelCase_ )
try:
for batch_idx, record_batch in enumerate(
parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ):
_lowercase : Union[str, Any] = pa.Table.from_batches([record_batch] )
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield F'''{file_idx}_{batch_idx}''', self._cast_table(UpperCamelCase_ )
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCamelCase_ )}: {e}''' )
raise
| 4 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __UpperCamelCase ( _lowercase ) -> None:
_lowercase , _lowercase : List[Any] = analyze_text(_lowercase )
_lowercase : Any = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
_lowercase : Union[str, Any] = sum(single_char_strings.values() )
# one length string
_lowercase : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_lowercase : Any = single_char_strings[ch]
_lowercase : int = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_lowercase : str = sum(two_char_strings.values() )
_lowercase : str = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_lowercase : Optional[Any] = cha + cha
if sequence in two_char_strings:
_lowercase : int = two_char_strings[sequence]
_lowercase : Optional[int] = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]:
_lowercase : Optional[Any] = Counter() # type: ignore
_lowercase : List[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __UpperCamelCase ( ) -> List[Any]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 4 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
_A : Any ={
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
_A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' )
_lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' )
_lowercase : List[Any] = 'The dog is cute and lives in the garden house'
_lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] )
_lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_lowercase : Tuple = jnp.array(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
_lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state']
self.assertEqual(output.shape , UpperCamelCase_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
| 4 | 1 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A : int =logging.get_logger(__name__)
_A : Union[str, Any] ={
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_vision_model"""
def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Optional[Any] = hidden_size
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : Tuple = patch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = attention_dropout
_lowercase : int = layer_norm_eps
_lowercase : Optional[int] = hidden_act
_lowercase : str = qkv_bias
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_qformer"""
def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : List[Any] = num_attention_heads
_lowercase : Optional[int] = hidden_act
_lowercase : Union[str, Any] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Dict = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = layer_norm_eps
_lowercase : List[str] = position_embedding_type
_lowercase : str = cross_attention_frequency
_lowercase : int = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Optional[int] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip"""
A_ = True
def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
if vision_config is None:
_lowercase : Any = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
_lowercase : List[Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
_lowercase : List[Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
_lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ )
_lowercase : str = self.text_config.tie_word_embeddings
_lowercase : int = self.text_config.is_encoder_decoder
_lowercase : Tuple = num_query_tokens
_lowercase : str = self.vision_config.hidden_size
_lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_lowercase : List[Any] = 1.0
_lowercase : int = 0.02
@classmethod
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : Optional[int] = self.vision_config.to_dict()
_lowercase : Optional[Any] = self.qformer_config.to_dict()
_lowercase : Tuple = self.text_config.to_dict()
_lowercase : Dict = self.__class__.model_type
return output
| 4 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
_A : Optional[int] =logging.get_logger(__name__)
_A : Dict =[
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
_A : str =[
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
_lowercase : str = torch.load(_lowercase, map_location='cpu' )
return sd
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=rename_keys_prefix ) -> str:
_lowercase : Dict = OrderedDict()
_lowercase : Optional[Any] = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_lowercase : Any = key
for name_pair in rename_keys_prefix:
_lowercase : Any = new_key.replace(name_pair[0], name_pair[1] )
_lowercase : Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_lowercase : List[str] = new_d['cls.predictions.bias']
return new_d
@torch.no_grad()
def __UpperCamelCase ( _lowercase, _lowercase ) -> Tuple:
assert (
checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS
), f'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_lowercase : Union[str, Any] = 'pretraining'
if "vcr" in checkpoint_path:
_lowercase : Optional[int] = {'visual_embedding_dim': 512}
elif "vqa_advanced" in checkpoint_path:
_lowercase : int = {'visual_embedding_dim': 2048}
elif "vqa" in checkpoint_path:
_lowercase : Dict = {'visual_embedding_dim': 2048}
elif "nlvr" in checkpoint_path:
_lowercase : Any = {'visual_embedding_dim': 1024}
else:
raise NotImplementedError(f'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_lowercase : Optional[Any] = {'visual_embedding_dim': 512}
_lowercase : Optional[Any] = 'multichoice'
elif "vqa_advanced" in checkpoint_path:
_lowercase : List[str] = {'visual_embedding_dim': 2048}
_lowercase : Optional[Any] = 'vqa_advanced'
elif "vqa" in checkpoint_path:
_lowercase : List[Any] = {'visual_embedding_dim': 2048, 'num_labels': 3129}
_lowercase : Any = 'vqa'
elif "nlvr" in checkpoint_path:
_lowercase : Dict = {
'visual_embedding_dim': 1024,
'num_labels': 2,
}
_lowercase : Dict = 'nlvr'
_lowercase : Optional[int] = VisualBertConfig(**_lowercase )
# Load State Dict
_lowercase : Tuple = load_state_dict(_lowercase )
_lowercase : List[Any] = get_new_dict(_lowercase, _lowercase )
if model_type == "pretraining":
_lowercase : Optional[int] = VisualBertForPreTraining(_lowercase )
elif model_type == "vqa":
_lowercase : int = VisualBertForQuestionAnswering(_lowercase )
elif model_type == "nlvr":
_lowercase : List[Any] = VisualBertForVisualReasoning(_lowercase )
elif model_type == "multichoice":
_lowercase : Dict = VisualBertForMultipleChoice(_lowercase )
model.load_state_dict(_lowercase )
# Save Checkpoints
Path(_lowercase ).mkdir(exist_ok=_lowercase )
model.save_pretrained(_lowercase )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
_A : int =parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 4 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_A : List[str] ='''pt'''
elif is_tf_available():
_A : Tuple ='''tf'''
else:
_A : Optional[int] ='''jax'''
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = ByTaTokenizer
A_ = False
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
_lowercase : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
_lowercase : Dict = []
for i in range(len(UpperCamelCase_ ) ):
try:
_lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) )
_lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) )
if max_length is not None and len(UpperCamelCase_ ) > max_length:
_lowercase : List[Any] = toks[:max_length]
if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0:
while len(UpperCamelCase_ ) < min_length:
_lowercase : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Dict = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
if " " not in output_txt and len(UpperCamelCase_ ) > 1:
_lowercase : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ )
)
if with_prefix_space:
_lowercase : Union[str, Any] = ' ' + output_txt
_lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
return output_txt, output_ids
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowercase : List[str] = self.ta_base_tokenizer
_lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
_lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.ta_base_tokenizer
_lowercase : Tuple = 'Unicode โฌ.'
_lowercase : List[Any] = tokenizer(UpperCamelCase_ )
_lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : List[str] = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'Unicode โฌ.</s>' )
_lowercase : Any = tokenizer('e รจ รฉ รช รซ' )
_lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : Tuple = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'e รจ รฉ รช รซ</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e รจ รฉ รช รซ' ) ) , 'e รจ รฉ รช รซ</s>' )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = self.ta_base_tokenizer
_lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
if FRAMEWORK != "jax":
_lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = self.ta_base_tokenizer
_lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , UpperCamelCase_ )
self.assertIn('attention_mask' , UpperCamelCase_ )
self.assertNotIn('decoder_input_ids' , UpperCamelCase_ )
self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.ta_base_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : str = tokenizer(
text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
_lowercase : str = self.ta_base_tokenizer
_lowercase : str = ['A long paragraph for summarization. </s>']
_lowercase : Optional[int] = ['Summary of the text. </s>']
# fmt: off
_lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] )
self.assertEqual(UpperCamelCase_ , batch['labels'][0] )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_lowercase : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[Any] = tempfile.mkdtemp()
_lowercase : Any = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
shutil.rmtree(UpperCamelCase_ )
_lowercase : str = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : int = json.load(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(UpperCamelCase_ )
_lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )]
_lowercase : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : int = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[Any] = tokenizer_class.from_pretrained(
UpperCamelCase_ , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
_lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
_lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Optional[int] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_lowercase : Optional[int] = 0
_lowercase : int = tokenizer.convert_ids_to_tokens(
UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
for attr in attributes_list:
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
| 4 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
_A : Any ={'''processing_layoutxlm''': ['''LayoutXLMProcessor''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Optional[Any] =['''LayoutXLMTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : int =['''LayoutXLMTokenizerFast''']
if TYPE_CHECKING:
from .processing_layoutxlm import LayoutXLMProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm import LayoutXLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast
else:
import sys
_A : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
_A : Dict ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 | 1 |
'''simple docstring'''
import logging
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.utilities import rank_zero_only
from utils_rag import save_json
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : int = filter(lambda _lowercase : p.requires_grad, model.parameters() )
_lowercase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] )
return params
_A : List[Any] =logging.getLogger(__name__)
def __UpperCamelCase ( _lowercase, _lowercase ) -> Any:
if metric == "rouge2":
_lowercase : Optional[Any] = '{val_avg_rouge2:.4f}-{step_count}'
elif metric == "bleu":
_lowercase : List[str] = '{val_avg_bleu:.4f}-{step_count}'
elif metric == "em":
_lowercase : List[str] = '{val_avg_em:.4f}-{step_count}'
elif metric == "loss":
_lowercase : Dict = '{val_avg_loss:.4f}-{step_count}'
else:
raise NotImplementedError(
f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this'''
' function.' )
_lowercase : Any = ModelCheckpoint(
dirpath=_lowercase, filename=_lowercase, monitor=f'''val_{metric}''', mode='max', save_top_k=1, every_n_epochs=1, )
return checkpoint_callback
def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict:
return EarlyStopping(
monitor=f'''val_{metric}''', mode='min' if 'loss' in metric else 'max', patience=_lowercase, verbose=_lowercase, )
class lowerCamelCase__ ( pl.Callback ):
'''simple docstring'''
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any ) -> List[str]:
'''simple docstring'''
_lowercase : Dict = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )}
pl_module.logger.log_metrics(UpperCamelCase_ )
@rank_zero_only
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule , UpperCamelCase_ : str , UpperCamelCase_ : Dict=True ) -> None:
'''simple docstring'''
logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' )
_lowercase : Tuple = trainer.callback_metrics
trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} )
# Log results
_lowercase : Union[str, Any] = Path(pl_module.hparams.output_dir )
if type_path == "test":
_lowercase : Optional[Any] = od / 'test_results.txt'
_lowercase : List[str] = od / 'test_generations.txt'
else:
# this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json
# If people want this it will be easy enough to add back.
_lowercase : Union[str, Any] = od / F'''{type_path}_results/{trainer.global_step:05d}.txt'''
_lowercase : List[str] = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt'''
results_file.parent.mkdir(exist_ok=UpperCamelCase_ )
generations_file.parent.mkdir(exist_ok=UpperCamelCase_ )
with open(UpperCamelCase_ , 'a+' ) as writer:
for key in sorted(UpperCamelCase_ ):
if key in ["log", "progress_bar", "preds"]:
continue
_lowercase : Tuple = metrics[key]
if isinstance(UpperCamelCase_ , torch.Tensor ):
_lowercase : Any = val.item()
_lowercase : Optional[int] = F'''{key}: {val:.6f}\n'''
writer.write(UpperCamelCase_ )
if not save_generations:
return
if "preds" in metrics:
_lowercase : Tuple = '\n'.join(metrics['preds'] )
generations_file.open('w+' ).write(UpperCamelCase_ )
@rank_zero_only
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
try:
_lowercase : List[Any] = pl_module.model.model.num_parameters()
except AttributeError:
_lowercase : Dict = pl_module.model.num_parameters()
_lowercase : Dict = count_trainable_parameters(UpperCamelCase_ )
# mp stands for million parameters
trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} )
@rank_zero_only
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> Tuple:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
return self._write_logs(UpperCamelCase_ , UpperCamelCase_ , 'test' )
@rank_zero_only
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
save_json(pl_module.metrics , pl_module.metrics_save_path )
# Uncommenting this will save val generations
# return self._write_logs(trainer, pl_module, "valid")
| 4 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : int = torch.exp(_lowercase )
_lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i)
_lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowercase ) - B / A
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_lowercase : int = config.output_attentions
_lowercase : int = config.output_hidden_states
_lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int:
'''simple docstring'''
if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowercase : Optional[Any] = x
else:
_lowercase : Optional[int] = x
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = ()
_lowercase : List[Any] = ()
_lowercase : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowercase : Optional[int] = all_hidden_states + (hidden_states,)
_lowercase : str = layer_module(
UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = layer_outputs[0]
if self.output_attentions:
_lowercase : Tuple = all_attentions + (layer_outputs[1],)
_lowercase : Optional[int] = (hidden_states,)
if self.output_hidden_states:
_lowercase : str = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[int] = current_outputs + (all_attentions,)
_lowercase : List[Any] = self.highway[i](UpperCamelCase_ )
# logits, pooled_output
if not self.training:
_lowercase : Dict = highway_exit[0]
_lowercase : Tuple = entropy(UpperCamelCase_ )
_lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowercase : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCamelCase_ , i + 1 )
else:
_lowercase : Optional[int] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowercase : str = all_hidden_states + (hidden_states,)
_lowercase : Optional[Any] = (hidden_states,)
if self.output_hidden_states:
_lowercase : Dict = outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[Any] = outputs + (all_attentions,)
_lowercase : Optional[int] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : int = config
_lowercase : int = BertEmbeddings(UpperCamelCase_ )
_lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ )
_lowercase : Any = BertPooler(UpperCamelCase_ )
self.init_weights()
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.embeddings.word_embeddings
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = value
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ )
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_lowercase : Any = input_ids.size()
elif inputs_embeds is not None:
_lowercase : Any = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if encoder_attention_mask is None:
_lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if token_type_ids is None:
_lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowercase : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowercase : int = encoder_attention_mask[:, None, None, :]
_lowercase : str = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers )
_lowercase : Dict = self.embeddings(
input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ )
_lowercase : List[Any] = self.encoder(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )
_lowercase : int = encoder_outputs[0]
_lowercase : str = self.pooler(UpperCamelCase_ )
_lowercase : List[Any] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = message
_lowercase : Dict = exit_layer # start from 1!
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
super().__init__()
_lowercase : Optional[Any] = BertPooler(UpperCamelCase_ )
_lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowercase : int = nn.Linear(config.hidden_size , config.num_labels )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
_lowercase : str = encoder_outputs[0]
_lowercase : int = self.pooler(UpperCamelCase_ )
# "return" pooler_output
# BertModel
_lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowercase : Dict = bmodel_output[1]
_lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ )
_lowercase : str = self.classifier(UpperCamelCase_ )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : Dict = config.num_labels
_lowercase : Any = config.num_hidden_layers
_lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ )
_lowercase : Any = nn.Dropout(config.hidden_dropout_prob )
_lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = self.num_layers
try:
_lowercase : Tuple = self.bert(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowercase : List[Any] = outputs[1]
_lowercase : int = self.dropout(UpperCamelCase_ )
_lowercase : Optional[int] = self.classifier(UpperCamelCase_ )
_lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowercase : Union[str, Any] = e.message
_lowercase : Any = e.exit_layer
_lowercase : Optional[int] = outputs[0]
if not self.training:
_lowercase : Union[str, Any] = entropy(UpperCamelCase_ )
_lowercase : Tuple = []
_lowercase : Tuple = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowercase : Tuple = MSELoss()
_lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Union[str, Any] = CrossEntropyLoss()
_lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowercase : Optional[Any] = []
for highway_exit in outputs[-1]:
_lowercase : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCamelCase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowercase : Union[str, Any] = MSELoss()
_lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Dict = CrossEntropyLoss()
_lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCamelCase_ )
if train_highway:
_lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowercase : Optional[Any] = (loss,) + outputs
if not self.training:
_lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowercase : Dict = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 4 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__ ( A , A , A , unittest.TestCase ):
'''simple docstring'''
A_ = AltDiffusionPipeline
A_ = TEXT_TO_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_BATCH_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
A_ = TEXT_TO_IMAGE_IMAGE_PARAMS
def __UpperCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
torch.manual_seed(0 )
_lowercase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
_lowercase : Optional[Any] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
torch.manual_seed(0 )
_lowercase : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
# TODO: address the non-deterministic text encoder (fails for save-load tests)
# torch.manual_seed(0)
# text_encoder_config = RobertaSeriesConfig(
# hidden_size=32,
# project_dim=32,
# intermediate_size=37,
# layer_norm_eps=1e-05,
# num_attention_heads=4,
# num_hidden_layers=5,
# vocab_size=5002,
# )
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
torch.manual_seed(0 )
_lowercase : Any = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5002 , )
_lowercase : str = CLIPTextModel(UpperCamelCase_ )
_lowercase : str = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta' )
_lowercase : Union[str, Any] = 77
_lowercase : Union[str, Any] = {
'unet': unet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any]=0 ) -> Optional[int]:
'''simple docstring'''
if str(UpperCamelCase_ ).startswith('mps' ):
_lowercase : Union[str, Any] = torch.manual_seed(UpperCamelCase_ )
else:
_lowercase : Any = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
_lowercase : List[Any] = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def __UpperCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : List[Any] = self.get_dummy_components()
torch.manual_seed(0 )
_lowercase : List[Any] = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
_lowercase : Optional[Any] = RobertaSeriesModelWithTransformation(UpperCamelCase_ )
_lowercase : str = text_encoder
_lowercase : str = AltDiffusionPipeline(**UpperCamelCase_ )
_lowercase : List[Any] = alt_pipe.to(UpperCamelCase_ )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : Any = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : int = 'A photo of an astronaut'
_lowercase : Optional[int] = alt_pipe(**UpperCamelCase_ )
_lowercase : List[str] = output.images
_lowercase : Dict = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowercase : Union[str, Any] = np.array(
[0.5_74_81_62, 0.60_44_71_45, 0.48_82_12_17, 0.50_10_06_36, 0.5_43_11_85, 0.45_76_36_83, 0.49_65_76_96, 0.48_13_27_33, 0.47_57_30_93] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator
_lowercase : List[Any] = self.get_dummy_components()
_lowercase : int = PNDMScheduler(skip_prk_steps=UpperCamelCase_ )
torch.manual_seed(0 )
_lowercase : Dict = RobertaSeriesConfig(
hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=5002 , )
# TODO: remove after fixing the non-deterministic text encoder
_lowercase : Optional[int] = RobertaSeriesModelWithTransformation(UpperCamelCase_ )
_lowercase : Tuple = text_encoder
_lowercase : str = AltDiffusionPipeline(**UpperCamelCase_ )
_lowercase : List[Any] = alt_pipe.to(UpperCamelCase_ )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : Dict = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : List[str] = alt_pipe(**UpperCamelCase_ )
_lowercase : Any = output.images
_lowercase : int = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_lowercase : str = np.array(
[0.51_60_50_93, 0.5_70_72_41, 0.47_36_55_07, 0.50_57_88_86, 0.5_63_38_77, 0.4_64_25_03, 0.5_18_20_81, 0.48_76_34_84, 0.49_08_42_37] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : int = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , safety_checker=UpperCamelCase_ )
_lowercase : List[Any] = alt_pipe.to(UpperCamelCase_ )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : Any = 'A painting of a squirrel eating a burger'
_lowercase : int = torch.manual_seed(0 )
_lowercase : Dict = alt_pipe([prompt] , generator=UpperCamelCase_ , guidance_scale=6.0 , num_inference_steps=20 , output_type='np' )
_lowercase : List[Any] = output.images
_lowercase : str = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowercase : Optional[int] = np.array([0.10_10, 0.08_00, 0.07_94, 0.08_85, 0.08_43, 0.07_62, 0.07_69, 0.07_29, 0.05_86] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Union[str, Any] = DDIMScheduler.from_pretrained('BAAI/AltDiffusion' , subfolder='scheduler' )
_lowercase : Optional[Any] = AltDiffusionPipeline.from_pretrained('BAAI/AltDiffusion' , scheduler=UpperCamelCase_ , safety_checker=UpperCamelCase_ )
_lowercase : str = alt_pipe.to(UpperCamelCase_ )
alt_pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : int = 'A painting of a squirrel eating a burger'
_lowercase : Any = torch.manual_seed(0 )
_lowercase : Optional[Any] = alt_pipe([prompt] , generator=UpperCamelCase_ , num_inference_steps=2 , output_type='numpy' )
_lowercase : List[Any] = output.images
_lowercase : List[str] = image[0, -3:, -3:, -1]
assert image.shape == (1, 512, 512, 3)
_lowercase : str = np.array([0.40_19, 0.40_52, 0.38_10, 0.41_19, 0.39_16, 0.39_82, 0.46_51, 0.41_95, 0.53_23] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
| 4 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [10, 20, 30, 40, 50, 60]
_lowercase : Tuple = [2, 4, 6, 8, 10, 12]
_lowercase : Optional[Any] = 100
self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
self.assertRaisesRegex(
UpperCamelCase_ , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 | 1 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def __UpperCamelCase ( _lowercase ) -> Dict:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E_00 and cp <= 0x9F_FF)
or (cp >= 0x34_00 and cp <= 0x4D_BF) #
or (cp >= 0x2_00_00 and cp <= 0x2_A6_DF) #
or (cp >= 0x2_A7_00 and cp <= 0x2_B7_3F) #
or (cp >= 0x2_B7_40 and cp <= 0x2_B8_1F) #
or (cp >= 0x2_B8_20 and cp <= 0x2_CE_AF) #
or (cp >= 0xF9_00 and cp <= 0xFA_FF)
or (cp >= 0x2_F8_00 and cp <= 0x2_FA_1F) #
): #
return True
return False
def __UpperCamelCase ( _lowercase ) -> Dict:
# word like '180' or '่บซ้ซ' or '็ฅ'
for char in word:
_lowercase : Union[str, Any] = ord(_lowercase )
if not _is_chinese_char(_lowercase ):
return 0
return 1
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase : Optional[Any] = set()
for token in tokens:
_lowercase : Any = len(_lowercase ) > 1 and is_chinese(_lowercase )
if chinese_word:
word_set.add(_lowercase )
_lowercase : List[Any] = list(_lowercase )
return word_list
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
if not chinese_word_set:
return bert_tokens
_lowercase : str = max([len(_lowercase ) for w in chinese_word_set] )
_lowercase : int = bert_tokens
_lowercase , _lowercase : List[Any] = 0, len(_lowercase )
while start < end:
_lowercase : Dict = True
if is_chinese(bert_word[start] ):
_lowercase : int = min(end - start, _lowercase )
for i in range(_lowercase, 1, -1 ):
_lowercase : List[str] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1, start + i ):
_lowercase : Dict = '##' + bert_word[j]
_lowercase : Optional[int] = start + i
_lowercase : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[int]:
_lowercase : Any = []
for i in range(0, len(_lowercase ), 100 ):
_lowercase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowercase : Dict = [get_chinese_word(_lowercase ) for r in res]
ltp_res.extend(_lowercase )
assert len(_lowercase ) == len(_lowercase )
_lowercase : str = []
for i in range(0, len(_lowercase ), 100 ):
_lowercase : int = bert_tokenizer(lines[i : i + 100], add_special_tokens=_lowercase, truncation=_lowercase, max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowercase ) == len(_lowercase )
_lowercase : Optional[Any] = []
for input_ids, chinese_word in zip(_lowercase, _lowercase ):
_lowercase : Optional[Any] = []
for id in input_ids:
_lowercase : str = bert_tokenizer._convert_id_to_token(_lowercase )
input_tokens.append(_lowercase )
_lowercase : Any = add_sub_symbol(_lowercase, _lowercase )
_lowercase : str = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowercase ):
if token[:2] == "##":
_lowercase : str = token[2:]
# save chinese tokens' pos
if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ):
ref_id.append(_lowercase )
ref_ids.append(_lowercase )
assert len(_lowercase ) == len(_lowercase )
return ref_ids
def __UpperCamelCase ( _lowercase ) -> Tuple:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name, 'r', encoding='utf-8' ) as f:
_lowercase : int = f.readlines()
_lowercase : str = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowercase : Union[str, Any] = LTP(args.ltp ) # faster in GPU device
_lowercase : Union[str, Any] = BertTokenizer.from_pretrained(args.bert )
_lowercase : Optional[Any] = prepare_ref(_lowercase, _lowercase, _lowercase )
with open(args.save_path, 'w', encoding='utf-8' ) as f:
_lowercase : Optional[Any] = [json.dumps(_lowercase ) + '\n' for ref in ref_ids]
f.writelines(_lowercase )
if __name__ == "__main__":
_A : Any =argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
_A : Optional[int] =parser.parse_args()
main(args)
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Tuple =['''XLNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =['''XLNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLNetForMultipleChoice''',
'''XLNetForQuestionAnswering''',
'''XLNetForQuestionAnsweringSimple''',
'''XLNetForSequenceClassification''',
'''XLNetForTokenClassification''',
'''XLNetLMHeadModel''',
'''XLNetModel''',
'''XLNetPreTrainedModel''',
'''load_tf_weights_in_xlnet''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLNetForMultipleChoice''',
'''TFXLNetForQuestionAnsweringSimple''',
'''TFXLNetForSequenceClassification''',
'''TFXLNetForTokenClassification''',
'''TFXLNetLMHeadModel''',
'''TFXLNetMainLayer''',
'''TFXLNetModel''',
'''TFXLNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> float:
if edge <= 0 or not isinstance(_lowercase, _lowercase ):
raise ValueError('Length must be a positive.' )
return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2)
def __UpperCamelCase ( _lowercase ) -> float:
if edge <= 0 or not isinstance(_lowercase, _lowercase ):
raise ValueError('Length must be a positive.' )
return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """markuplm"""
def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[Any] = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : List[Any] = type_vocab_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Optional[int] = layer_norm_eps
_lowercase : Optional[Any] = position_embedding_type
_lowercase : str = use_cache
_lowercase : str = classifier_dropout
# additional properties
_lowercase : int = max_depth
_lowercase : Dict = max_xpath_tag_unit_embeddings
_lowercase : str = max_xpath_subs_unit_embeddings
_lowercase : List[str] = tag_pad_id
_lowercase : Optional[int] = subs_pad_id
_lowercase : Any = xpath_unit_hidden_size
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase = 1000 ) -> int:
_lowercase : Dict = -1
_lowercase : Optional[int] = 0
for a in range(1, n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
_lowercase : List[str] = (n * n - 2 * a * n) // (2 * n - 2 * a)
_lowercase : Tuple = n - a - b
if c * c == (a * a + b * b):
_lowercase : int = a * b * c
if candidate >= product:
_lowercase : Optional[int] = candidate
return product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> int:
if not isinstance(_lowercase, _lowercase ):
raise ValueError('Input must be an integer' )
if input_num <= 0:
raise ValueError('Input must be positive' )
return sum(
divisor for divisor in range(1, input_num // 2 + 1 ) if input_num % divisor == 0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 | 1 |
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = IFInpaintingPipeline
A_ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""}
A_ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
A_ = PipelineTesterMixin.required_optional_params - {"""latents"""}
def __UpperCAmelCase ( self : List[Any] ) -> Any:
'''simple docstring'''
return self._get_dummy_components()
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : str=0 ) -> Dict:
'''simple docstring'''
if str(UpperCamelCase_ ).startswith('mps' ):
_lowercase : List[str] = torch.manual_seed(UpperCamelCase_ )
else:
_lowercase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
_lowercase : str = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
_lowercase : Union[str, Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
_lowercase : List[str] = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
self._test_save_load_local()
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 4 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 | 1 |
'''simple docstring'''
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
_A : List[str] =logging.getLogger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any]=None ) -> Optional[int]:
'''simple docstring'''
super().__init__(
UpperCamelCase_ , question_encoder_tokenizer=UpperCamelCase_ , generator_tokenizer=UpperCamelCase_ , index=UpperCamelCase_ , init_retrieval=UpperCamelCase_ , )
_lowercase : Optional[int] = None
def __UpperCAmelCase ( self : str , UpperCamelCase_ : int ) -> Any:
'''simple docstring'''
logger.info('initializing retrieval' )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info('dist initialized' )
# needs to be set manually
_lowercase : int = self._infer_socket_ifname()
# avoid clash with the NCCL port
_lowercase : Union[str, Any] = str(distributed_port + 1 )
_lowercase : Optional[int] = dist.new_group(ranks=UpperCamelCase_ , backend='gloo' )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info('dist not initialized / main' )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def __UpperCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
return dist.get_rank(group=self.process_group ) == 0
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any]=torch.floataa ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = torch.empty(UpperCamelCase_ , dtype=UpperCamelCase_ )
dist.scatter(UpperCamelCase_ , src=0 , scatter_list=UpperCamelCase_ , group=self.process_group )
return target_tensor
def __UpperCAmelCase ( self : str ) -> Optional[int]:
'''simple docstring'''
_lowercase : Union[str, Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
_lowercase : List[str] = next((addr for addr in addrs if addr.startswith('e' )) , UpperCamelCase_ )
return ifname
def __UpperCAmelCase ( self : str , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : int ) -> Tuple[np.ndarray, List[dict]]:
'''simple docstring'''
if not dist.is_initialized():
_lowercase , _lowercase : Optional[Any] = self._main_retrieve(UpperCamelCase_ , UpperCamelCase_ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase_ )
# distributed training
_lowercase : int = dist.get_world_size(group=self.process_group )
# gather logic
_lowercase : Any = None
if self._is_main():
_lowercase : Optional[int] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(UpperCamelCase_ )]
dist.gather(torch.tensor(UpperCamelCase_ ) , dst=0 , gather_list=UpperCamelCase_ , group=self.process_group )
# scatter logic
_lowercase : Optional[Any] = question_hidden_states.shape[0]
_lowercase : Optional[Any] = []
_lowercase : int = []
if self._is_main():
assert len(UpperCamelCase_ ) == world_size
_lowercase , _lowercase : Any = self._main_retrieve(torch.cat(UpperCamelCase_ ).numpy() , UpperCamelCase_ )
_lowercase , _lowercase : int = torch.tensor(UpperCamelCase_ ), torch.tensor(UpperCamelCase_ )
_lowercase : str = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = self._chunk_tensor(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[Any] = self._scattered(UpperCamelCase_ , [n_queries, n_docs] , target_type=torch.intaa )
_lowercase : List[Any] = self._scattered(UpperCamelCase_ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(UpperCamelCase_ )
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Dict =['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] =['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = (DDIMParallelScheduler,)
A_ = (("""eta""", 0.0), ("""num_inference_steps""", 50))
def __UpperCAmelCase ( self : Any , **UpperCamelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Tuple = {
'num_train_timesteps': 1000,
'beta_start': 0.00_01,
'beta_end': 0.02,
'beta_schedule': 'linear',
'clip_sample': True,
}
config.update(**UpperCamelCase_ )
return config
def __UpperCAmelCase ( self : List[str] , **UpperCamelCase_ : Optional[Any] ) -> Dict:
'''simple docstring'''
_lowercase : List[str] = self.scheduler_classes[0]
_lowercase : List[str] = self.get_scheduler_config(**UpperCamelCase_ )
_lowercase : Optional[Any] = scheduler_class(**UpperCamelCase_ )
_lowercase , _lowercase : Dict = 10, 0.0
_lowercase : Any = self.dummy_model()
_lowercase : Any = self.dummy_sample_deter
scheduler.set_timesteps(UpperCamelCase_ )
for t in scheduler.timesteps:
_lowercase : List[Any] = model(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[Any] = scheduler.step(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ).prev_sample
return sample
def __UpperCAmelCase ( self : str ) -> List[str]:
'''simple docstring'''
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Any:
'''simple docstring'''
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=UpperCamelCase_ )
_lowercase : List[str] = self.scheduler_classes[0]
_lowercase : List[Any] = self.get_scheduler_config(steps_offset=1 )
_lowercase : str = scheduler_class(**UpperCamelCase_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=UpperCamelCase_ , beta_end=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict ) -> List[Any]:
'''simple docstring'''
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
self.check_over_configs(thresholding=UpperCamelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=UpperCamelCase_ , prediction_type=UpperCamelCase_ , sample_max_value=UpperCamelCase_ , )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
for t in [1, 10, 49]:
self.check_over_forward(time_step=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=UpperCamelCase_ , num_inference_steps=UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
'''simple docstring'''
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=UpperCamelCase_ , eta=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Optional[Any] = self.scheduler_classes[0]
_lowercase : List[Any] = self.get_scheduler_config()
_lowercase : str = scheduler_class(**UpperCamelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def __UpperCAmelCase ( self : int ) -> Dict:
'''simple docstring'''
_lowercase : Any = self.scheduler_classes[0]
_lowercase : Optional[Any] = self.get_scheduler_config()
_lowercase : List[Any] = scheduler_class(**UpperCamelCase_ )
_lowercase , _lowercase : Tuple = 10, 0.0
scheduler.set_timesteps(UpperCamelCase_ )
_lowercase : List[str] = self.dummy_model()
_lowercase : List[str] = self.dummy_sample_deter
_lowercase : Optional[Any] = self.dummy_sample_deter + 0.1
_lowercase : str = self.dummy_sample_deter - 0.1
_lowercase : str = samplea.shape[0]
_lowercase : Tuple = torch.stack([samplea, samplea, samplea] , dim=0 )
_lowercase : str = torch.arange(UpperCamelCase_ )[0:3, None].repeat(1 , UpperCamelCase_ )
_lowercase : int = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_lowercase : List[str] = scheduler.batch_step_no_noise(UpperCamelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , UpperCamelCase_ )
_lowercase : Dict = torch.sum(torch.abs(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2
assert abs(result_mean.item() - 0.49_82 ) < 1E-3
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : Any = self.full_loop()
_lowercase : Optional[Any] = torch.sum(torch.abs(UpperCamelCase_ ) )
_lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2
assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3
def __UpperCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
_lowercase : int = self.full_loop(prediction_type='v_prediction' )
_lowercase : Tuple = torch.sum(torch.abs(UpperCamelCase_ ) )
_lowercase : List[Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 52.53_02 ) < 1E-2
assert abs(result_mean.item() - 0.06_84 ) < 1E-3
def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[Any] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 )
_lowercase : Union[str, Any] = torch.sum(torch.abs(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2
assert abs(result_mean.item() - 0.19_51 ) < 1E-3
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Optional[int] = self.full_loop(set_alpha_to_one=UpperCamelCase_ , beta_start=0.01 )
_lowercase : str = torch.sum(torch.abs(UpperCamelCase_ ) )
_lowercase : Tuple = torch.mean(torch.abs(UpperCamelCase_ ) )
assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2
assert abs(result_mean.item() - 0.19_41 ) < 1E-3
| 4 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 | 1 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any=13 , UpperCamelCase_ : int=32 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Optional[int]=[10, 20, 30, 40] , UpperCamelCase_ : Optional[Any]=[2, 2, 3, 2] , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : List[Any]=10 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : int=["stage2", "stage3", "stage4"] , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : List[str]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : Union[str, Any] = parent
_lowercase : Optional[int] = batch_size
_lowercase : List[Any] = image_size
_lowercase : Union[str, Any] = num_channels
_lowercase : List[Any] = num_stages
_lowercase : Optional[int] = hidden_sizes
_lowercase : int = depths
_lowercase : Optional[int] = is_training
_lowercase : Any = use_labels
_lowercase : Any = intermediate_size
_lowercase : Union[str, Any] = hidden_act
_lowercase : Tuple = type_sequence_label_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Tuple = out_features
_lowercase : Tuple = num_labels
_lowercase : Any = scope
_lowercase : int = num_stages
def __UpperCAmelCase ( self : int ) -> str:
'''simple docstring'''
_lowercase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : List[str] = None
if self.use_labels:
_lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : List[Any] = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self : int ) -> str:
'''simple docstring'''
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
'''simple docstring'''
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCamelCase_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCamelCase_ , loss_ignore_index=255 , num_labels=self.num_labels , )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = UperNetForSemanticSegmentation(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
_lowercase : int = model(UpperCamelCase_ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.prepare_config_and_inputs()
(
(
_lowercase
) , (
_lowercase
) , (
_lowercase
) ,
) : str = config_and_inputs
_lowercase : Optional[Any] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
A_ = {"""image-segmentation""": UperNetForSemanticSegmentation} if is_torch_available() else {}
A_ = False
A_ = False
A_ = False
A_ = False
A_ = False
A_ = False
def __UpperCAmelCase ( self : str ) -> Any:
'''simple docstring'''
_lowercase : Tuple = UperNetModelTester(self )
_lowercase : str = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 )
def __UpperCAmelCase ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
return
def __UpperCAmelCase ( self : List[str] ) -> Any:
'''simple docstring'''
_lowercase , _lowercase : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Optional[Any] = model_class(UpperCamelCase_ )
_lowercase : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : List[Any] = [*signature.parameters.keys()]
_lowercase : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase_ )
@unittest.skip(reason='UperNet does not use inputs_embeds' )
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not support input and output embeddings' )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
'''simple docstring'''
pass
@unittest.skip(reason='UperNet does not have a base model' )
def __UpperCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def __UpperCAmelCase ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
def check_hidden_states_output(UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ):
_lowercase : Optional[int] = model_class(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
with torch.no_grad():
_lowercase : str = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowercase : Tuple = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : int = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : List[Any] = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common()
_lowercase : List[str] = _config_zero_init(UpperCamelCase_ )
_lowercase : Any = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_lowercase : str = model_class(config=UpperCamelCase_ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@unittest.skip(reason='UperNet does not have tied weights' )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
pass
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : Any = UperNetForSemanticSegmentation.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def __UpperCamelCase ( ) -> int:
_lowercase : Dict = hf_hub_download(
repo_id='hf-internal-testing/fixtures_ade20k', repo_type='dataset', filename='ADE_val_00000001.jpg' )
_lowercase : Optional[int] = Image.open(_lowercase ).convert('RGB' )
return image
@require_torch
@require_vision
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' )
_lowercase : List[str] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(UpperCamelCase_ )
_lowercase : Optional[Any] = prepare_img()
_lowercase : Optional[int] = processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ )
with torch.no_grad():
_lowercase : List[str] = model(**UpperCamelCase_ )
_lowercase : Dict = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
_lowercase : Optional[Any] = torch.tensor(
[[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : str = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' )
_lowercase : Union[str, Any] = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(UpperCamelCase_ )
_lowercase : Tuple = prepare_img()
_lowercase : List[Any] = processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ )
with torch.no_grad():
_lowercase : Optional[int] = model(**UpperCamelCase_ )
_lowercase : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
_lowercase : int = torch.tensor(
[[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(UpperCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFViTForImageClassification, TFViTModel
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=13 , UpperCamelCase_ : Dict=30 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Any=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Any=32 , UpperCamelCase_ : str=2 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : Any=37 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Union[str, Any]=10 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Optional[Any]=3 , UpperCamelCase_ : Any=None , ) -> str:
'''simple docstring'''
_lowercase : Optional[int] = parent
_lowercase : List[str] = batch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = patch_size
_lowercase : List[str] = num_channels
_lowercase : Optional[Any] = is_training
_lowercase : Optional[Any] = use_labels
_lowercase : Any = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Union[str, Any] = num_attention_heads
_lowercase : int = intermediate_size
_lowercase : str = hidden_act
_lowercase : Union[str, Any] = hidden_dropout_prob
_lowercase : Optional[int] = attention_probs_dropout_prob
_lowercase : Any = type_sequence_label_size
_lowercase : Dict = initializer_range
_lowercase : List[Any] = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowercase : int = (image_size // patch_size) ** 2
_lowercase : int = num_patches + 1
def __UpperCAmelCase ( self : Any ) -> Tuple:
'''simple docstring'''
_lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : List[Any] = None
if self.use_labels:
_lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_lowercase : Any = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self : Tuple ) -> int:
'''simple docstring'''
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = TFViTModel(config=UpperCamelCase_ )
_lowercase : Optional[Any] = model(UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# Test with an image with different size than the one specified in config.
_lowercase : Union[str, Any] = self.image_size // 2
_lowercase : List[str] = pixel_values[:, :, :image_size, :image_size]
_lowercase : str = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ )
_lowercase : Dict = (image_size // self.patch_size) ** 2 + 1
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Tuple = self.type_sequence_label_size
_lowercase : int = TFViTForImageClassification(UpperCamelCase_ )
_lowercase : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# Test with an image with different size than the one specified in config.
_lowercase : List[Any] = self.image_size // 2
_lowercase : Any = pixel_values[:, :, :image_size, :image_size]
_lowercase : Optional[Any] = model(UpperCamelCase_ , interpolate_pos_encoding=UpperCamelCase_ , training=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
_lowercase : Dict = 1
_lowercase : Union[str, Any] = TFViTForImageClassification(UpperCamelCase_ )
_lowercase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
_lowercase : Optional[int] = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __UpperCAmelCase ( self : Union[str, Any] ) -> int:
'''simple docstring'''
_lowercase : Optional[Any] = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase : int = config_and_inputs
_lowercase : Tuple = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (TFViTModel, TFViTForImageClassification) if is_tf_available() else ()
A_ = (
{"""feature-extraction""": TFViTModel, """image-classification""": TFViTForImageClassification}
if is_tf_available()
else {}
)
A_ = False
A_ = False
A_ = False
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
_lowercase : str = TFViTModelTester(self )
_lowercase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 )
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='ViT does not use inputs_embeds' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
@unittest.skip(reason='ViT does not use inputs_embeds' )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
_lowercase , _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Optional[int] = model_class(UpperCamelCase_ )
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) )
_lowercase : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase_ , tf.keras.layers.Layer ) )
def __UpperCAmelCase ( self : List[Any] ) -> Any:
'''simple docstring'''
_lowercase , _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Optional[Any] = model_class(UpperCamelCase_ )
_lowercase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : Any = [*signature.parameters.keys()]
_lowercase : Tuple = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = TFViTModel.from_pretrained('google/vit-base-patch16-224' )
self.assertIsNotNone(UpperCamelCase_ )
def __UpperCamelCase ( ) -> int:
_lowercase : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> str:
'''simple docstring'''
_lowercase : Optional[Any] = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' )
_lowercase : List[Any] = self.default_image_processor
_lowercase : Dict = prepare_img()
_lowercase : int = image_processor(images=UpperCamelCase_ , return_tensors='tf' )
# forward pass
_lowercase : Optional[int] = model(**UpperCamelCase_ )
# verify the logits
_lowercase : Optional[Any] = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
_lowercase : str = tf.constant([-0.27_44, 0.82_15, -0.08_36] )
tf.debugging.assert_near(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 )
| 4 |
'''simple docstring'''
from __future__ import annotations
import requests
def __UpperCamelCase ( _lowercase ) -> dict:
_lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowercase ).json()
def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]:
_lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
_lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def __UpperCamelCase ( _lowercase = 10 ) -> str:
_lowercase : Tuple = hackernews_top_stories(_lowercase )
return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
'''simple docstring'''
import unittest
from pathlib import Path
from tempfile import NamedTemporaryFile, TemporaryDirectory
from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline
from transformers.convert_graph_to_onnx import (
convert,
ensure_valid_input,
generate_identified_filename,
infer_shapes,
quantize,
)
from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow
class lowerCamelCase__ :
'''simple docstring'''
def __UpperCAmelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> List[str]:
'''simple docstring'''
return None
class lowerCamelCase__ :
'''simple docstring'''
def __UpperCAmelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
return None
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
A_ = [
# (model_name, model_kwargs)
("""bert-base-cased""", {}),
("""gpt2""", {"""use_cache""": False}), # We don't support exporting GPT2 past keys anymore
]
@require_tf
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCamelCase_ , 'tf' , 12 , **UpperCamelCase_ )
@require_torch
@slow
def __UpperCAmelCase ( self : Any ) -> List[Any]:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
self._test_export(UpperCamelCase_ , 'pt' , 12 , **UpperCamelCase_ )
@require_torch
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
'''simple docstring'''
from transformers import BertModel
_lowercase : Optional[Any] = ['[UNK]', '[SEP]', '[CLS]', '[PAD]', '[MASK]', 'some', 'other', 'words']
with NamedTemporaryFile(mode='w+t' ) as vocab_file:
vocab_file.write('\n'.join(UpperCamelCase_ ) )
vocab_file.flush()
_lowercase : Optional[Any] = BertTokenizerFast(vocab_file.name )
with TemporaryDirectory() as bert_save_dir:
_lowercase : Any = BertModel(BertConfig(vocab_size=len(UpperCamelCase_ ) ) )
model.save_pretrained(UpperCamelCase_ )
self._test_export(UpperCamelCase_ , 'pt' , 12 , UpperCamelCase_ )
@require_tf
@slow
def __UpperCAmelCase ( self : int ) -> str:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_lowercase : Dict = self._test_export(UpperCamelCase_ , 'tf' , 12 , **UpperCamelCase_ )
_lowercase : str = quantize(Path(UpperCamelCase_ ) )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
@require_torch
@slow
def __UpperCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST:
_lowercase : int = self._test_export(UpperCamelCase_ , 'pt' , 12 , **UpperCamelCase_ )
_lowercase : List[Any] = quantize(UpperCamelCase_ )
# Ensure the actual quantized model is not bigger than the original one
if quantized_path.stat().st_size >= Path(UpperCamelCase_ ).stat().st_size:
self.fail('Quantized model is bigger than initial ONNX model' )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Optional[Any] ) -> List[Any]:
'''simple docstring'''
try:
# Compute path
with TemporaryDirectory() as tempdir:
_lowercase : int = Path(UpperCamelCase_ ).joinpath('model.onnx' )
# Remove folder if exists
if path.parent.exists():
path.parent.rmdir()
# Export
convert(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
return path
except Exception as e:
self.fail(UpperCamelCase_ )
@require_torch
@require_tokenizers
@slow
def __UpperCAmelCase ( self : Any ) -> Tuple:
'''simple docstring'''
from transformers import BertModel
_lowercase : List[str] = BertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_lowercase : List[str] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , 'pt' )
@require_tf
@require_tokenizers
@slow
def __UpperCAmelCase ( self : str ) -> List[str]:
'''simple docstring'''
from transformers import TFBertModel
_lowercase : Any = TFBertModel(BertConfig.from_pretrained('lysandre/tiny-bert-random' ) )
_lowercase : Union[str, Any] = BertTokenizerFast.from_pretrained('lysandre/tiny-bert-random' )
self._test_infer_dynamic_axis(UpperCamelCase_ , UpperCamelCase_ , 'tf' )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Any ) -> List[Any]:
'''simple docstring'''
_lowercase : str = FeatureExtractionPipeline(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : str = ['input_ids', 'token_type_ids', 'attention_mask', 'output_0', 'output_1']
_lowercase , _lowercase , _lowercase , _lowercase : Dict = infer_shapes(UpperCamelCase_ , UpperCamelCase_ )
# Assert all variables are present
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) )
self.assertTrue(all(var_name in shapes for var_name in variable_names ) )
self.assertSequenceEqual(variable_names[:3] , UpperCamelCase_ )
self.assertSequenceEqual(variable_names[3:] , UpperCamelCase_ )
# Assert inputs are {0: batch, 1: sequence}
for var_name in ["input_ids", "token_type_ids", "attention_mask"]:
self.assertDictEqual(shapes[var_name] , {0: 'batch', 1: 'sequence'} )
# Assert outputs are {0: batch, 1: sequence} and {0: batch}
self.assertDictEqual(shapes['output_0'] , {0: 'batch', 1: 'sequence'} )
self.assertDictEqual(shapes['output_1'] , {0: 'batch'} )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
_lowercase : Tuple = ['input_ids', 'attention_mask', 'token_type_ids']
_lowercase : str = {'input_ids': [1, 2, 3, 4], 'attention_mask': [0, 0, 0, 0], 'token_type_ids': [1, 1, 1, 1]}
_lowercase , _lowercase : str = ensure_valid_input(FuncContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ )
# Should have exactly the same number of args (all are valid)
self.assertEqual(len(UpperCamelCase_ ) , 3 )
# Should have exactly the same input names
self.assertEqual(set(UpperCamelCase_ ) , set(UpperCamelCase_ ) )
# Parameter should be reordered according to their respective place in the function:
# (input_ids, token_type_ids, attention_mask)
self.assertEqual(UpperCamelCase_ , (tokens['input_ids'], tokens['token_type_ids'], tokens['attention_mask']) )
# Generated args are interleaved with another args (for instance parameter "past" in GPT2)
_lowercase , _lowercase : str = ensure_valid_input(FuncNonContiguousArgs() , UpperCamelCase_ , UpperCamelCase_ )
# Should have exactly the one arg (all before the one not provided "some_other_args")
self.assertEqual(len(UpperCamelCase_ ) , 1 )
self.assertEqual(len(UpperCamelCase_ ) , 1 )
# Should have only "input_ids"
self.assertEqual(inputs_args[0] , tokens['input_ids'] )
self.assertEqual(ordered_input_names[0] , 'input_ids' )
def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = generate_identified_filename(Path('/home/something/my_fake_model.onnx' ) , '-test' )
self.assertEqual('/home/something/my_fake_model-test.onnx' , generated.as_posix() )
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Dict ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """megatron-bert"""
def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Optional[Any] = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : List[Any] = position_embedding_type
_lowercase : Optional[Any] = use_cache
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Tuple = args.pruning_method
_lowercase : int = args.threshold
_lowercase : str = args.model_name_or_path.rstrip('/' )
_lowercase : Dict = args.target_model_path
print(f'''Load fine-pruned model from {model_name_or_path}''' )
_lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) )
_lowercase : List[Any] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_lowercase : Optional[int] = tensor
print(f'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_lowercase : List[str] = tensor
print(f'''Copied layer {name}''' )
elif "bias" in name:
_lowercase : Dict = tensor
print(f'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase )
_lowercase : Optional[Any] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_lowercase : Optional[Any] = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase )
_lowercase : str = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_lowercase : str = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase )
_lowercase : Optional[int] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_lowercase : Optional[int] = name[:-6]
_lowercase : List[str] = model[f'''{prefix_}mask_scores''']
_lowercase , _lowercase : Union[str, Any] = -0.1, 1.1
_lowercase : str = torch.sigmoid(_lowercase )
_lowercase : int = s * (r - l) + l
_lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 )
_lowercase : Union[str, Any] = tensor * mask
print(f'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
_lowercase : List[Any] = os.path.join(
os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' )
if not os.path.isdir(_lowercase ):
shutil.copytree(_lowercase, _lowercase )
print(f'''\nCreated folder {target_model_path}''' )
torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pruning_method''',
choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''],
type=str,
required=True,
help=(
'''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'''
''' sigmoied_threshold = Soft movement pruning)'''
),
)
parser.add_argument(
'''--threshold''',
type=float,
required=False,
help=(
'''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'''
'''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'''
'''Not needed for `l0`'''
),
)
parser.add_argument(
'''--model_name_or_path''',
type=str,
required=True,
help='''Folder containing the model that was previously fine-pruned''',
)
parser.add_argument(
'''--target_model_path''',
default=None,
type=str,
required=False,
help='''Folder containing the model that was previously fine-pruned''',
)
_A : List[Any] =parser.parse_args()
main(args)
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> int:
_enforce_args(_lowercase, _lowercase )
if n == 0:
return 0
_lowercase : List[Any] = float('-inf' )
for i in range(1, n + 1 ):
_lowercase : int = max(
_lowercase, prices[i - 1] + naive_cut_rod_recursive(n - i, _lowercase ) )
return max_revue
def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]:
_enforce_args(_lowercase, _lowercase )
_lowercase : int = [float('-inf' ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(_lowercase, _lowercase, _lowercase )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[str]:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
_lowercase : int = float('-inf' )
for i in range(1, n + 1 ):
_lowercase : List[str] = max(
_lowercase, prices[i - 1] + _top_down_cut_rod_recursive(n - i, _lowercase, _lowercase ), )
_lowercase : List[str] = max_revenue
return max_rev[n]
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_enforce_args(_lowercase, _lowercase )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
_lowercase : Any = [float('-inf' ) for _ in range(n + 1 )]
_lowercase : List[str] = 0
for i in range(1, n + 1 ):
_lowercase : Tuple = max_rev[i]
for j in range(1, i + 1 ):
_lowercase : Optional[int] = max(_lowercase, prices[j - 1] + max_rev[i - j] )
_lowercase : Union[str, Any] = max_revenue_i
return max_rev[n]
def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]:
if n < 0:
_lowercase : int = f'''n must be greater than or equal to 0. Got n = {n}'''
raise ValueError(_lowercase )
if n > len(_lowercase ):
_lowercase : Any = (
'Each integral piece of rod must have a corresponding price. '
f'''Got n = {n} but length of prices = {len(_lowercase )}'''
)
raise ValueError(_lowercase )
def __UpperCamelCase ( ) -> List[str]:
_lowercase : Optional[Any] = [6, 10, 12, 15, 20, 23]
_lowercase : Optional[int] = len(_lowercase )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
_lowercase : int = 36
_lowercase : Optional[int] = top_down_cut_rod(_lowercase, _lowercase )
_lowercase : List[Any] = bottom_up_cut_rod(_lowercase, _lowercase )
_lowercase : List[str] = naive_cut_rod_recursive(_lowercase, _lowercase )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 4 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = [[1, 2, 4], [1, 2, 3, 4]]
_lowercase : Tuple = DisjunctiveConstraint(UpperCamelCase_ )
self.assertTrue(isinstance(dc.token_ids , UpperCamelCase_ ) )
with self.assertRaises(UpperCamelCase_ ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(UpperCamelCase_ ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Union[str, Any] = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(UpperCamelCase_ ):
DisjunctiveConstraint(UpperCamelCase_ ) # fails here
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
_lowercase : List[Any] = [[1, 2, 3], [1, 2, 4]]
_lowercase : Optional[int] = DisjunctiveConstraint(UpperCamelCase_ )
_lowercase , _lowercase , _lowercase : Any = dc.update(1 )
_lowercase : Dict = stepped is True and completed is False and reset is False
self.assertTrue(UpperCamelCase_ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_lowercase , _lowercase , _lowercase : Dict = dc.update(2 )
_lowercase : int = stepped is True and completed is False and reset is False
self.assertTrue(UpperCamelCase_ )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_lowercase , _lowercase , _lowercase : Optional[int] = dc.update(3 )
_lowercase : str = stepped is True and completed is True and reset is False
self.assertTrue(UpperCamelCase_ )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def __UpperCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
_lowercase : str = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
_lowercase : Union[str, Any] = DisjunctiveConstraint(UpperCamelCase_ )
_lowercase , _lowercase , _lowercase : Dict = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
_lowercase , _lowercase , _lowercase : List[str] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
_lowercase , _lowercase , _lowercase : int = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
_lowercase , _lowercase , _lowercase : List[Any] = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
_lowercase , _lowercase , _lowercase : Dict = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
_lowercase , _lowercase , _lowercase : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
_lowercase , _lowercase , _lowercase : Any = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 | 1 |
'''simple docstring'''
_A : List[Any] ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : str =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 | 1 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __UpperCamelCase ( _lowercase ) -> None:
_lowercase , _lowercase : List[Any] = analyze_text(_lowercase )
_lowercase : Any = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
_lowercase : Union[str, Any] = sum(single_char_strings.values() )
# one length string
_lowercase : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_lowercase : Any = single_char_strings[ch]
_lowercase : int = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_lowercase : str = sum(two_char_strings.values() )
_lowercase : str = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_lowercase : Optional[Any] = cha + cha
if sequence in two_char_strings:
_lowercase : int = two_char_strings[sequence]
_lowercase : Optional[int] = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]:
_lowercase : Optional[Any] = Counter() # type: ignore
_lowercase : List[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __UpperCamelCase ( ) -> List[Any]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 4 | 1 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor
from ..utils import is_datasets_available
from .base import PipelineTool
if is_datasets_available():
from datasets import load_dataset
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """microsoft/speecht5_tts"""
A_ = (
"""This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """
"""text to read (in English) and returns a waveform object containing the sound."""
)
A_ = """text_reader"""
A_ = SpeechTaProcessor
A_ = SpeechTaForTextToSpeech
A_ = SpeechTaHifiGan
A_ = ["""text"""]
A_ = ["""audio"""]
def __UpperCAmelCase ( self : List[Any] ) -> Any:
'''simple docstring'''
if self.post_processor is None:
_lowercase : List[str] = 'microsoft/speecht5_hifigan'
super().setup()
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict=None ) -> Dict:
'''simple docstring'''
_lowercase : List[str] = self.pre_processor(text=UpperCamelCase_ , return_tensors='pt' , truncation=UpperCamelCase_ )
if speaker_embeddings is None:
if not is_datasets_available():
raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' )
_lowercase : Dict = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' )
_lowercase : Optional[Any] = torch.tensor(embeddings_dataset[7305]['xvector'] ).unsqueeze(0 )
return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings}
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
with torch.no_grad():
return self.model.generate_speech(**UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
with torch.no_grad():
return self.post_processor(UpperCamelCase_ ).cpu().detach()
| 4 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' )
_lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' )
_lowercase : List[Any] = 'The dog is cute and lives in the garden house'
_lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] )
_lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_lowercase : Tuple = jnp.array(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
_lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state']
self.assertEqual(output.shape , UpperCamelCase_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
| 4 | 1 |
'''simple docstring'''
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
_A : Union[str, Any] =logging.getLogger(__name__)
require_version('''pytorch_lightning>=1.0.4''')
_A : List[Any] ={
'''base''': AutoModel,
'''sequence-classification''': AutoModelForSequenceClassification,
'''question-answering''': AutoModelForQuestionAnswering,
'''pretraining''': AutoModelForPreTraining,
'''token-classification''': AutoModelForTokenClassification,
'''language-modeling''': AutoModelWithLMHead,
'''summarization''': AutoModelForSeqaSeqLM,
'''translation''': AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
_A : Optional[int] ={
'''linear''': get_linear_schedule_with_warmup,
'''cosine''': get_cosine_schedule_with_warmup,
'''cosine_w_restarts''': get_cosine_with_hard_restarts_schedule_with_warmup,
'''polynomial''': get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
_A : Any =sorted(arg_to_scheduler.keys())
_A : Dict ='''{''' + ''', '''.join(arg_to_scheduler_choices) + '''}'''
class lowerCamelCase__ ( pl.LightningModule ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : argparse.Namespace , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : List[str]="base" , UpperCamelCase_ : int=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Tuple , ) -> Optional[int]:
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(UpperCamelCase_ )
_lowercase : List[Any] = 0
_lowercase : Any = Path(self.hparams.output_dir )
_lowercase : str = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
_lowercase : List[Any] = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=UpperCamelCase_ , **UpperCamelCase_ , )
else:
_lowercase : PretrainedConfig = config
_lowercase : Dict = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , UpperCamelCase_ , UpperCamelCase_ ):
assert hasattr(self.config , UpperCamelCase_ ), F'''model config doesn\'t have a `{p}` attribute'''
setattr(self.config , UpperCamelCase_ , getattr(self.hparams , UpperCamelCase_ ) )
if tokenizer is None:
_lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=UpperCamelCase_ , )
else:
_lowercase : PreTrainedTokenizer = tokenizer
_lowercase : Any = MODEL_MODES[mode]
if model is None:
_lowercase : Union[str, Any] = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=UpperCamelCase_ , )
else:
_lowercase : str = model
def __UpperCAmelCase ( self : Union[str, Any] , *UpperCamelCase_ : int , **UpperCamelCase_ : str ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[str] = self.model_type.from_pretrained(*UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
_lowercase : Optional[Any] = arg_to_scheduler[self.hparams.lr_scheduler]
_lowercase : List[str] = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
_lowercase : Optional[int] = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def __UpperCAmelCase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.model
_lowercase : int = ['bias', 'LayerNorm.weight']
_lowercase : int = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
_lowercase : Dict = Adafactor(
UpperCamelCase_ , lr=self.hparams.learning_rate , scale_parameter=UpperCamelCase_ , relative_step=UpperCamelCase_ )
else:
_lowercase : str = AdamW(
UpperCamelCase_ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
_lowercase : Any = optimizer
_lowercase : str = self.get_lr_scheduler()
return [optimizer], [scheduler]
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] ) -> int:
'''simple docstring'''
return self.validation_step(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : str ) -> str:
'''simple docstring'''
return self.validation_end(UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> int:
'''simple docstring'''
_lowercase : Union[str, Any] = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
_lowercase : Dict = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
if stage == "test":
_lowercase : str = len(self.test_dataloader().dataset )
else:
_lowercase : Union[str, Any] = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=UpperCamelCase_ )
_lowercase : str = len(self.train_dataloader().dataset )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ) -> List[Any]:
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
return self.train_loader
def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Tuple ) -> List[str]:
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
UpperCamelCase_ , list(filter(UpperCamelCase_ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict[str, Any] ) -> None:
'''simple docstring'''
_lowercase : Tuple = self.output_dir.joinpath('best_tfmr' )
_lowercase : List[str] = self.step_count
self.model.save_pretrained(UpperCamelCase_ )
self.tokenizer.save_pretrained(UpperCamelCase_ )
@staticmethod
def __UpperCAmelCase ( UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Optional[int]:
'''simple docstring'''
parser.add_argument(
'--model_name_or_path' , default=UpperCamelCase_ , type=UpperCamelCase_ , required=UpperCamelCase_ , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=UpperCamelCase_ , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=UpperCamelCase_ , type=UpperCamelCase_ , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(UpperCamelCase_ ).parent / 'test_run' / 'cache' ) , type=UpperCamelCase_ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=UpperCamelCase_ , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=UpperCamelCase_ , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=UpperCamelCase_ , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=UpperCamelCase_ , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=UpperCamelCase_ , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=UpperCamelCase_ , metavar=UpperCamelCase_ , type=UpperCamelCase_ , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=UpperCamelCase_ , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=UpperCamelCase_ , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=UpperCamelCase_ , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=UpperCamelCase_ , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=UpperCamelCase_ )
parser.add_argument('--train_batch_size' , default=32 , type=UpperCamelCase_ )
parser.add_argument('--eval_batch_size' , default=32 , type=UpperCamelCase_ )
parser.add_argument('--adafactor' , action='store_true' )
class lowerCamelCase__ ( pl.Callback ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] ) -> str:
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class lowerCamelCase__ ( pl.Callback ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(UpperCamelCase_ )
class lowerCamelCase__ ( pl.Callback ):
'''simple docstring'''
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = trainer.lr_schedulers[0]['scheduler']
_lowercase : Union[str, Any] = {F'''lr_group_{i}''': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(UpperCamelCase_ )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> Any:
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
_lowercase : Optional[int] = trainer.callback_metrics
# Log results
for key in sorted(UpperCamelCase_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) )
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : pl.Trainer , UpperCamelCase_ : pl.LightningModule ) -> List[str]:
'''simple docstring'''
rank_zero_info('***** Test results *****' )
_lowercase : int = trainer.callback_metrics
# Log and save results to file
_lowercase : List[Any] = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(UpperCamelCase_ , 'w' ) as writer:
for key in sorted(UpperCamelCase_ ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(UpperCamelCase_ , str(metrics[key] ) ) )
def __UpperCamelCase ( _lowercase, _lowercase ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir', default=str(Path(_lowercase ).parent / 'test_run' / 'model_checkpoints' ), type=_lowercase, help='The output directory where the model predictions and checkpoints will be written.', )
parser.add_argument(
'--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit', )
parser.add_argument(
'--fp16_opt_level', type=_lowercase, default='O2', help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
), )
parser.add_argument('--n_tpu_cores', dest='tpu_cores', type=_lowercase )
parser.add_argument('--max_grad_norm', dest='gradient_clip_val', default=1.0, type=_lowercase, help='Max gradient norm' )
parser.add_argument('--do_train', action='store_true', help='Whether to run training.' )
parser.add_argument('--do_predict', action='store_true', help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps', dest='accumulate_grad_batches', type=_lowercase, default=1, help='Number of updates steps to accumulate before performing a backward/update pass.', )
parser.add_argument('--seed', type=_lowercase, default=42, help='random seed for initialization' )
parser.add_argument(
'--data_dir', default=str(Path(_lowercase ).parent / 'test_run' / 'dummy-train-data' ), type=_lowercase, help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.', )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=None, _lowercase=True, _lowercase=[], _lowercase=None, _lowercase=None, **_lowercase, ) -> int:
pl.seed_everything(args.seed )
# init model
_lowercase : Any = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=_lowercase )
# add custom checkpoints
if checkpoint_callback is None:
_lowercase : str = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir, prefix='checkpoint', monitor='val_loss', mode='min', save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(_lowercase )
if logging_callback is None:
_lowercase : str = LoggingCallback()
_lowercase : Optional[int] = {}
if args.fpaa:
_lowercase : Any = 16
if args.gpus > 1:
_lowercase : List[Any] = 'auto'
_lowercase : List[Any] = 'ddp'
_lowercase : Dict = args.accumulate_grad_batches
_lowercase : List[str] = None
_lowercase : List[str] = 'auto'
_lowercase : Any = pl.Trainer.from_argparse_args(
_lowercase, weights_summary=_lowercase, callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback], logger=_lowercase, val_check_interval=1, num_sanity_val_steps=2, **_lowercase, )
if args.do_train:
trainer.fit(_lowercase )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 4 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A : int =logging.get_logger(__name__)
_A : Union[str, Any] ={
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_vision_model"""
def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Optional[Any] = hidden_size
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : Tuple = patch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = attention_dropout
_lowercase : int = layer_norm_eps
_lowercase : Optional[int] = hidden_act
_lowercase : str = qkv_bias
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_qformer"""
def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : List[Any] = num_attention_heads
_lowercase : Optional[int] = hidden_act
_lowercase : Union[str, Any] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Dict = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = layer_norm_eps
_lowercase : List[str] = position_embedding_type
_lowercase : str = cross_attention_frequency
_lowercase : int = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Optional[int] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip"""
A_ = True
def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
if vision_config is None:
_lowercase : Any = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
_lowercase : List[Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
_lowercase : List[Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
_lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ )
_lowercase : str = self.text_config.tie_word_embeddings
_lowercase : int = self.text_config.is_encoder_decoder
_lowercase : Tuple = num_query_tokens
_lowercase : str = self.vision_config.hidden_size
_lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_lowercase : List[Any] = 1.0
_lowercase : int = 0.02
@classmethod
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : Optional[int] = self.vision_config.to_dict()
_lowercase : Optional[Any] = self.qformer_config.to_dict()
_lowercase : Tuple = self.text_config.to_dict()
_lowercase : Dict = self.__class__.model_type
return output
| 4 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, apply_forward_hook
from .modeling_utils import ModelMixin
from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer
@dataclass
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = 42
class lowerCamelCase__ ( A , A ):
'''simple docstring'''
@register_to_config
def __init__( self : Any , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 3 , UpperCamelCase_ : Tuple[str] = ("DownEncoderBlock2D",) , UpperCamelCase_ : Tuple[str] = ("UpDecoderBlock2D",) , UpperCamelCase_ : Tuple[int] = (64,) , UpperCamelCase_ : int = 1 , UpperCamelCase_ : str = "silu" , UpperCamelCase_ : int = 3 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : int = 256 , UpperCamelCase_ : int = 32 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : float = 0.1_82_15 , UpperCamelCase_ : str = "group" , ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
# pass init params to Encoder
_lowercase : List[str] = Encoder(
in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , down_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , double_z=UpperCamelCase_ , )
_lowercase : Any = vq_embed_dim if vq_embed_dim is not None else latent_channels
_lowercase : Tuple = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 )
_lowercase : List[str] = VectorQuantizer(UpperCamelCase_ , UpperCamelCase_ , beta=0.25 , remap=UpperCamelCase_ , sane_index_shape=UpperCamelCase_ )
_lowercase : Optional[Any] = nn.Convad(UpperCamelCase_ , UpperCamelCase_ , 1 )
# pass init params to Decoder
_lowercase : Tuple = Decoder(
in_channels=UpperCamelCase_ , out_channels=UpperCamelCase_ , up_block_types=UpperCamelCase_ , block_out_channels=UpperCamelCase_ , layers_per_block=UpperCamelCase_ , act_fn=UpperCamelCase_ , norm_num_groups=UpperCamelCase_ , norm_type=UpperCamelCase_ , )
@apply_forward_hook
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> VQEncoderOutput:
'''simple docstring'''
_lowercase : List[str] = self.encoder(UpperCamelCase_ )
_lowercase : Optional[int] = self.quant_conv(UpperCamelCase_ )
if not return_dict:
return (h,)
return VQEncoderOutput(latents=UpperCamelCase_ )
@apply_forward_hook
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
if not force_not_quantize:
_lowercase , _lowercase , _lowercase : int = self.quantize(UpperCamelCase_ )
else:
_lowercase : Optional[Any] = h
_lowercase : Tuple = self.post_quant_conv(UpperCamelCase_ )
_lowercase : List[str] = self.decoder(UpperCamelCase_ , quant if self.config.norm_type == 'spatial' else None )
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : torch.FloatTensor , UpperCamelCase_ : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]:
'''simple docstring'''
_lowercase : Any = sample
_lowercase : Optional[int] = self.encode(UpperCamelCase_ ).latents
_lowercase : List[Any] = self.decode(UpperCamelCase_ ).sample
if not return_dict:
return (dec,)
return DecoderOutput(sample=UpperCamelCase_ )
| 4 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_A : List[str] ='''pt'''
elif is_tf_available():
_A : Tuple ='''tf'''
else:
_A : Optional[int] ='''jax'''
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = ByTaTokenizer
A_ = False
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
_lowercase : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
_lowercase : Dict = []
for i in range(len(UpperCamelCase_ ) ):
try:
_lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) )
_lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) )
if max_length is not None and len(UpperCamelCase_ ) > max_length:
_lowercase : List[Any] = toks[:max_length]
if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0:
while len(UpperCamelCase_ ) < min_length:
_lowercase : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Dict = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
if " " not in output_txt and len(UpperCamelCase_ ) > 1:
_lowercase : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ )
)
if with_prefix_space:
_lowercase : Union[str, Any] = ' ' + output_txt
_lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
return output_txt, output_ids
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowercase : List[str] = self.ta_base_tokenizer
_lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
_lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.ta_base_tokenizer
_lowercase : Tuple = 'Unicode โฌ.'
_lowercase : List[Any] = tokenizer(UpperCamelCase_ )
_lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : List[str] = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'Unicode โฌ.</s>' )
_lowercase : Any = tokenizer('e รจ รฉ รช รซ' )
_lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : Tuple = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'e รจ รฉ รช รซ</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e รจ รฉ รช รซ' ) ) , 'e รจ รฉ รช รซ</s>' )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = self.ta_base_tokenizer
_lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
if FRAMEWORK != "jax":
_lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = self.ta_base_tokenizer
_lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , UpperCamelCase_ )
self.assertIn('attention_mask' , UpperCamelCase_ )
self.assertNotIn('decoder_input_ids' , UpperCamelCase_ )
self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.ta_base_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : str = tokenizer(
text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
_lowercase : str = self.ta_base_tokenizer
_lowercase : str = ['A long paragraph for summarization. </s>']
_lowercase : Optional[int] = ['Summary of the text. </s>']
# fmt: off
_lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] )
self.assertEqual(UpperCamelCase_ , batch['labels'][0] )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_lowercase : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[Any] = tempfile.mkdtemp()
_lowercase : Any = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
shutil.rmtree(UpperCamelCase_ )
_lowercase : str = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : int = json.load(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(UpperCamelCase_ )
_lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )]
_lowercase : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : int = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[Any] = tokenizer_class.from_pretrained(
UpperCamelCase_ , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
_lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
_lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Optional[int] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_lowercase : Optional[int] = 0
_lowercase : int = tokenizer.convert_ids_to_tokens(
UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
for attr in attributes_list:
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
| 4 | 1 |
'''simple docstring'''
_A : Dict ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 |
'''simple docstring'''
_A : Dict ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 | 1 |
'''simple docstring'''
import collections
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_flax_available, is_torch_available, is_vision_available
from ...test_modeling_flax_common import floats_tensor, ids_tensor, random_attention_mask
from ..bert.test_modeling_flax_bert import FlaxBertModelTester
from ..clip.test_modeling_flax_clip import FlaxCLIPVisionModelTester
from ..vit.test_modeling_flax_vit import FlaxViTModelTester
if is_flax_available():
from transformers import (
FlaxBertModel,
FlaxCLIPVisionModel,
FlaxVisionTextDualEncoderModel,
FlaxViTModel,
VisionTextDualEncoderConfig,
VisionTextDualEncoderProcessor,
)
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
if is_torch_available():
import torch
from transformers import VisionTextDualEncoderModel
if is_vision_available():
from PIL import Image
def __UpperCamelCase ( _lowercase ) -> int:
if isinstance(_lowercase, collections.abc.Iterable ):
return x
return (x, x)
@require_flax
class lowerCamelCase__ :
'''simple docstring'''
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : int ) -> Optional[int]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : Any ) -> Optional[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float ) -> Tuple:
'''simple docstring'''
_lowercase : List[str] = np.abs((a - b) ).max()
self.assertLessEqual(UpperCamelCase_ , UpperCamelCase_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str=None , **UpperCamelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
_lowercase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(UpperCamelCase_ )
_lowercase : int = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase , _lowercase : List[str] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[Any] = {'vision_model': vision_model, 'text_model': text_model}
_lowercase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ )
_lowercase : Tuple = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) )
self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=None , **UpperCamelCase_ : int ) -> List[Any]:
'''simple docstring'''
_lowercase , _lowercase : Union[str, Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[Any] = {'vision_model': vision_model, 'text_model': text_model}
_lowercase : str = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ )
_lowercase : Any = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
_lowercase : List[Any] = output[0]
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ )
_lowercase : Union[str, Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ )
_lowercase : Union[str, Any] = after_output[0]
_lowercase : List[str] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase , _lowercase : Dict = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Optional[int] = {'vision_model': vision_model, 'text_model': text_model}
_lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ )
_lowercase : Tuple = model(
input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ )
_lowercase : Any = output.vision_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers )
# in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token)
_lowercase : str = to_atuple(vision_model.config.image_size )
_lowercase : Dict = to_atuple(vision_model.config.patch_size )
_lowercase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
_lowercase : int = num_patches + 1
self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) )
_lowercase : int = output.text_model_output.attentions
self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers )
self.assertEqual(
text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple ) -> int:
'''simple docstring'''
pt_model.to(UpperCamelCase_ )
pt_model.eval()
# prepare inputs
_lowercase : List[str] = inputs_dict
_lowercase : Any = {k: torch.tensor(v.tolist() ) for k, v in flax_inputs.items()}
with torch.no_grad():
_lowercase : Tuple = pt_model(**UpperCamelCase_ ).to_tuple()
_lowercase : str = fx_model(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(fx_outputs[:4] , pt_outputs[:4] ):
self.assert_almost_equals(UpperCamelCase_ , pt_output.numpy() , 4E-2 )
# PT -> Flax
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(UpperCamelCase_ )
_lowercase : List[str] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ , from_pt=UpperCamelCase_ )
_lowercase : Union[str, Any] = fx_model_loaded(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(fx_outputs_loaded[:4] , pt_outputs[:4] ):
self.assert_almost_equals(UpperCamelCase_ , pt_output.numpy() , 4E-2 )
# Flax -> PT
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[int] = VisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ , from_flax=UpperCamelCase_ )
pt_model_loaded.to(UpperCamelCase_ )
pt_model_loaded.eval()
with torch.no_grad():
_lowercase : List[str] = pt_model_loaded(**UpperCamelCase_ ).to_tuple()
self.assertEqual(len(UpperCamelCase_ ) , len(UpperCamelCase_ ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output_loaded in zip(fx_outputs[:4] , pt_outputs_loaded[:4] ):
self.assert_almost_equals(UpperCamelCase_ , pt_output_loaded.numpy() , 4E-2 )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any ) -> str:
'''simple docstring'''
_lowercase : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Union[str, Any] = VisionTextDualEncoderModel(UpperCamelCase_ )
_lowercase : Optional[int] = FlaxVisionTextDualEncoderModel(UpperCamelCase_ )
_lowercase : str = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCamelCase_ )
_lowercase : List[Any] = fx_state
self.check_pt_flax_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = VisionTextDualEncoderModel(UpperCamelCase_ )
_lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel(UpperCamelCase_ )
_lowercase : Tuple = load_flax_weights_in_pytorch_model(UpperCamelCase_ , fx_model.params )
self.check_pt_flax_equivalence(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> Any:
'''simple docstring'''
_lowercase : Optional[int] = self.prepare_config_and_inputs()
self.check_model_from_pretrained_configs(**UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = self.prepare_config_and_inputs()
self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase_ )
def __UpperCAmelCase ( self : str ) -> Dict:
'''simple docstring'''
_lowercase : List[str] = self.prepare_config_and_inputs()
self.check_save_load(**UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = self.prepare_config_and_inputs()
self.check_vision_text_output_attention(**UpperCamelCase_ )
@is_pt_flax_cross_test
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Union[str, Any] = self.prepare_config_and_inputs()
_lowercase : List[Any] = config_inputs_dict.pop('vision_config' )
_lowercase : List[str] = config_inputs_dict.pop('text_config' )
_lowercase : List[Any] = config_inputs_dict
self.check_equivalence_pt_to_flax(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
self.check_equivalence_flax_to_pt(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
_lowercase , _lowercase : List[str] = self.get_pretrained_model_and_inputs()
_lowercase : int = model_a(**UpperCamelCase_ )
_lowercase : int = outputs[0]
with tempfile.TemporaryDirectory() as tmp_dirname:
model_a.save_pretrained(UpperCamelCase_ )
_lowercase : Union[str, Any] = FlaxVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ )
_lowercase : int = model_a(**UpperCamelCase_ )
_lowercase : Any = after_outputs[0]
_lowercase : List[str] = np.amax(np.abs(out_a - out_a ) )
self.assertLessEqual(UpperCamelCase_ , 1E-5 )
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Any = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-bert' , vision_from_pt=UpperCamelCase_ , text_from_pt=UpperCamelCase_ , )
_lowercase : Union[str, Any] = 13
_lowercase : int = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_lowercase : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_lowercase : Tuple = random_attention_mask([batch_size, 4] )
_lowercase : str = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = FlaxViTModel(UpperCamelCase_ )
_lowercase : Optional[Any] = FlaxBertModel(UpperCamelCase_ )
return vision_model, text_model
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = FlaxViTModelTester(self )
_lowercase : Optional[int] = FlaxBertModelTester(self )
_lowercase : List[Any] = vit_model_tester.prepare_config_and_inputs()
_lowercase : Any = bert_model_tester.prepare_config_and_inputs()
_lowercase , _lowercase : Optional[Any] = vision_config_and_inputs
_lowercase , _lowercase , _lowercase , _lowercase : Any = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_torch
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : Any ) -> str:
'''simple docstring'''
_lowercase : Optional[int] = FlaxVisionTextDualEncoderModel.from_vision_text_pretrained(
'hf-internal-testing/tiny-random-clip' , 'hf-internal-testing/tiny-bert' , vision_from_pt=UpperCamelCase_ , text_from_pt=UpperCamelCase_ , )
_lowercase : Tuple = 13
_lowercase : List[Any] = floats_tensor(
[
batch_size,
model.config.vision_config.num_channels,
model.config.vision_config.image_size,
model.config.vision_config.image_size,
] )
_lowercase : Union[str, Any] = ids_tensor([batch_size, 4] , model.config.text_config.vocab_size )
_lowercase : Union[str, Any] = random_attention_mask([batch_size, 4] )
_lowercase : Union[str, Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask}
return model, inputs
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] ) -> int:
'''simple docstring'''
_lowercase : List[str] = FlaxCLIPVisionModel(UpperCamelCase_ )
_lowercase : str = FlaxBertModel(UpperCamelCase_ )
return vision_model, text_model
def __UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = FlaxCLIPVisionModelTester(self )
_lowercase : Optional[Any] = FlaxBertModelTester(self )
_lowercase : Any = clip_model_tester.prepare_config_and_inputs()
_lowercase : str = bert_model_tester.prepare_config_and_inputs()
_lowercase , _lowercase : Tuple = vision_config_and_inputs
_lowercase , _lowercase , _lowercase , _lowercase : Tuple = text_config_and_inputs
# make sure that cross attention layers are added
return {
"text_config": text_config,
"vision_config": vision_config,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"input_ids": input_ids,
"token_type_ids": token_type_ids,
}
@require_flax
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
_lowercase : Dict = FlaxVisionTextDualEncoderModel.from_pretrained('clip-italian/clip-italian' , logit_scale_init_value=1.0 )
_lowercase : int = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' )
_lowercase : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
_lowercase : Union[str, Any] = processor(
text=['una foto di un gatto', 'una foto di un cane'] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' )
_lowercase : Dict = model(**UpperCamelCase_ )
# verify the logits
self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) )
self.assertEqual(
outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , )
_lowercase : Union[str, Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] )
self.assertTrue(np.allclose(outputs.logits_per_image , UpperCamelCase_ , atol=1E-3 ) )
| 4 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : int = torch.exp(_lowercase )
_lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i)
_lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowercase ) - B / A
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_lowercase : int = config.output_attentions
_lowercase : int = config.output_hidden_states
_lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int:
'''simple docstring'''
if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowercase : Optional[Any] = x
else:
_lowercase : Optional[int] = x
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = ()
_lowercase : List[Any] = ()
_lowercase : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowercase : Optional[int] = all_hidden_states + (hidden_states,)
_lowercase : str = layer_module(
UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = layer_outputs[0]
if self.output_attentions:
_lowercase : Tuple = all_attentions + (layer_outputs[1],)
_lowercase : Optional[int] = (hidden_states,)
if self.output_hidden_states:
_lowercase : str = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[int] = current_outputs + (all_attentions,)
_lowercase : List[Any] = self.highway[i](UpperCamelCase_ )
# logits, pooled_output
if not self.training:
_lowercase : Dict = highway_exit[0]
_lowercase : Tuple = entropy(UpperCamelCase_ )
_lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowercase : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCamelCase_ , i + 1 )
else:
_lowercase : Optional[int] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowercase : str = all_hidden_states + (hidden_states,)
_lowercase : Optional[Any] = (hidden_states,)
if self.output_hidden_states:
_lowercase : Dict = outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[Any] = outputs + (all_attentions,)
_lowercase : Optional[int] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : int = config
_lowercase : int = BertEmbeddings(UpperCamelCase_ )
_lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ )
_lowercase : Any = BertPooler(UpperCamelCase_ )
self.init_weights()
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.embeddings.word_embeddings
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = value
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ )
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_lowercase : Any = input_ids.size()
elif inputs_embeds is not None:
_lowercase : Any = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if encoder_attention_mask is None:
_lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if token_type_ids is None:
_lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowercase : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowercase : int = encoder_attention_mask[:, None, None, :]
_lowercase : str = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers )
_lowercase : Dict = self.embeddings(
input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ )
_lowercase : List[Any] = self.encoder(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )
_lowercase : int = encoder_outputs[0]
_lowercase : str = self.pooler(UpperCamelCase_ )
_lowercase : List[Any] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = message
_lowercase : Dict = exit_layer # start from 1!
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
super().__init__()
_lowercase : Optional[Any] = BertPooler(UpperCamelCase_ )
_lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowercase : int = nn.Linear(config.hidden_size , config.num_labels )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
_lowercase : str = encoder_outputs[0]
_lowercase : int = self.pooler(UpperCamelCase_ )
# "return" pooler_output
# BertModel
_lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowercase : Dict = bmodel_output[1]
_lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ )
_lowercase : str = self.classifier(UpperCamelCase_ )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : Dict = config.num_labels
_lowercase : Any = config.num_hidden_layers
_lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ )
_lowercase : Any = nn.Dropout(config.hidden_dropout_prob )
_lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = self.num_layers
try:
_lowercase : Tuple = self.bert(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowercase : List[Any] = outputs[1]
_lowercase : int = self.dropout(UpperCamelCase_ )
_lowercase : Optional[int] = self.classifier(UpperCamelCase_ )
_lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowercase : Union[str, Any] = e.message
_lowercase : Any = e.exit_layer
_lowercase : Optional[int] = outputs[0]
if not self.training:
_lowercase : Union[str, Any] = entropy(UpperCamelCase_ )
_lowercase : Tuple = []
_lowercase : Tuple = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowercase : Tuple = MSELoss()
_lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Union[str, Any] = CrossEntropyLoss()
_lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowercase : Optional[Any] = []
for highway_exit in outputs[-1]:
_lowercase : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCamelCase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowercase : Union[str, Any] = MSELoss()
_lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Dict = CrossEntropyLoss()
_lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCamelCase_ )
if train_highway:
_lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowercase : Optional[Any] = (loss,) + outputs
if not self.training:
_lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowercase : Dict = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 4 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """markuplm"""
def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[Any] = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : List[Any] = type_vocab_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Optional[int] = layer_norm_eps
_lowercase : Optional[Any] = position_embedding_type
_lowercase : str = use_cache
_lowercase : str = classifier_dropout
# additional properties
_lowercase : int = max_depth
_lowercase : Dict = max_xpath_tag_unit_embeddings
_lowercase : str = max_xpath_subs_unit_embeddings
_lowercase : List[str] = tag_pad_id
_lowercase : Optional[int] = subs_pad_id
_lowercase : Any = xpath_unit_hidden_size
| 4 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [10, 20, 30, 40, 50, 60]
_lowercase : Tuple = [2, 4, 6, 8, 10, 12]
_lowercase : Optional[Any] = 100
self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
self.assertRaisesRegex(
UpperCamelCase_ , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=99 , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=16 , UpperCamelCase_ : str=7 , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : str=True , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Dict=32 , UpperCamelCase_ : str=4 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : str=30 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : List[str]=1 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : Optional[Any]=None , ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = parent
_lowercase : Tuple = batch_size
_lowercase : Dict = decoder_seq_length
# For common tests
_lowercase : Optional[Any] = self.decoder_seq_length
_lowercase : str = is_training
_lowercase : Optional[Any] = use_attention_mask
_lowercase : int = use_labels
_lowercase : Dict = vocab_size
_lowercase : str = d_model
_lowercase : Any = d_model
_lowercase : Dict = decoder_layers
_lowercase : Dict = decoder_layers
_lowercase : Optional[int] = decoder_ffn_dim
_lowercase : str = decoder_attention_heads
_lowercase : Union[str, Any] = decoder_attention_heads
_lowercase : str = eos_token_id
_lowercase : Dict = bos_token_id
_lowercase : Dict = pad_token_id
_lowercase : Tuple = decoder_start_token_id
_lowercase : Optional[Any] = use_cache
_lowercase : int = max_position_embeddings
_lowercase : List[str] = None
_lowercase : str = decoder_seq_length
_lowercase : List[str] = 2
_lowercase : str = 1
def __UpperCAmelCase ( self : Tuple ) -> List[Any]:
'''simple docstring'''
_lowercase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowercase : Optional[Any] = None
if self.use_attention_mask:
_lowercase : Tuple = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_lowercase : Optional[Any] = None
if self.use_labels:
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_lowercase : Union[str, Any] = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[str] = True
_lowercase : Union[str, Any] = TrOCRDecoder(config=UpperCamelCase_ ).to(UpperCamelCase_ ).eval()
_lowercase : int = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_lowercase : Optional[int] = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
_lowercase : Optional[int] = model(UpperCamelCase_ )
_lowercase : Optional[int] = model(UpperCamelCase_ , use_cache=UpperCamelCase_ )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) )
self.parent.assertTrue(len(UpperCamelCase_ ) == len(UpperCamelCase_ ) + 1 )
_lowercase : List[Any] = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
_lowercase : int = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_lowercase : Dict = torch.cat([input_ids, next_tokens] , dim=-1 )
_lowercase : int = model(UpperCamelCase_ )['last_hidden_state']
_lowercase : Dict = model(UpperCamelCase_ , past_key_values=UpperCamelCase_ )['last_hidden_state']
# select random slice
_lowercase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_lowercase : Union[str, Any] = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_lowercase : Optional[int] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 )
def __UpperCAmelCase ( self : Dict ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[Any] = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = config_and_inputs
_lowercase : int = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( A , A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
A_ = (TrOCRForCausalLM,) if is_torch_available() else ()
A_ = {"""text-generation""": TrOCRForCausalLM} if is_torch_available() else {}
A_ = True
A_ = False
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Tuple = TrOCRStandaloneDecoderModelTester(self , is_training=UpperCamelCase_ )
_lowercase : int = ConfigTester(self , config_class=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : Union[str, Any] ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Tuple ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple:
'''simple docstring'''
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
pass
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Tuple =['''XLNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =['''XLNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLNetForMultipleChoice''',
'''XLNetForQuestionAnswering''',
'''XLNetForQuestionAnsweringSimple''',
'''XLNetForSequenceClassification''',
'''XLNetForTokenClassification''',
'''XLNetLMHeadModel''',
'''XLNetModel''',
'''XLNetPreTrainedModel''',
'''load_tf_weights_in_xlnet''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLNetForMultipleChoice''',
'''TFXLNetForQuestionAnsweringSimple''',
'''TFXLNetForSequenceClassification''',
'''TFXLNetForTokenClassification''',
'''TFXLNetLMHeadModel''',
'''TFXLNetMainLayer''',
'''TFXLNetModel''',
'''TFXLNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
# Lint as: python3
import dataclasses
import re
from dataclasses import dataclass
from functools import total_ordering
from typing import Optional, Union
_A : Any =re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''')
@total_ordering
@dataclass
class lowerCamelCase__ :
'''simple docstring'''
A_ = 42
A_ = None
A_ = None
A_ = None
A_ = None
def __UpperCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
_lowercase , _lowercase , _lowercase : Optional[int] = _str_to_version_tuple(self.version_str )
def __repr__( self : Optional[int] ) -> int:
'''simple docstring'''
return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}'''
@property
def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return self.major, self.minor, self.patch
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> List[Any]:
'''simple docstring'''
if isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return Version(UpperCamelCase_ )
elif isinstance(UpperCamelCase_ , UpperCamelCase_ ):
return other
raise TypeError(F'''{other} (type {type(UpperCamelCase_ )}) cannot be compared to version.''' )
def __eq__( self : int , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
try:
_lowercase : List[str] = self._validate_operand(UpperCamelCase_ )
except (TypeError, ValueError):
return False
else:
return self.tuple == other.tuple
def __lt__( self : int , UpperCamelCase_ : List[Any] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = self._validate_operand(UpperCamelCase_ )
return self.tuple < other.tuple
def __hash__( self : List[Any] ) -> List[str]:
'''simple docstring'''
return hash(_version_tuple_to_str(self.tuple ) )
@classmethod
def __UpperCAmelCase ( cls : Any , UpperCamelCase_ : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = {f.name for f in dataclasses.fields(cls )}
return cls(**{k: v for k, v in dic.items() if k in field_names} )
def __UpperCAmelCase ( self : Dict ) -> str:
'''simple docstring'''
return self.version_str
def __UpperCamelCase ( _lowercase ) -> Any:
_lowercase : int = _VERSION_REG.match(_lowercase )
if not res:
raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' )
return tuple(int(_lowercase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] )
def __UpperCamelCase ( _lowercase ) -> int:
return ".".join(str(_lowercase ) for v in version_tuple )
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """markuplm"""
def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[Any] = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : List[Any] = type_vocab_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Optional[int] = layer_norm_eps
_lowercase : Optional[Any] = position_embedding_type
_lowercase : str = use_cache
_lowercase : str = classifier_dropout
# additional properties
_lowercase : int = max_depth
_lowercase : Dict = max_xpath_tag_unit_embeddings
_lowercase : str = max_xpath_subs_unit_embeddings
_lowercase : List[str] = tag_pad_id
_lowercase : Optional[int] = subs_pad_id
_lowercase : Any = xpath_unit_hidden_size
| 4 | 1 |
'''simple docstring'''
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all image processors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...image_processing_utils import ImageProcessingMixin
from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
_A : List[Any] =logging.get_logger(__name__)
_A : Any =OrderedDict(
[
('''align''', '''EfficientNetImageProcessor'''),
('''beit''', '''BeitImageProcessor'''),
('''bit''', '''BitImageProcessor'''),
('''blip''', '''BlipImageProcessor'''),
('''blip-2''', '''BlipImageProcessor'''),
('''bridgetower''', '''BridgeTowerImageProcessor'''),
('''chinese_clip''', '''ChineseCLIPImageProcessor'''),
('''clip''', '''CLIPImageProcessor'''),
('''clipseg''', '''ViTImageProcessor'''),
('''conditional_detr''', '''ConditionalDetrImageProcessor'''),
('''convnext''', '''ConvNextImageProcessor'''),
('''convnextv2''', '''ConvNextImageProcessor'''),
('''cvt''', '''ConvNextImageProcessor'''),
('''data2vec-vision''', '''BeitImageProcessor'''),
('''deformable_detr''', '''DeformableDetrImageProcessor'''),
('''deit''', '''DeiTImageProcessor'''),
('''deta''', '''DetaImageProcessor'''),
('''detr''', '''DetrImageProcessor'''),
('''dinat''', '''ViTImageProcessor'''),
('''donut-swin''', '''DonutImageProcessor'''),
('''dpt''', '''DPTImageProcessor'''),
('''efficientformer''', '''EfficientFormerImageProcessor'''),
('''efficientnet''', '''EfficientNetImageProcessor'''),
('''flava''', '''FlavaImageProcessor'''),
('''focalnet''', '''BitImageProcessor'''),
('''git''', '''CLIPImageProcessor'''),
('''glpn''', '''GLPNImageProcessor'''),
('''groupvit''', '''CLIPImageProcessor'''),
('''imagegpt''', '''ImageGPTImageProcessor'''),
('''instructblip''', '''BlipImageProcessor'''),
('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''),
('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''),
('''levit''', '''LevitImageProcessor'''),
('''mask2former''', '''Mask2FormerImageProcessor'''),
('''maskformer''', '''MaskFormerImageProcessor'''),
('''mgp-str''', '''ViTImageProcessor'''),
('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''),
('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevit''', '''MobileViTImageProcessor'''),
('''mobilevitv2''', '''MobileViTImageProcessor'''),
('''nat''', '''ViTImageProcessor'''),
('''oneformer''', '''OneFormerImageProcessor'''),
('''owlvit''', '''OwlViTImageProcessor'''),
('''perceiver''', '''PerceiverImageProcessor'''),
('''pix2struct''', '''Pix2StructImageProcessor'''),
('''poolformer''', '''PoolFormerImageProcessor'''),
('''regnet''', '''ConvNextImageProcessor'''),
('''resnet''', '''ConvNextImageProcessor'''),
('''sam''', '''SamImageProcessor'''),
('''segformer''', '''SegformerImageProcessor'''),
('''swiftformer''', '''ViTImageProcessor'''),
('''swin''', '''ViTImageProcessor'''),
('''swin2sr''', '''Swin2SRImageProcessor'''),
('''swinv2''', '''ViTImageProcessor'''),
('''table-transformer''', '''DetrImageProcessor'''),
('''timesformer''', '''VideoMAEImageProcessor'''),
('''tvlt''', '''TvltImageProcessor'''),
('''upernet''', '''SegformerImageProcessor'''),
('''van''', '''ConvNextImageProcessor'''),
('''videomae''', '''VideoMAEImageProcessor'''),
('''vilt''', '''ViltImageProcessor'''),
('''vit''', '''ViTImageProcessor'''),
('''vit_hybrid''', '''ViTHybridImageProcessor'''),
('''vit_mae''', '''ViTImageProcessor'''),
('''vit_msn''', '''ViTImageProcessor'''),
('''xclip''', '''CLIPImageProcessor'''),
('''yolos''', '''YolosImageProcessor'''),
]
)
_A : List[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES)
def __UpperCamelCase ( _lowercase ) -> str:
for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items():
if class_name in extractors:
_lowercase : Optional[Any] = model_type_to_module_name(_lowercase )
_lowercase : Tuple = importlib.import_module(f'''.{module_name}''', 'transformers.models' )
try:
return getattr(_lowercase, _lowercase )
except AttributeError:
continue
for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items():
if getattr(_lowercase, '__name__', _lowercase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_lowercase : Optional[Any] = importlib.import_module('transformers' )
if hasattr(_lowercase, _lowercase ):
return getattr(_lowercase, _lowercase )
return None
def __UpperCamelCase ( _lowercase, _lowercase = None, _lowercase = False, _lowercase = False, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = False, **_lowercase, ) -> List[Any]:
_lowercase : List[Any] = get_file_from_repo(
_lowercase, _lowercase, cache_dir=_lowercase, force_download=_lowercase, resume_download=_lowercase, proxies=_lowercase, use_auth_token=_lowercase, revision=_lowercase, local_files_only=_lowercase, )
if resolved_config_file is None:
logger.info(
'Could not locate the image processor configuration file, will try to use the model config instead.' )
return {}
with open(_lowercase, encoding='utf-8' ) as reader:
return json.load(_lowercase )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
raise EnvironmentError(
'AutoImageProcessor is designed to be instantiated '
'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' )
@classmethod
@replace_list_option_in_docstrings(UpperCamelCase_ )
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : str , **UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
_lowercase : Any = kwargs.pop('config' , UpperCamelCase_ )
_lowercase : Any = kwargs.pop('trust_remote_code' , UpperCamelCase_ )
_lowercase : Dict = True
_lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Any = config_dict.get('image_processor_type' , UpperCamelCase_ )
_lowercase : List[str] = None
if "AutoImageProcessor" in config_dict.get('auto_map' , {} ):
_lowercase : Tuple = config_dict['auto_map']['AutoImageProcessor']
# If we still don't have the image processor class, check if we're loading from a previous feature extractor config
# and if so, infer the image processor class from there.
if image_processor_class is None and image_processor_auto_map is None:
_lowercase : Tuple = config_dict.pop('feature_extractor_type' , UpperCamelCase_ )
if feature_extractor_class is not None:
logger.warning(
'Could not find image processor class in the image processor config or the model config. Loading'
' based on pattern matching with the model\'s feature extractor configuration.' )
_lowercase : List[str] = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' )
if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ):
_lowercase : Tuple = config_dict['auto_map']['AutoFeatureExtractor']
_lowercase : Dict = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' )
logger.warning(
'Could not find image processor auto map in the image processor config or the model config.'
' Loading based on pattern matching with the model\'s feature extractor configuration.' )
# If we don't find the image processor class in the image processor config, let's try the model config.
if image_processor_class is None and image_processor_auto_map is None:
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : str = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ )
# It could be in `config.image_processor_type``
_lowercase : str = getattr(UpperCamelCase_ , 'image_processor_type' , UpperCamelCase_ )
if hasattr(UpperCamelCase_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map:
_lowercase : Tuple = config.auto_map['AutoImageProcessor']
if image_processor_class is not None:
_lowercase : List[str] = image_processor_class_from_name(UpperCamelCase_ )
_lowercase : List[Any] = image_processor_auto_map is not None
_lowercase : Union[str, Any] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING
_lowercase : Tuple = resolve_trust_remote_code(
UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
if has_remote_code and trust_remote_code:
_lowercase : Dict = get_class_from_dynamic_module(
UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Tuple = kwargs.pop('code_revision' , UpperCamelCase_ )
if os.path.isdir(UpperCamelCase_ ):
image_processor_class.register_for_auto_class()
return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
elif image_processor_class is not None:
return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
# Last try: we use the IMAGE_PROCESSOR_MAPPING.
elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING:
_lowercase : Union[str, Any] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )]
return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
raise ValueError(
F'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a '''
F'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' )
@staticmethod
def __UpperCAmelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
| 4 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : int ={
'''configuration_xlm_roberta''': [
'''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XLMRobertaConfig''',
'''XLMRobertaOnnxConfig''',
],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : List[str] =['''XLMRobertaTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Optional[Any] =['''XLMRobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLMRobertaForCausalLM''',
'''XLMRobertaForMaskedLM''',
'''XLMRobertaForMultipleChoice''',
'''XLMRobertaForQuestionAnswering''',
'''XLMRobertaForSequenceClassification''',
'''XLMRobertaForTokenClassification''',
'''XLMRobertaModel''',
'''XLMRobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLMRobertaForCausalLM''',
'''TFXLMRobertaForMaskedLM''',
'''TFXLMRobertaForMultipleChoice''',
'''TFXLMRobertaForQuestionAnswering''',
'''TFXLMRobertaForSequenceClassification''',
'''TFXLMRobertaForTokenClassification''',
'''TFXLMRobertaModel''',
'''TFXLMRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FlaxXLMRobertaForMaskedLM''',
'''FlaxXLMRobertaForCausalLM''',
'''FlaxXLMRobertaForMultipleChoice''',
'''FlaxXLMRobertaForQuestionAnswering''',
'''FlaxXLMRobertaForSequenceClassification''',
'''FlaxXLMRobertaForTokenClassification''',
'''FlaxXLMRobertaModel''',
'''FlaxXLMRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaConfig,
XLMRobertaOnnxConfig,
)
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta import XLMRobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta import (
XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaForCausalLM,
XLMRobertaForMaskedLM,
XLMRobertaForMultipleChoice,
XLMRobertaForQuestionAnswering,
XLMRobertaForSequenceClassification,
XLMRobertaForTokenClassification,
XLMRobertaModel,
XLMRobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm_roberta import (
TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMRobertaForCausalLM,
TFXLMRobertaForMaskedLM,
TFXLMRobertaForMultipleChoice,
TFXLMRobertaForQuestionAnswering,
TFXLMRobertaForSequenceClassification,
TFXLMRobertaForTokenClassification,
TFXLMRobertaModel,
TFXLMRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xlm_roberta import (
FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxXLMRobertaForCausalLM,
FlaxXLMRobertaForMaskedLM,
FlaxXLMRobertaForMultipleChoice,
FlaxXLMRobertaForQuestionAnswering,
FlaxXLMRobertaForSequenceClassification,
FlaxXLMRobertaForTokenClassification,
FlaxXLMRobertaModel,
FlaxXLMRobertaPreTrainedModel,
)
else:
import sys
_A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 | 1 |
'''simple docstring'''
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
_A : int =logging.get_logger(__name__)
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase=None, _lowercase=None ) -> int:
# Recurse if needed
if "." in tensor_name:
_lowercase : List[str] = tensor_name.split('.' )
for split in splits[:-1]:
_lowercase : Optional[int] = getattr(_lowercase, _lowercase )
if new_module is None:
raise ValueError(f'''{module} has no attribute {split}.''' )
_lowercase : int = new_module
_lowercase : List[str] = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(f'''{module} does not have a parameter or a buffer named {tensor_name}.''' )
_lowercase : Union[str, Any] = tensor_name in module._buffers
_lowercase : str = getattr(_lowercase, _lowercase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(f'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' )
_lowercase : Optional[Any] = False
_lowercase : Union[str, Any] = False
if is_buffer or not is_bitsandbytes_available():
_lowercase : Optional[Any] = False
_lowercase : List[Any] = False
else:
_lowercase : Optional[Any] = hasattr(bnb.nn, 'Params4bit' ) and isinstance(module._parameters[tensor_name], bnb.nn.Paramsabit )
_lowercase : Union[str, Any] = isinstance(module._parameters[tensor_name], bnb.nn.IntaParams )
if is_abit or is_abit:
_lowercase : Any = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
_lowercase : Union[str, Any] = old_value.to(_lowercase )
elif isinstance(_lowercase, torch.Tensor ):
_lowercase : Dict = value.to('cpu' )
if value.dtype == torch.inta:
_lowercase : List[str] = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
_lowercase : Union[str, Any] = torch.tensor(_lowercase, device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls, _lowercase ) and fpaa_statistics is None:
_lowercase : Tuple = new_value.T
_lowercase : List[str] = old_value.__dict__
if is_abit:
_lowercase : List[Any] = bnb.nn.IntaParams(_lowercase, requires_grad=_lowercase, **_lowercase ).to(_lowercase )
elif is_abit:
_lowercase : int = bnb.nn.Paramsabit(_lowercase, requires_grad=_lowercase, **_lowercase ).to(_lowercase )
_lowercase : int = new_value
if fpaa_statistics is not None:
setattr(module.weight, 'SCB', fpaa_statistics.to(_lowercase ) )
else:
if value is None:
_lowercase : Optional[int] = old_value.to(_lowercase )
elif isinstance(_lowercase, torch.Tensor ):
_lowercase : int = value.to(_lowercase )
else:
_lowercase : List[Any] = torch.tensor(_lowercase, device=_lowercase )
if is_buffer:
_lowercase : int = new_value
else:
_lowercase : int = nn.Parameter(_lowercase, requires_grad=old_value.requires_grad )
_lowercase : Tuple = new_value
def __UpperCamelCase ( _lowercase, _lowercase=None, _lowercase=None, _lowercase=None, _lowercase=False ) -> Union[str, Any]:
for name, module in model.named_children():
if current_key_name is None:
_lowercase : Dict = []
current_key_name.append(_lowercase )
if (isinstance(_lowercase, nn.Linear ) or isinstance(_lowercase, _lowercase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(_lowercase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(_lowercase, _lowercase ):
_lowercase , _lowercase : Optional[int] = module.weight.shape
else:
_lowercase : Any = module.in_features
_lowercase : str = module.out_features
if quantization_config.quantization_method() == "llm_int8":
_lowercase : int = bnb.nn.LinearabitLt(
_lowercase, _lowercase, module.bias is not None, has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight, threshold=quantization_config.llm_inta_threshold, )
_lowercase : List[str] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
_lowercase : int = bnb.nn.Linearabit(
_lowercase, _lowercase, module.bias is not None, quantization_config.bnb_abit_compute_dtype, compress_statistics=quantization_config.bnb_abit_use_double_quant, quant_type=quantization_config.bnb_abit_quant_type, )
_lowercase : Dict = True
# Store the module class in case we need to transpose the weight later
_lowercase : str = type(_lowercase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(_lowercase )
if len(list(module.children() ) ) > 0:
_lowercase , _lowercase : str = _replace_with_bnb_linear(
_lowercase, _lowercase, _lowercase, _lowercase, has_been_replaced=_lowercase, )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def __UpperCamelCase ( _lowercase, _lowercase=None, _lowercase=None, _lowercase=None ) -> Optional[int]:
_lowercase : Optional[Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
_lowercase , _lowercase : List[Any] = _replace_with_bnb_linear(
_lowercase, _lowercase, _lowercase, _lowercase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def __UpperCamelCase ( *_lowercase, **_lowercase ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead', _lowercase, )
return replace_with_bnb_linear(*_lowercase, **_lowercase )
def __UpperCamelCase ( *_lowercase, **_lowercase ) -> Dict:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead', _lowercase, )
return set_module_quantized_tensor_to_device(*_lowercase, **_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
_lowercase : List[Any] = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
_lowercase : int = find_tied_parameters(_lowercase )
# For compatibility with Accelerate < 0.18
if isinstance(_lowercase, _lowercase ):
_lowercase : Dict = sum(list(tied_params.values() ), [] ) + list(tied_params.keys() )
else:
_lowercase : List[Any] = sum(_lowercase, [] )
_lowercase : Any = len(_lowercase ) > 0
# Check if it is a base model
_lowercase : str = not hasattr(_lowercase, model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
_lowercase : int = list(model.named_children() )
_lowercase : List[str] = [list_modules[-1][0]]
# add last module together with tied weights
_lowercase : Optional[Any] = set(_lowercase ) - set(_lowercase )
_lowercase : Optional[Any] = list(set(_lowercase ) ) + list(_lowercase )
# remove ".weight" from the keys
_lowercase : Dict = ['.weight', '.bias']
_lowercase : Dict = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
_lowercase : int = name.replace(_lowercase, '' )
filtered_module_names.append(_lowercase )
return filtered_module_names
| 4 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 | 1 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from timm import create_model
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform
from transformers import BitConfig, BitForImageClassification, BitImageProcessor
from transformers.image_utils import PILImageResampling
from transformers.utils import logging
logging.set_verbosity_info()
_A : Tuple =logging.get_logger(__name__)
def __UpperCamelCase ( _lowercase ) -> int:
_lowercase : Optional[Any] = 'huggingface/label-files'
_lowercase : Tuple = 'imagenet-1k-id2label.json'
_lowercase : int = json.load(open(hf_hub_download(_lowercase, _lowercase, repo_type='dataset' ), 'r' ) )
_lowercase : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
_lowercase : int = {v: k for k, v in idalabel.items()}
_lowercase : str = 'std_conv' if 'bit' in model_name else False
# note that when using BiT as backbone for ViT-hybrid checkpoints,
# one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same",
# config.conv_layer = "std_conv_same"
_lowercase : Dict = BitConfig(
conv_layer=_lowercase, num_labels=1000, idalabel=_lowercase, labelaid=_lowercase, )
return config
def __UpperCamelCase ( _lowercase ) -> Tuple:
if "stem.conv" in name:
_lowercase : Optional[Any] = name.replace('stem.conv', 'bit.embedder.convolution' )
if "blocks" in name:
_lowercase : int = name.replace('blocks', 'layers' )
if "head.fc" in name:
_lowercase : Dict = name.replace('head.fc', 'classifier.1' )
if name.startswith('norm' ):
_lowercase : Union[str, Any] = 'bit.' + name
if "bit" not in name and "classifier" not in name:
_lowercase : int = 'bit.encoder.' + name
return name
def __UpperCamelCase ( ) -> List[str]:
_lowercase : int = 'http://images.cocodataset.org/val2017/000000039769.jpg'
_lowercase : Optional[int] = Image.open(requests.get(_lowercase, stream=_lowercase ).raw )
return im
@torch.no_grad()
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=False ) -> List[Any]:
_lowercase : str = get_config(_lowercase )
# load original model from timm
_lowercase : List[str] = create_model(_lowercase, pretrained=_lowercase )
timm_model.eval()
# load state_dict of original model
_lowercase : Union[str, Any] = timm_model.state_dict()
for key in state_dict.copy().keys():
_lowercase : Union[str, Any] = state_dict.pop(_lowercase )
_lowercase : Union[str, Any] = val.squeeze() if 'head' in key else val
# load HuggingFace model
_lowercase : Any = BitForImageClassification(_lowercase )
model.eval()
model.load_state_dict(_lowercase )
# create image processor
_lowercase : int = create_transform(**resolve_data_config({}, model=_lowercase ) )
_lowercase : Optional[Any] = transform.transforms
_lowercase : Optional[int] = {
'bilinear': PILImageResampling.BILINEAR,
'bicubic': PILImageResampling.BICUBIC,
'nearest': PILImageResampling.NEAREST,
}
_lowercase : Union[str, Any] = BitImageProcessor(
do_resize=_lowercase, size={'shortest_edge': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=_lowercase, crop_size={'height': timm_transforms[1].size[0], 'width': timm_transforms[1].size[1]}, do_normalize=_lowercase, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), )
_lowercase : Any = prepare_img()
_lowercase : str = transform(_lowercase ).unsqueeze(0 )
_lowercase : Union[str, Any] = processor(_lowercase, return_tensors='pt' ).pixel_values
# verify pixel values
assert torch.allclose(_lowercase, _lowercase )
# verify logits
with torch.no_grad():
_lowercase : List[Any] = model(_lowercase )
_lowercase : Union[str, Any] = outputs.logits
print('Logits:', logits[0, :3] )
print('Predicted class:', model.config.idalabel[logits.argmax(-1 ).item()] )
_lowercase : str = timm_model(_lowercase )
assert timm_logits.shape == outputs.logits.shape
assert torch.allclose(_lowercase, outputs.logits, atol=1E-3 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model {model_name} and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
processor.save_pretrained(_lowercase )
if push_to_hub:
print(f'''Pushing model {model_name} and processor to the hub''' )
model.push_to_hub(f'''ybelkada/{model_name}''' )
processor.push_to_hub(f'''ybelkada/{model_name}''' )
if __name__ == "__main__":
_A : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''resnetv2_50x1_bitm''',
type=str,
help='''Name of the BiT timm model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
help='''Whether to push the model to the hub.''',
)
_A : str =parser.parse_args()
convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Dict =['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] =['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
import pickle
import unittest
import torch
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.test_utils import require_cpu
@require_cpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[str] = torch.nn.Linear(10 , 10 )
_lowercase : Optional[int] = torch.optim.SGD(model.parameters() , 0.1 )
_lowercase : str = Accelerator()
_lowercase : str = accelerator.prepare(UpperCamelCase_ )
try:
pickle.loads(pickle.dumps(UpperCamelCase_ ) )
except Exception as e:
self.fail(F'''Accelerated optimizer pickling failed with {e}''' )
AcceleratorState._reset_state()
| 4 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def __UpperCamelCase ( _lowercase ) -> Union[str, Any]:
return x + 2
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = 'x = 3'
_lowercase : str = {}
_lowercase : Union[str, Any] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
assert result == 3
self.assertDictEqual(UpperCamelCase_ , {'x': 3} )
_lowercase : str = 'x = y'
_lowercase : int = {'y': 5}
_lowercase : Optional[int] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 5, 'y': 5} )
def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : str = 'y = add_two(x)'
_lowercase : List[Any] = {'x': 3}
_lowercase : int = evaluate(UpperCamelCase_ , {'add_two': add_two} , state=UpperCamelCase_ )
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'y': 5} )
# Won't work without the tool
with CaptureStdout() as out:
_lowercase : Dict = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
assert result is None
assert "tried to execute add_two" in out.out
def __UpperCAmelCase ( self : str ) -> Any:
'''simple docstring'''
_lowercase : Dict = 'x = 3'
_lowercase : Any = {}
_lowercase : List[Any] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
assert result == 3
self.assertDictEqual(UpperCamelCase_ , {'x': 3} )
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
_lowercase : List[str] = 'test_dict = {\'x\': x, \'y\': add_two(x)}'
_lowercase : Optional[int] = {'x': 3}
_lowercase : List[str] = evaluate(UpperCamelCase_ , {'add_two': add_two} , state=UpperCamelCase_ )
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'y': 5} )
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : Optional[Any] = 'x = 3\ny = 5'
_lowercase : Any = {}
_lowercase : int = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'y': 5} )
def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = 'text = f\'This is x: {x}.\''
_lowercase : str = {'x': 3}
_lowercase : Dict = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'text': 'This is x: 3.'} )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
_lowercase : Tuple = 'if x <= 3:\n y = 2\nelse:\n y = 5'
_lowercase : Tuple = {'x': 3}
_lowercase : Optional[Any] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'y': 2} )
_lowercase : Any = {'x': 8}
_lowercase : List[Any] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 8, 'y': 5} )
def __UpperCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Tuple = 'test_list = [x, add_two(x)]'
_lowercase : Tuple = {'x': 3}
_lowercase : Union[str, Any] = evaluate(UpperCamelCase_ , {'add_two': add_two} , state=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , [3, 5] )
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'test_list': [3, 5]} )
def __UpperCAmelCase ( self : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Tuple = 'y = x'
_lowercase : Dict = {'x': 3}
_lowercase : Optional[Any] = evaluate(UpperCamelCase_ , {} , state=UpperCamelCase_ )
assert result == 3
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'y': 3} )
def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = 'test_list = [x, add_two(x)]\ntest_list[1]'
_lowercase : int = {'x': 3}
_lowercase : Any = evaluate(UpperCamelCase_ , {'add_two': add_two} , state=UpperCamelCase_ )
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'test_list': [3, 5]} )
_lowercase : int = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'
_lowercase : Optional[Any] = {'x': 3}
_lowercase : Dict = evaluate(UpperCamelCase_ , {'add_two': add_two} , state=UpperCamelCase_ )
assert result == 5
self.assertDictEqual(UpperCamelCase_ , {'x': 3, 'test_dict': {'x': 3, 'y': 5}} )
def __UpperCAmelCase ( self : Any ) -> str:
'''simple docstring'''
_lowercase : List[str] = 'x = 0\nfor i in range(3):\n x = i'
_lowercase : int = {}
_lowercase : Dict = evaluate(UpperCamelCase_ , {'range': range} , state=UpperCamelCase_ )
assert result == 2
self.assertDictEqual(UpperCamelCase_ , {'x': 2, 'i': 2} )
| 4 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 | 1 |
'''simple docstring'''
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ControlNetModel,
DDIMScheduler,
StableDiffusionControlNetImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel
from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import (
PipelineKarrasSchedulerTesterMixin,
PipelineLatentTesterMixin,
PipelineTesterMixin,
)
enable_full_determinism()
class lowerCamelCase__ ( A , A , A , unittest.TestCase ):
'''simple docstring'''
A_ = StableDiffusionControlNetImgaImgPipeline
A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""}
A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"""control_image"""} )
A_ = IMAGE_TO_IMAGE_IMAGE_PARAMS
def __UpperCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
_lowercase : Optional[int] = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
_lowercase : List[str] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
torch.manual_seed(0 )
_lowercase : Optional[int] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
torch.manual_seed(0 )
_lowercase : Tuple = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
_lowercase : Tuple = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_lowercase : Any = CLIPTextModel(UpperCamelCase_ )
_lowercase : int = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowercase : List[Any] = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any]=0 ) -> Dict:
'''simple docstring'''
if str(UpperCamelCase_ ).startswith('mps' ):
_lowercase : Any = torch.manual_seed(UpperCamelCase_ )
else:
_lowercase : List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
_lowercase : Union[str, Any] = 2
_lowercase : Optional[Any] = randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , )
_lowercase : Optional[Any] = floats_tensor(control_image.shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
_lowercase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowercase : str = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) )
_lowercase : Optional[int] = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __UpperCAmelCase ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = StableDiffusionControlNetImgaImgPipeline
A_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""}
A_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
A_ = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess
def __UpperCAmelCase ( self : Optional[Any] ) -> Any:
'''simple docstring'''
torch.manual_seed(0 )
_lowercase : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , )
torch.manual_seed(0 )
def init_weights(UpperCamelCase_ : Optional[int] ):
if isinstance(UpperCamelCase_ , torch.nn.Convad ):
torch.nn.init.normal(m.weight )
m.bias.data.fill_(1.0 )
_lowercase : List[str] = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(UpperCamelCase_ )
torch.manual_seed(0 )
_lowercase : str = ControlNetModel(
block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , )
controlneta.controlnet_down_blocks.apply(UpperCamelCase_ )
torch.manual_seed(0 )
_lowercase : Optional[int] = DDIMScheduler(
beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , )
torch.manual_seed(0 )
_lowercase : str = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , )
torch.manual_seed(0 )
_lowercase : Optional[int] = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_lowercase : Optional[int] = CLIPTextModel(UpperCamelCase_ )
_lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
_lowercase : Tuple = MultiControlNetModel([controlneta, controlneta] )
_lowercase : Any = {
'unet': unet,
'controlnet': controlnet,
'scheduler': scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple=0 ) -> int:
'''simple docstring'''
if str(UpperCamelCase_ ).startswith('mps' ):
_lowercase : List[Any] = torch.manual_seed(UpperCamelCase_ )
else:
_lowercase : Optional[int] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
_lowercase : List[Any] = 2
_lowercase : Optional[Any] = [
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ),
randn_tensor(
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=UpperCamelCase_ , device=torch.device(UpperCamelCase_ ) , ),
]
_lowercase : int = floats_tensor(control_image[0].shape , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
_lowercase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_lowercase : Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('RGB' ).resize((64, 64) )
_lowercase : str = {
'prompt': 'A painting of a squirrel eating a burger',
'generator': generator,
'num_inference_steps': 2,
'guidance_scale': 6.0,
'output_type': 'numpy',
'image': image,
'control_image': control_image,
}
return inputs
def __UpperCAmelCase ( self : Tuple ) -> str:
'''simple docstring'''
_lowercase : Dict = self.get_dummy_components()
_lowercase : List[str] = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
_lowercase : Tuple = 10.0
_lowercase : List[Any] = 4
_lowercase : Any = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : Union[str, Any] = steps
_lowercase : Optional[int] = scale
_lowercase : Optional[int] = pipe(**UpperCamelCase_ )[0]
_lowercase : Dict = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : Tuple = steps
_lowercase : Any = scale
_lowercase : List[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0]
_lowercase : int = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : Optional[int] = steps
_lowercase : Any = scale
_lowercase : Dict = pipe(**UpperCamelCase_ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0]
_lowercase : Optional[Any] = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : List[Any] = steps
_lowercase : List[Any] = scale
_lowercase : Optional[Any] = pipe(**UpperCamelCase_ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0]
# make sure that all outputs are different
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
assert np.sum(np.abs(output_a - output_a ) ) > 1E-3
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 )
def __UpperCAmelCase ( self : List[str] ) -> Dict:
'''simple docstring'''
self._test_inference_batch_single_identical(expected_max_diff=2E-3 )
def __UpperCAmelCase ( self : Dict ) -> List[Any]:
'''simple docstring'''
_lowercase : int = self.get_dummy_components()
_lowercase : Any = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
with tempfile.TemporaryDirectory() as tmpdir:
try:
# save_pretrained is not implemented for Multi-ControlNet
pipe.save_pretrained(UpperCamelCase_ )
except NotImplementedError:
pass
@slow
@require_torch_gpu
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : str ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Union[str, Any] = ControlNetModel.from_pretrained('lllyasviel/sd-controlnet-canny' )
_lowercase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained(
'runwayml/stable-diffusion-v1-5' , safety_checker=UpperCamelCase_ , controlnet=UpperCamelCase_ )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 )
_lowercase : Union[str, Any] = 'evil space-punk bird'
_lowercase : Optional[int] = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ).resize((512, 512) )
_lowercase : str = load_image(
'https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png' ).resize((512, 512) )
_lowercase : str = pipe(
UpperCamelCase_ , UpperCamelCase_ , control_image=UpperCamelCase_ , generator=UpperCamelCase_ , output_type='np' , num_inference_steps=50 , strength=0.6 , )
_lowercase : Optional[int] = output.images[0]
assert image.shape == (512, 512, 3)
_lowercase : Tuple = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy' )
assert np.abs(expected_image - image ).max() < 9E-2
| 4 |
'''simple docstring'''
from __future__ import annotations
import requests
def __UpperCamelCase ( _lowercase ) -> dict:
_lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowercase ).json()
def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]:
_lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
_lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def __UpperCamelCase ( _lowercase = 10 ) -> str:
_lowercase : Tuple = hackernews_top_stories(_lowercase )
return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
'''simple docstring'''
def __UpperCamelCase ( ) -> int:
return 1
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else two_pence(x - 2 ) + one_pence()
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else one_pound(x - 100 ) + fifty_pence(_lowercase )
def __UpperCamelCase ( _lowercase ) -> int:
return 0 if x < 0 else two_pound(x - 200 ) + one_pound(_lowercase )
def __UpperCamelCase ( _lowercase = 200 ) -> int:
return two_pound(_lowercase )
if __name__ == "__main__":
print(solution(int(input().strip())))
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Dict ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """megatron-bert"""
def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Optional[Any] = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : List[Any] = position_embedding_type
_lowercase : Optional[Any] = use_cache
| 4 | 1 |
'''simple docstring'''
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def __UpperCamelCase ( ) -> Any:
_lowercase : int = ArgumentParser(
description=(
'PyTorch TPU distributed training launch '
'helper utility that will spawn up '
'multiple distributed processes'
) )
# Optional arguments for the launch helper
parser.add_argument('--num_cores', type=_lowercase, default=1, help='Number of TPU cores to use (1 or 8).' )
# positional
parser.add_argument(
'training_script', type=_lowercase, help=(
'The full path to the single TPU training '
'program/script to be launched in parallel, '
'followed by all the arguments for the '
'training script'
), )
# rest from the training program
parser.add_argument('training_script_args', nargs=_lowercase )
return parser.parse_args()
def __UpperCamelCase ( ) -> Optional[Any]:
_lowercase : str = parse_args()
# Import training_script as a module.
_lowercase : Dict = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
_lowercase : Union[str, Any] = script_fpath.stem
_lowercase : Optional[Any] = importlib.import_module(_lowercase )
# Patch sys.argv
_lowercase : Tuple = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )]
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 4 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Tuple = args.pruning_method
_lowercase : int = args.threshold
_lowercase : str = args.model_name_or_path.rstrip('/' )
_lowercase : Dict = args.target_model_path
print(f'''Load fine-pruned model from {model_name_or_path}''' )
_lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) )
_lowercase : List[Any] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_lowercase : Optional[int] = tensor
print(f'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_lowercase : List[str] = tensor
print(f'''Copied layer {name}''' )
elif "bias" in name:
_lowercase : Dict = tensor
print(f'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase )
_lowercase : Optional[Any] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_lowercase : Optional[Any] = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase )
_lowercase : str = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_lowercase : str = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase )
_lowercase : Optional[int] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_lowercase : Optional[int] = name[:-6]
_lowercase : List[str] = model[f'''{prefix_}mask_scores''']
_lowercase , _lowercase : Union[str, Any] = -0.1, 1.1
_lowercase : str = torch.sigmoid(_lowercase )
_lowercase : int = s * (r - l) + l
_lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 )
_lowercase : Union[str, Any] = tensor * mask
print(f'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
_lowercase : List[Any] = os.path.join(
os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' )
if not os.path.isdir(_lowercase ):
shutil.copytree(_lowercase, _lowercase )
print(f'''\nCreated folder {target_model_path}''' )
torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pruning_method''',
choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''],
type=str,
required=True,
help=(
'''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'''
''' sigmoied_threshold = Soft movement pruning)'''
),
)
parser.add_argument(
'''--threshold''',
type=float,
required=False,
help=(
'''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'''
'''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'''
'''Not needed for `l0`'''
),
)
parser.add_argument(
'''--model_name_or_path''',
type=str,
required=True,
help='''Folder containing the model that was previously fine-pruned''',
)
parser.add_argument(
'''--target_model_path''',
default=None,
type=str,
required=False,
help='''Folder containing the model that was previously fine-pruned''',
)
_A : List[Any] =parser.parse_args()
main(args)
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import math
def __UpperCamelCase ( _lowercase, _lowercase ) -> float:
_lowercase : str = u
for i in range(1, _lowercase ):
_lowercase : str = temp * (u - i)
return temp
def __UpperCamelCase ( ) -> None:
_lowercase : Any = int(input('enter the numbers of values: ' ) )
_lowercase : list[list[float]] = []
for _ in range(_lowercase ):
y.append([] )
for i in range(_lowercase ):
for j in range(_lowercase ):
y[i].append(_lowercase )
_lowercase : List[str] = 0
print('enter the values of parameters in a list: ' )
_lowercase : Dict = list(map(_lowercase, input().split() ) )
print('enter the values of corresponding parameters: ' )
for i in range(_lowercase ):
_lowercase : Union[str, Any] = float(input() )
_lowercase : str = int(input('enter the value to interpolate: ' ) )
_lowercase : List[Any] = (value - x[0]) / (x[1] - x[0])
# for calculating forward difference table
for i in range(1, _lowercase ):
for j in range(n - i ):
_lowercase : Tuple = y[j + 1][i - 1] - y[j][i - 1]
_lowercase : List[str] = y[0][0]
for i in range(1, _lowercase ):
summ += (ucal(_lowercase, _lowercase ) * y[0][i]) / math.factorial(_lowercase )
print(f'''the value at {value} is {summ}''' )
if __name__ == "__main__":
main()
| 4 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import ResNetConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFResNetForImageClassification, TFResNetModel
from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : List[Any]=10 , UpperCamelCase_ : Dict=[10, 20, 30, 40] , UpperCamelCase_ : Any=[1, 1, 2, 1] , UpperCamelCase_ : Any=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : str=3 , UpperCamelCase_ : Optional[Any]=None , ) -> int:
'''simple docstring'''
_lowercase : List[Any] = parent
_lowercase : Union[str, Any] = batch_size
_lowercase : Union[str, Any] = image_size
_lowercase : Optional[int] = num_channels
_lowercase : str = embeddings_size
_lowercase : Optional[Any] = hidden_sizes
_lowercase : List[str] = depths
_lowercase : List[str] = is_training
_lowercase : Union[str, Any] = use_labels
_lowercase : str = hidden_act
_lowercase : Dict = num_labels
_lowercase : str = scope
_lowercase : Any = len(UpperCamelCase_ )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_lowercase : Optional[Any] = None
if self.use_labels:
_lowercase : str = ids_tensor([self.batch_size] , self.num_labels )
_lowercase : Any = self.get_config()
return config, pixel_values, labels
def __UpperCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
return ResNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = TFResNetModel(config=UpperCamelCase_ )
_lowercase : Tuple = model(UpperCamelCase_ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> Any:
'''simple docstring'''
_lowercase : Any = self.num_labels
_lowercase : Tuple = TFResNetForImageClassification(UpperCamelCase_ )
_lowercase : Optional[Any] = model(UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __UpperCAmelCase ( self : Any ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase : Any = config_and_inputs
_lowercase : List[str] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class lowerCamelCase__ ( A , A , unittest.TestCase ):
'''simple docstring'''
A_ = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else ()
A_ = (
{"""feature-extraction""": TFResNetModel, """image-classification""": TFResNetForImageClassification}
if is_tf_available()
else {}
)
A_ = False
A_ = False
A_ = False
A_ = False
A_ = False
def __UpperCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
_lowercase : Any = TFResNetModelTester(self )
_lowercase : Any = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __UpperCAmelCase ( self : Optional[Any] ) -> str:
'''simple docstring'''
return
@unittest.skip(reason='ResNet does not use inputs_embeds' )
def __UpperCAmelCase ( self : Any ) -> Optional[int]:
'''simple docstring'''
pass
@unittest.skip(reason='ResNet does not support input and output embeddings' )
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : Dict ) -> Any:
'''simple docstring'''
_lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_lowercase : Union[str, Any] = model_class(UpperCamelCase_ )
_lowercase : Tuple = inspect.signature(model.call )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_lowercase : List[str] = [*signature.parameters.keys()]
_lowercase : int = ['pixel_values']
self.assertListEqual(arg_names[:1] , UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
def check_hidden_states_output(UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str ):
_lowercase : Union[str, Any] = model_class(UpperCamelCase_ )
_lowercase : Any = model(**self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_lowercase : Dict = self.model_tester.num_stages
self.assertEqual(len(UpperCamelCase_ ) , expected_num_stages + 1 )
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_lowercase , _lowercase : Any = self.model_tester.prepare_config_and_inputs_for_common()
_lowercase : Tuple = ['basic', 'bottleneck']
for model_class in self.all_model_classes:
for layer_type in layers_type:
_lowercase : Optional[Any] = layer_type
_lowercase : Dict = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_lowercase : Optional[Any] = True
check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict ) -> str:
'''simple docstring'''
_lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : str ) -> Union[str, Any]:
'''simple docstring'''
for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_lowercase : List[Any] = TFResNetModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
def __UpperCamelCase ( ) -> int:
_lowercase : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
return (
AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
_lowercase : Dict = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
_lowercase : Any = self.default_image_processor
_lowercase : Tuple = prepare_img()
_lowercase : str = image_processor(images=UpperCamelCase_ , return_tensors='tf' )
# forward pass
_lowercase : Optional[Any] = model(**UpperCamelCase_ )
# verify the logits
_lowercase : Tuple = tf.TensorShape((1, 1000) )
self.assertEqual(outputs.logits.shape , UpperCamelCase_ )
_lowercase : List[str] = tf.constant([-11.10_69, -9.78_77, -8.37_77] )
self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , UpperCamelCase_ , atol=1E-4 ) )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 | 1 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
_A : Optional[int] =[
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : bool , UpperCamelCase_ : str = None , UpperCamelCase_ : list = None ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = None
_lowercase : int = os.path.abspath(os.path.join('examples' , 'by_feature' ) )
_lowercase : Optional[Any] = os.path.abspath('examples' )
for item in os.listdir(UpperCamelCase_ ):
if item not in EXCLUDE_EXAMPLES:
_lowercase : List[str] = os.path.join(UpperCamelCase_ , UpperCamelCase_ )
if os.path.isfile(UpperCamelCase_ ) and ".py" in item_path:
with self.subTest(
tested_script=UpperCamelCase_ , feature_script=UpperCamelCase_ , tested_section='main()' if parser_only else 'training_function()' , ):
_lowercase : Tuple = compare_against_test(
os.path.join(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Optional[int] = '\n'.join(UpperCamelCase_ )
if special_strings is not None:
for string in special_strings:
_lowercase : Union[str, Any] = diff.replace(UpperCamelCase_ , '' )
self.assertEqual(UpperCamelCase_ , '' )
def __UpperCAmelCase ( self : List[str] ) -> Any:
'''simple docstring'''
self.one_complete_example('complete_nlp_example.py' , UpperCamelCase_ )
self.one_complete_example('complete_nlp_example.py' , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Optional[Any] = os.path.abspath(os.path.join('examples' , 'cv_example.py' ) )
_lowercase : str = [
' ' * 16 + '{\n\n',
' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n',
' ' * 20 + '"f1": eval_metric["f1"],\n\n',
' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n',
' ' * 20 + '"epoch": epoch,\n\n',
' ' * 16 + '},\n\n',
' ' * 16 + 'step=epoch,\n',
' ' * 12,
' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n',
]
self.one_complete_example('complete_cv_example.py' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
self.one_complete_example('complete_cv_example.py' , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = False
@classmethod
def __UpperCAmelCase ( cls : Optional[int] ) -> Tuple:
'''simple docstring'''
super().setUpClass()
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : str = os.path.join(cls._tmpdir , 'default_config.yml' )
write_basic_config(save_location=cls.configPath )
_lowercase : Union[str, Any] = ['accelerate', 'launch', '--config_file', cls.configPath]
@classmethod
def __UpperCAmelCase ( cls : List[Any] ) -> Any:
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def __UpperCAmelCase ( self : str ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[int] = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0' ) ) )
def __UpperCAmelCase ( self : str ) -> str:
'''simple docstring'''
_lowercase : int = F'''
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
'''.split()
_lowercase : str = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2' ) ) )
def __UpperCAmelCase ( self : Any ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}
'''.split()
_lowercase : Any = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ )
self.assertNotIn('epoch 0:' , UpperCamelCase_ )
self.assertIn('epoch 1:' , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : List[str] = F'''
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}
'''.split()
_lowercase : int = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ )
if torch.cuda.is_available():
_lowercase : Tuple = torch.cuda.device_count()
else:
_lowercase : Any = 1
if num_processes > 1:
self.assertNotIn('epoch 0:' , UpperCamelCase_ )
self.assertIn('epoch 1:' , UpperCamelCase_ )
else:
self.assertIn('epoch 0:' , UpperCamelCase_ )
self.assertIn('epoch 1:' , UpperCamelCase_ )
@slow
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : int = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split()
with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'} ):
_lowercase : Any = run_command(self._launch_args + testargs , return_stdout=UpperCamelCase_ )
_lowercase : Optional[Any] = re.findall('({.+})' , UpperCamelCase_ )
_lowercase : Optional[int] = [r for r in results if 'accuracy' in r][-1]
_lowercase : Dict = ast.literal_eval(UpperCamelCase_ )
self.assertGreaterEqual(results['accuracy'] , 0.75 )
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : List[Any] = ['examples/by_feature/multi_process_metrics.py']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'} )
def __UpperCAmelCase ( self : Dict ) -> Dict:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
_lowercase : Optional[int] = F'''
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
'''.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , 'tracking' ) ) )
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = ['examples/by_feature/gradient_accumulation.py']
run_command(self._launch_args + testargs )
def __UpperCAmelCase ( self : Any ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = ['examples/by_feature/local_sgd.py']
run_command(self._launch_args + testargs )
| 4 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
_A : List[Any] =2_0_0
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
_A : Optional[Any] =5_0
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
_A : Any =0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_0_0_0))
def __UpperCamelCase ( _lowercase, _lowercase ) -> tuple[str, float]:
_lowercase : List[Any] = len([g for position, g in enumerate(_lowercase ) if g == main_target[position]] )
return (item, float(_lowercase ))
def __UpperCamelCase ( _lowercase, _lowercase ) -> tuple[str, str]:
_lowercase : List[str] = random.randint(0, len(_lowercase ) - 1 )
_lowercase : Optional[int] = parent_a[:random_slice] + parent_a[random_slice:]
_lowercase : str = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : int = list(_lowercase )
if random.uniform(0, 1 ) < MUTATION_PROBABILITY:
_lowercase : List[str] = random.choice(_lowercase )
return "".join(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, ) -> list[str]:
_lowercase : Tuple = []
# Generate more children proportionally to the fitness score.
_lowercase : List[Any] = int(parent_a[1] * 100 ) + 1
_lowercase : Any = 10 if child_n >= 10 else child_n
for _ in range(_lowercase ):
_lowercase : Dict = population_score[random.randint(0, _lowercase )][0]
_lowercase , _lowercase : str = crossover(parent_a[0], _lowercase )
# Append new string to the population list.
pop.append(mutate(_lowercase, _lowercase ) )
pop.append(mutate(_lowercase, _lowercase ) )
return pop
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase = True ) -> tuple[int, int, str]:
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
_lowercase : Optional[Any] = f'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(_lowercase )
# Verify that the target contains no genes besides the ones inside genes variable.
_lowercase : Tuple = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_lowercase : List[Any] = f'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(_lowercase )
# Generate random starting population.
_lowercase : List[Any] = []
for _ in range(_lowercase ):
population.append(''.join([random.choice(_lowercase ) for i in range(len(_lowercase ) )] ) )
# Just some logs to know what the algorithms is doing.
_lowercase , _lowercase : str = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_lowercase )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_lowercase : List[Any] = [evaluate(_lowercase, _lowercase ) for item in population]
# Check if there is a matching evolution.
_lowercase : Optional[Any] = sorted(_lowercase, key=lambda _lowercase : x[1], reverse=_lowercase )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
f'''\nGeneration: {generation}'''
f'''\nTotal Population:{total_population}'''
f'''\nBest score: {population_score[0][1]}'''
f'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_lowercase : List[str] = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_lowercase )
# Normalize population score to be between 0 and 1.
_lowercase : List[str] = [
(item, score / len(_lowercase )) for item, score in population_score
]
# This is selection
for i in range(_lowercase ):
population.extend(select(population_score[int(_lowercase )], _lowercase, _lowercase ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_lowercase ) > N_POPULATION:
break
if __name__ == "__main__":
_A : List[Any] =(
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
_A : Optional[Any] =list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'รจรฉรฒร โฌรน=)(&%$ยฃ/\\'''
)
_A , _A , _A : List[Any] =basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 4 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 | 1 |
'''simple docstring'''
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
_A : Optional[Any] =version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''')
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase=False, ) -> Tuple:
output_path.parent.mkdir(parents=_lowercase, exist_ok=_lowercase )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_lowercase, _lowercase, f=output_path.as_posix(), input_names=_lowercase, output_names=_lowercase, dynamic_axes=_lowercase, do_constant_folding=_lowercase, use_external_data_format=_lowercase, enable_onnx_checker=_lowercase, opset_version=_lowercase, )
else:
export(
_lowercase, _lowercase, f=output_path.as_posix(), input_names=_lowercase, output_names=_lowercase, dynamic_axes=_lowercase, do_constant_folding=_lowercase, opset_version=_lowercase, )
@torch.no_grad()
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase = False ) -> List[str]:
_lowercase : Optional[Any] = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
_lowercase : int = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
_lowercase : List[str] = 'cpu'
_lowercase : Optional[Any] = Path(_lowercase )
# VAE DECODER
_lowercase : Optional[Any] = AutoencoderKL.from_pretrained(model_path + '/vae' )
_lowercase : List[Any] = vae_decoder.config.latent_channels
# forward only through the decoder part
_lowercase : Any = vae_decoder.decode
onnx_export(
_lowercase, model_args=(
torch.randn(1, _lowercase, 25, 25 ).to(device=_lowercase, dtype=_lowercase ),
False,
), output_path=output_path / 'vae_decoder' / 'model.onnx', ordered_input_names=['latent_sample', 'return_dict'], output_names=['sample'], dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
}, opset=_lowercase, )
del vae_decoder
if __name__ == "__main__":
_A : List[Any] =argparse.ArgumentParser()
parser.add_argument(
'''--model_path''',
type=str,
required=True,
help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''',
)
parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''')
parser.add_argument(
'''--opset''',
default=1_4,
type=int,
help='''The version of the ONNX operator set to use.''',
)
parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''')
_A : int =parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print('''SD: Done: ONNX''')
| 4 |
'''simple docstring'''
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def __UpperCamelCase ( _lowercase ) -> None:
_lowercase , _lowercase : List[Any] = analyze_text(_lowercase )
_lowercase : Any = list(' ' + ascii_lowercase )
# what is our total sum of probabilities.
_lowercase : Union[str, Any] = sum(single_char_strings.values() )
# one length string
_lowercase : Union[str, Any] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
_lowercase : Any = single_char_strings[ch]
_lowercase : int = my_str / all_sum
my_fir_sum += prob * math.loga(_lowercase ) # entropy formula.
# print entropy
print(f'''{round(-1 * my_fir_sum ):.1f}''' )
# two len string
_lowercase : str = sum(two_char_strings.values() )
_lowercase : str = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
_lowercase : Optional[Any] = cha + cha
if sequence in two_char_strings:
_lowercase : int = two_char_strings[sequence]
_lowercase : Optional[int] = int(_lowercase ) / all_sum
my_sec_sum += prob * math.loga(_lowercase )
# print second entropy
print(f'''{round(-1 * my_sec_sum ):.1f}''' )
# print the difference between them
print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' )
def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]:
_lowercase : Optional[Any] = Counter() # type: ignore
_lowercase : List[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0, len(_lowercase ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def __UpperCamelCase ( ) -> List[Any]:
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 4 | 1 |
'''simple docstring'''
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Optional[int] ='''โ'''
_A : str ={'''vocab_file''': '''vocab.txt''', '''sentencepiece_model_ckpt''': '''sentencepiece.bpe.model'''}
_A : Any ={
'''sentencepiece_model_file''': '''sentencepiece.bpe.model''',
'''vocab_file''': '''vocab.txt''',
}
_A : Optional[int] ={
'''vocab_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt''',
},
'''sentencepiece_model_file''': {
'''ernie-m-base''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
'''ernie-m-large''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model''',
},
}
_A : Dict ={
'''ernie-m-base''': 5_1_4,
'''ernie-m-large''': 5_1_4,
}
_A : Optional[Any] ={
'''ernie-m-base''': {'''do_lower_case''': False},
'''ernie-m-large''': {'''do_lower_case''': False},
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["input_ids"]
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_INIT_CONFIGURATION
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = RESOURCE_FILES_NAMES
def __init__( self : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Any=False , UpperCamelCase_ : List[str]="utf8" , UpperCamelCase_ : Optional[int]="[UNK]" , UpperCamelCase_ : Dict="[SEP]" , UpperCamelCase_ : List[str]="[PAD]" , UpperCamelCase_ : Dict="[CLS]" , UpperCamelCase_ : Optional[int]="[MASK]" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : Optional[int] , ) -> None:
'''simple docstring'''
_lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , vocab_file=UpperCamelCase_ , encoding=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , )
_lowercase : Dict = do_lower_case
_lowercase : Optional[Any] = sentencepiece_model_ckpt
_lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(UpperCamelCase_ )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
_lowercase : List[Any] = self.load_vocab(filepath=UpperCamelCase_ )
else:
_lowercase : str = {self.sp_model.id_to_piece(UpperCamelCase_ ): id for id in range(self.sp_model.get_piece_size() )}
_lowercase : List[str] = {v: k for k, v in self.vocab.items()}
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
if text is None:
return None
_lowercase : Optional[Any] = self.tokenize(UpperCamelCase_ )
_lowercase , _lowercase : int = '', []
for i, ch in enumerate(UpperCamelCase_ ):
if ch in self.SP_CHAR_MAPPING:
_lowercase : str = self.SP_CHAR_MAPPING.get(UpperCamelCase_ )
else:
_lowercase : Optional[int] = unicodedata.normalize('NFKC' , UpperCamelCase_ )
if self.is_whitespace(UpperCamelCase_ ):
continue
normalized_text += ch
char_mapping.extend([i] * len(UpperCamelCase_ ) )
_lowercase , _lowercase , _lowercase : Any = normalized_text, [], 0
if self.do_lower_case:
_lowercase : Union[str, Any] = text.lower()
for token in split_tokens:
if token[:1] == "โ":
_lowercase : Tuple = token[1:]
_lowercase : Optional[Any] = text[offset:].index(UpperCamelCase_ ) + offset
_lowercase : Any = start + len(UpperCamelCase_ )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
_lowercase : Tuple = end
return token_mapping
@property
def __UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
return len(self.vocab )
def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.__dict__.copy()
_lowercase : List[str] = None
return state
def __setstate__( self : List[Any] , UpperCamelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_lowercase : Tuple = {}
_lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Tuple:
'''simple docstring'''
return "".join((self.SP_CHAR_MAPPING.get(UpperCamelCase_ , UpperCamelCase_ ) for c in text) )
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict=False , UpperCamelCase_ : Optional[int]=64 , UpperCamelCase_ : Tuple=0.1 ) -> Union[str, Any]:
'''simple docstring'''
if self.sp_model_kwargs.get('enable_sampling' ) is True:
_lowercase : List[Any] = True
if self.sp_model_kwargs.get('alpha' ) is not None:
_lowercase : Optional[int] = self.sp_model_kwargs.get('alpha' )
if self.sp_model_kwargs.get('nbest_size' ) is not None:
_lowercase : List[Any] = self.sp_model_kwargs.get('nbest_size' )
if not enable_sampling:
_lowercase : Any = self.sp_model.EncodeAsPieces(UpperCamelCase_ )
else:
_lowercase : Tuple = self.sp_model.SampleEncodeAsPieces(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : Any = []
for pi, piece in enumerate(UpperCamelCase_ ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(UpperCamelCase_ ) and pi != 0:
new_pieces.append(UpperCamelCase_ )
continue
else:
continue
_lowercase : str = 0
for i, chunk in enumerate(UpperCamelCase_ ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(UpperCamelCase_ ) or self.is_punct(UpperCamelCase_ ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(UpperCamelCase_ )
_lowercase : Tuple = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_lowercase : Any = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
_lowercase : Any = i
if len(UpperCamelCase_ ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict ) -> Optional[int]:
'''simple docstring'''
_lowercase : str = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ' ' ).strip()
return out_string
def __UpperCAmelCase ( self : str , UpperCamelCase_ : str ) -> Any:
'''simple docstring'''
_lowercase : str = self.convert_ids_to_tokens(UpperCamelCase_ )
_lowercase : int = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ' ' ).strip()
return out_string
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> int:
'''simple docstring'''
return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[str] ) -> str:
'''simple docstring'''
return self.reverse_vocab.get(UpperCamelCase_ , self.unk_token )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : int=None ) -> str:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_lowercase : List[Any] = [self.cls_token_id]
_lowercase : Tuple = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str=None ) -> int:
'''simple docstring'''
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Any=False ) -> Tuple:
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'You should not supply a second sequence if the provided sequence of '
'ids is already formatted with special tokens for the model.' )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] + ([0] * len(UpperCamelCase_ )) + [1]
return [1] + ([0] * len(UpperCamelCase_ )) + [1]
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
# [CLS] X [SEP]
return (len(UpperCamelCase_ ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(UpperCamelCase_ ) + 1) + [1] * (len(UpperCamelCase_ ) + 3)
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
if "\u4e00" <= char <= "\u9fff":
return True
return False
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[str] ) -> List[str]:
'''simple docstring'''
if char in ",;:.?!~๏ผ๏ผ๏ผใ๏ผ๏ผใใใใ":
return True
return False
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Optional[Any] ) -> int:
'''simple docstring'''
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(UpperCamelCase_ ) == 1:
_lowercase : Any = unicodedata.category(UpperCamelCase_ )
if cat == "Zs":
return True
return False
def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any ) -> Optional[int]:
'''simple docstring'''
_lowercase : List[str] = {}
with io.open(UpperCamelCase_ , 'r' , encoding='utf-8' ) as f:
for index, line in enumerate(UpperCamelCase_ ):
_lowercase : List[str] = line.rstrip('\n' )
_lowercase : Optional[Any] = int(UpperCamelCase_ )
return token_to_idx
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
_lowercase : Optional[int] = 0
if os.path.isdir(UpperCamelCase_ ):
_lowercase : Any = os.path.join(
UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
else:
_lowercase : Union[str, Any] = (filename_prefix + '-' if filename_prefix else '') + save_directory
with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda UpperCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
' Please check that the vocabulary is not corrupted!' )
_lowercase : Optional[Any] = token_index
writer.write(token + '\n' )
index += 1
_lowercase : int = os.path.join(UpperCamelCase_ , 'sentencepiece.bpe.model' )
with open(UpperCamelCase_ , 'wb' ) as fi:
_lowercase : int = self.sp_model.serialized_model_proto()
fi.write(UpperCamelCase_ )
return (vocab_file,)
| 4 |
'''simple docstring'''
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' )
_lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' )
_lowercase : List[Any] = 'The dog is cute and lives in the garden house'
_lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] )
_lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
_lowercase : Tuple = jnp.array(
[[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] )
_lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state']
self.assertEqual(output.shape , UpperCamelCase_ )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
| 4 | 1 |
'''simple docstring'''
import argparse
from copy import deepcopy
import numpy as np
from datasets import ClassLabel, DatasetDict, load_dataset
from evaluate import load
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
def __UpperCamelCase ( ) -> List[str]:
_lowercase : int = argparse.ArgumentParser()
parser.add_argument('--model_ckpt', type=_lowercase, default='microsoft/unixcoder-base-nine' )
parser.add_argument('--num_epochs', type=_lowercase, default=5 )
parser.add_argument('--batch_size', type=_lowercase, default=6 )
parser.add_argument('--gradient_accumulation_steps', type=_lowercase, default=1 )
parser.add_argument('--freeze', type=_lowercase, default=_lowercase )
parser.add_argument('--learning_rate', type=_lowercase, default=5E-4 )
parser.add_argument('--seed', type=_lowercase, default=0 )
parser.add_argument('--lr_scheduler_type', type=_lowercase, default='cosine' )
parser.add_argument('--num_warmup_steps', type=_lowercase, default=10 )
parser.add_argument('--weight_decay', type=_lowercase, default=0.0_1 )
parser.add_argument('--output_dir', type=_lowercase, default='./results' )
return parser.parse_args()
_A : Optional[Any] =load('''accuracy''')
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase , _lowercase : List[str] = eval_pred
_lowercase : Dict = np.argmax(_lowercase, axis=1 )
return metric.compute(predictions=_lowercase, references=_lowercase )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : str , UpperCamelCase_ : int ) -> None:
'''simple docstring'''
super().__init__()
_lowercase : Dict = trainer
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , **UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
if control.should_evaluate:
_lowercase : Union[str, Any] = deepcopy(UpperCamelCase_ )
self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='train' )
return control_copy
def __UpperCamelCase ( ) -> Optional[Any]:
_lowercase : Any = get_args()
set_seed(args.seed )
_lowercase : Dict = load_dataset('codeparrot/codecomplex', split='train' )
_lowercase : int = dataset.train_test_split(test_size=0.2 )
_lowercase : Union[str, Any] = train_test['test'].train_test_split(test_size=0.5 )
_lowercase : Dict = DatasetDict(
{
'train': train_test['train'],
'test': test_validation['train'],
'valid': test_validation['test'],
} )
print('Loading tokenizer and model' )
_lowercase : Optional[int] = AutoTokenizer.from_pretrained(args.model_ckpt )
_lowercase : Tuple = tokenizer.eos_token
_lowercase : Tuple = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt, num_labels=7 )
_lowercase : Union[str, Any] = model.config.eos_token_id
if args.freeze:
for param in model.roberta.parameters():
_lowercase : Tuple = False
_lowercase : Dict = ClassLabel(num_classes=7, names=list(set(train_test_validation['train']['complexity'] ) ) )
def tokenize(_lowercase ):
_lowercase : Tuple = tokenizer(example['src'], truncation=_lowercase, max_length=1024 )
_lowercase : List[str] = labels.straint(example['complexity'] )
return {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"label": label,
}
_lowercase : List[str] = train_test_validation.map(
_lowercase, batched=_lowercase, remove_columns=train_test_validation['train'].column_names, )
_lowercase : Any = DataCollatorWithPadding(tokenizer=_lowercase )
_lowercase : Any = TrainingArguments(
output_dir=args.output_dir, learning_rate=args.learning_rate, lr_scheduler_type=args.lr_scheduler_type, evaluation_strategy='epoch', save_strategy='epoch', logging_strategy='epoch', per_device_train_batch_size=args.batch_size, per_device_eval_batch_size=args.batch_size, num_train_epochs=args.num_epochs, gradient_accumulation_steps=args.gradient_accumulation_steps, weight_decay=0.0_1, metric_for_best_model='accuracy', run_name='complexity-java', report_to='wandb', )
_lowercase : Union[str, Any] = Trainer(
model=_lowercase, args=_lowercase, train_dataset=tokenized_datasets['train'], eval_dataset=tokenized_datasets['valid'], tokenizer=_lowercase, data_collator=_lowercase, compute_metrics=_lowercase, )
print('Training...' )
trainer.add_callback(CustomCallback(_lowercase ) )
trainer.train()
if __name__ == "__main__":
main()
| 4 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A : int =logging.get_logger(__name__)
_A : Union[str, Any] ={
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_vision_model"""
def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Optional[Any] = hidden_size
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : Tuple = patch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = attention_dropout
_lowercase : int = layer_norm_eps
_lowercase : Optional[int] = hidden_act
_lowercase : str = qkv_bias
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_qformer"""
def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : List[Any] = num_attention_heads
_lowercase : Optional[int] = hidden_act
_lowercase : Union[str, Any] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Dict = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = layer_norm_eps
_lowercase : List[str] = position_embedding_type
_lowercase : str = cross_attention_frequency
_lowercase : int = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Optional[int] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip"""
A_ = True
def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
if vision_config is None:
_lowercase : Any = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
_lowercase : List[Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
_lowercase : List[Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
_lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ )
_lowercase : str = self.text_config.tie_word_embeddings
_lowercase : int = self.text_config.is_encoder_decoder
_lowercase : Tuple = num_query_tokens
_lowercase : str = self.vision_config.hidden_size
_lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_lowercase : List[Any] = 1.0
_lowercase : int = 0.02
@classmethod
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : Optional[int] = self.vision_config.to_dict()
_lowercase : Optional[Any] = self.qformer_config.to_dict()
_lowercase : Tuple = self.text_config.to_dict()
_lowercase : Dict = self.__class__.model_type
return output
| 4 | 1 |
'''simple docstring'''
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets,
# U and V such that every edge (u, v) either connects a vertex from U to V or a vertex
# from V to U. In other words, for every edge (u, v), either u belongs to U and v to V,
# or u belongs to V and v to U. We can also say that there is no edge that connects
# vertices of same set.
def __UpperCamelCase ( _lowercase ) -> List[str]:
_lowercase : str = [False] * len(_lowercase )
_lowercase : Dict = [-1] * len(_lowercase )
def dfs(_lowercase, _lowercase ):
_lowercase : Dict = True
_lowercase : Optional[int] = c
for u in graph[v]:
if not visited[u]:
dfs(_lowercase, 1 - c )
for i in range(len(_lowercase ) ):
if not visited[i]:
dfs(_lowercase, 0 )
for i in range(len(_lowercase ) ):
for j in graph[i]:
if color[i] == color[j]:
return False
return True
# Adjacency list of graph
_A : Union[str, Any] ={0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []}
print(check_bipartite_dfs(graph))
| 4 |
'''simple docstring'''
import json
import os
import re
import shutil
import tempfile
import unittest
from typing import Tuple
from transformers import AddedToken, BatchEncoding, ByTaTokenizer
from transformers.utils import cached_property, is_tf_available, is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
if is_torch_available():
_A : List[str] ='''pt'''
elif is_tf_available():
_A : Tuple ='''tf'''
else:
_A : Optional[int] ='''jax'''
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = ByTaTokenizer
A_ = False
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
_lowercase : Any = ByTaTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
return ByTaTokenizer.from_pretrained('google/byt5-small' )
def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer:
'''simple docstring'''
return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
_lowercase : Dict = []
for i in range(len(UpperCamelCase_ ) ):
try:
_lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ )
except UnicodeDecodeError:
pass
toks.append((i, tok) )
_lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) )
_lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) )
if max_length is not None and len(UpperCamelCase_ ) > max_length:
_lowercase : List[Any] = toks[:max_length]
if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0:
while len(UpperCamelCase_ ) < min_length:
_lowercase : Tuple = toks + toks
# toks_str = [t[1] for t in toks]
_lowercase : Dict = [t[0] for t in toks]
# Ensure consistency
_lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
if " " not in output_txt and len(UpperCamelCase_ ) > 1:
_lowercase : Any = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ )
+ ' '
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ )
)
if with_prefix_space:
_lowercase : Union[str, Any] = ' ' + output_txt
_lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
return output_txt, output_ids
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
_lowercase : List[str] = self.ta_base_tokenizer
_lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] )
_lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] )
self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] )
def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Optional[int] = self.ta_base_tokenizer
_lowercase : Tuple = 'Unicode โฌ.'
_lowercase : List[Any] = tokenizer(UpperCamelCase_ )
_lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : List[str] = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'Unicode โฌ.</s>' )
_lowercase : Any = tokenizer('e รจ รฉ รช รซ' )
_lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1]
self.assertEqual(encoded['input_ids'] , UpperCamelCase_ )
# decoding
_lowercase : Tuple = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , 'e รจ รฉ รช รซ</s>' )
# encode/decode, but with `encode` instead of `__call__`
self.assertEqual(tokenizer.decode(tokenizer.encode('e รจ รฉ รช รซ' ) ) , 'e รจ รฉ รช รซ</s>' )
def __UpperCAmelCase ( self : Tuple ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = self.ta_base_tokenizer
_lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
# fmt: off
_lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0]
# fmt: on
_lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
if FRAMEWORK != "jax":
_lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] )
else:
_lowercase : List[str] = list(batch.input_ids.tolist()[0] )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual((2, 37) , batch.input_ids.shape )
self.assertEqual((2, 37) , batch.attention_mask.shape )
def __UpperCAmelCase ( self : Optional[int] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = self.ta_base_tokenizer
_lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
_lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
# check if input_ids are returned and no decoder_input_ids
self.assertIn('input_ids' , UpperCamelCase_ )
self.assertIn('attention_mask' , UpperCamelCase_ )
self.assertNotIn('decoder_input_ids' , UpperCamelCase_ )
self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ )
def __UpperCAmelCase ( self : Any ) -> int:
'''simple docstring'''
_lowercase : Tuple = self.ta_base_tokenizer
_lowercase : Optional[Any] = [
'Summary of the text.',
'Another summary.',
]
_lowercase : str = tokenizer(
text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def __UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
_lowercase : str = self.ta_base_tokenizer
_lowercase : str = ['A long paragraph for summarization. </s>']
_lowercase : Optional[int] = ['Summary of the text. </s>']
# fmt: off
_lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1]
_lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1]
# fmt: on
_lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] )
self.assertEqual(UpperCamelCase_ , batch['labels'][0] )
def __UpperCAmelCase ( self : List[str] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_lowercase : List[Any] = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : List[Any] = tempfile.mkdtemp()
_lowercase : Any = ' He is very happy, UNwant\u00E9d,running'
_lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
shutil.rmtree(UpperCamelCase_ )
_lowercase : str = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_lowercase : Dict = tempfile.mkdtemp()
_lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running'
tokenizer.add_tokens(['bim', 'bambam'] )
_lowercase : Optional[int] = tokenizer.additional_special_tokens
additional_special_tokens.append('new_additional_special_token' )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
tokenizer.save_pretrained(UpperCamelCase_ )
_lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ )
_lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] ) -> Tuple:
'''simple docstring'''
_lowercase : List[Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_lowercase : int = json.load(UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_lowercase : Tuple = json.load(UpperCamelCase_ )
_lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )]
_lowercase : Any = added_tokens_extra_ids + [
'an_additional_special_token'
]
_lowercase : int = added_tokens_extra_ids + [
'an_additional_special_token'
]
with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(UpperCamelCase_ , UpperCamelCase_ )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_lowercase : Optional[Any] = tokenizer_class.from_pretrained(
UpperCamelCase_ , )
self.assertIn(
'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )]
_lowercase : Tuple = tokenizer_class.from_pretrained(
UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , )
self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens )
self.assertEqual(
['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens(
tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , )
def __UpperCAmelCase ( self : List[str] ) -> str:
'''simple docstring'''
_lowercase : Union[str, Any] = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(UpperCamelCase_ )
_lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ )
self.assertTrue(tokenizer.decode([255] ) == '' )
def __UpperCAmelCase ( self : Optional[int] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> List[Any]:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
pass
def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>']
_lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ )
self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] ) -> str:
'''simple docstring'''
_lowercase : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
_lowercase : Optional[int] = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_lowercase : Optional[int] = 0
_lowercase : int = tokenizer.convert_ids_to_tokens(
UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
for attr in attributes_list:
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ )
self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] )
setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] )
self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
| 4 | 1 |
'''simple docstring'''
import unittest
from transformers import is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow
if is_flax_available():
import optax
from flax.training.common_utils import onehot
from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration
from transformers.models.ta.modeling_flax_ta import shift_tokens_right
@require_torch
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
_lowercase : Optional[Any] = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' )
_lowercase : Dict = AutoTokenizer.from_pretrained('google/mt5-small' )
_lowercase : Any = tokenizer('Hello there' , return_tensors='np' ).input_ids
_lowercase : Any = tokenizer('Hi I am' , return_tensors='np' ).input_ids
_lowercase : Union[str, Any] = shift_tokens_right(UpperCamelCase_ , model.config.pad_token_id , model.config.decoder_start_token_id )
_lowercase : List[Any] = model(UpperCamelCase_ , decoder_input_ids=UpperCamelCase_ ).logits
_lowercase : Dict = optax.softmax_cross_entropy(UpperCamelCase_ , onehot(UpperCamelCase_ , logits.shape[-1] ) ).mean()
_lowercase : Tuple = -(labels.shape[-1] * loss.item())
_lowercase : Optional[int] = -84.91_27
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 4 |
'''simple docstring'''
_A : Dict ='''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_A : Dict ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase ) -> list:
_lowercase : Any = []
_lowercase , _lowercase : Optional[int] = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
_lowercase : Tuple = result + left + right
return input_list
def __UpperCamelCase ( _lowercase ) -> list:
if len(_lowercase ) <= 1:
return input_list
_lowercase : List[str] = list(_lowercase )
# iteration for two-way merging
_lowercase : List[str] = 2
while p <= len(_lowercase ):
# getting low, high and middle value for merge-sort of single list
for i in range(0, len(_lowercase ), _lowercase ):
_lowercase : List[str] = i
_lowercase : str = i + p - 1
_lowercase : List[str] = (low + high + 1) // 2
_lowercase : str = merge(_lowercase, _lowercase, _lowercase, _lowercase )
# final merge of last two parts
if p * 2 >= len(_lowercase ):
_lowercase : Tuple = i
_lowercase : Dict = merge(_lowercase, 0, _lowercase, len(_lowercase ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
_A : Dict =input('''Enter numbers separated by a comma:\n''').strip()
if user_input == "":
_A : Optional[int] =[]
else:
_A : List[Any] =[int(item.strip()) for item in user_input.split(''',''')]
print(iter_merge_sort(unsorted))
| 4 |
'''simple docstring'''
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.bert.modeling_bert import (
BERT_INPUTS_DOCSTRING,
BERT_START_DOCSTRING,
BertEmbeddings,
BertLayer,
BertPooler,
BertPreTrainedModel,
)
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : int = torch.exp(_lowercase )
_lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i)
_lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i)
return torch.log(_lowercase ) - B / A
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]:
'''simple docstring'''
super().__init__()
_lowercase : int = config.output_attentions
_lowercase : int = config.output_hidden_states
_lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] )
_lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int:
'''simple docstring'''
if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int):
for i in range(len(self.early_exit_entropy ) ):
_lowercase : Optional[Any] = x
else:
_lowercase : Optional[int] = x
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
_lowercase : Optional[int] = pooler.state_dict()
for highway in self.highway:
for name, param in highway.pooler.state_dict().items():
param.copy_(loaded_model[name] )
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]:
'''simple docstring'''
_lowercase : int = ()
_lowercase : List[Any] = ()
_lowercase : Tuple = ()
for i, layer_module in enumerate(self.layer ):
if self.output_hidden_states:
_lowercase : Optional[int] = all_hidden_states + (hidden_states,)
_lowercase : str = layer_module(
UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : List[str] = layer_outputs[0]
if self.output_attentions:
_lowercase : Tuple = all_attentions + (layer_outputs[1],)
_lowercase : Optional[int] = (hidden_states,)
if self.output_hidden_states:
_lowercase : str = current_outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[int] = current_outputs + (all_attentions,)
_lowercase : List[Any] = self.highway[i](UpperCamelCase_ )
# logits, pooled_output
if not self.training:
_lowercase : Dict = highway_exit[0]
_lowercase : Tuple = entropy(UpperCamelCase_ )
_lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy
_lowercase : str = all_highway_exits + (highway_exit,)
if highway_entropy < self.early_exit_entropy[i]:
_lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,)
raise HighwayException(UpperCamelCase_ , i + 1 )
else:
_lowercase : Optional[int] = all_highway_exits + (highway_exit,)
# Add last layer
if self.output_hidden_states:
_lowercase : str = all_hidden_states + (hidden_states,)
_lowercase : Optional[Any] = (hidden_states,)
if self.output_hidden_states:
_lowercase : Dict = outputs + (all_hidden_states,)
if self.output_attentions:
_lowercase : Optional[Any] = outputs + (all_attentions,)
_lowercase : Optional[int] = outputs + (all_highway_exits,)
return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits
@add_start_docstrings(
"""The Bert Model transformer with early exiting (DeeBERT). """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : int = config
_lowercase : int = BertEmbeddings(UpperCamelCase_ )
_lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ )
_lowercase : Any = BertPooler(UpperCamelCase_ )
self.init_weights()
def __UpperCAmelCase ( self : int ) -> Union[str, Any]:
'''simple docstring'''
self.encoder.init_highway_pooler(self.pooler )
def __UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
return self.embeddings.word_embeddings
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any:
'''simple docstring'''
_lowercase : Optional[Any] = value
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]:
'''simple docstring'''
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ )
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]:
'''simple docstring'''
if input_ids is not None and inputs_embeds is not None:
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' )
elif input_ids is not None:
_lowercase : Any = input_ids.size()
elif inputs_embeds is not None:
_lowercase : Any = inputs_embeds.size()[:-1]
else:
raise ValueError('You have to specify either input_ids or inputs_embeds' )
_lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
_lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if encoder_attention_mask is None:
_lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ )
if token_type_ids is None:
_lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ )
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
_lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
# If a 2D ou 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if encoder_attention_mask.dim() == 3:
_lowercase : int = encoder_attention_mask[:, None, :, :]
if encoder_attention_mask.dim() == 2:
_lowercase : int = encoder_attention_mask[:, None, None, :]
_lowercase : str = encoder_extended_attention_mask.to(
dtype=next(self.parameters() ).dtype ) # fp16 compatibility
_lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
_lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers )
_lowercase : Dict = self.embeddings(
input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ )
_lowercase : List[Any] = self.encoder(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , )
_lowercase : int = encoder_outputs[0]
_lowercase : str = self.pooler(UpperCamelCase_ )
_lowercase : List[Any] = (
sequence_output,
pooled_output,
) + encoder_outputs[
1:
] # add hidden_states and attentions if they are here
return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Any = message
_lowercase : Dict = exit_layer # start from 1!
class lowerCamelCase__ ( nn.Module ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict:
'''simple docstring'''
super().__init__()
_lowercase : Optional[Any] = BertPooler(UpperCamelCase_ )
_lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob )
_lowercase : int = nn.Linear(config.hidden_size , config.num_labels )
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
_lowercase : str = encoder_outputs[0]
_lowercase : int = self.pooler(UpperCamelCase_ )
# "return" pooler_output
# BertModel
_lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:]
# "return" bmodel_output
# Dropout and classification
_lowercase : Dict = bmodel_output[1]
_lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ )
_lowercase : str = self.classifier(UpperCamelCase_ )
return logits, pooled_output
@add_start_docstrings(
"""Bert Model (with early exiting - DeeBERT) with a classifier on top,
also takes care of multi-layer training. """ , A , )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]:
'''simple docstring'''
super().__init__(UpperCamelCase_ )
_lowercase : Dict = config.num_labels
_lowercase : Any = config.num_hidden_layers
_lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ )
_lowercase : Any = nn.Dropout(config.hidden_dropout_prob )
_lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels )
self.init_weights()
@add_start_docstrings_to_model_forward(UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple:
'''simple docstring'''
_lowercase : Union[str, Any] = self.num_layers
try:
_lowercase : Tuple = self.bert(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , )
# sequence_output, pooled_output, (hidden_states), (attentions), highway exits
_lowercase : List[Any] = outputs[1]
_lowercase : int = self.dropout(UpperCamelCase_ )
_lowercase : Optional[int] = self.classifier(UpperCamelCase_ )
_lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_lowercase : Union[str, Any] = e.message
_lowercase : Any = e.exit_layer
_lowercase : Optional[int] = outputs[0]
if not self.training:
_lowercase : Union[str, Any] = entropy(UpperCamelCase_ )
_lowercase : Tuple = []
_lowercase : Tuple = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_lowercase : Tuple = MSELoss()
_lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Union[str, Any] = CrossEntropyLoss()
_lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_lowercase : Optional[Any] = []
for highway_exit in outputs[-1]:
_lowercase : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(UpperCamelCase_ )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_lowercase : Union[str, Any] = MSELoss()
_lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_lowercase : Dict = CrossEntropyLoss()
_lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(UpperCamelCase_ )
if train_highway:
_lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_lowercase : Optional[Any] = (loss,) + outputs
if not self.training:
_lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_lowercase : Dict = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
def __UpperCamelCase ( _lowercase ) -> float:
_lowercase : Any = 0.0_0
_lowercase : Any = 0
for resistor in resistors:
if resistor <= 0:
_lowercase : Optional[Any] = f'''Resistor at index {index} has a negative or zero value!'''
raise ValueError(_lowercase )
first_sum += 1 / float(_lowercase )
index += 1
return 1 / first_sum
def __UpperCamelCase ( _lowercase ) -> float:
_lowercase : str = 0.0_0
_lowercase : Optional[Any] = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
_lowercase : str = f'''Resistor at index {index} has a negative value!'''
raise ValueError(_lowercase )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
import unittest
from knapsack import greedy_knapsack as kp
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : int ) -> Any:
'''simple docstring'''
_lowercase : List[Any] = [10, 20, 30, 40, 50, 60]
_lowercase : Tuple = [2, 4, 6, 8, 10, 12]
_lowercase : Optional[Any] = 100
self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 )
def __UpperCAmelCase ( self : int ) -> int:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' )
def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' )
def __UpperCAmelCase ( self : int ) -> List[str]:
'''simple docstring'''
self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' )
def __UpperCAmelCase ( self : int ) -> List[Any]:
'''simple docstring'''
self.assertRaisesRegex(
UpperCamelCase_ , 'The length of profit and weight must be same.' )
if __name__ == "__main__":
unittest.main()
| 4 | 1 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
_A : int ='''\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
'''
_A : Tuple ='''\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.
'''
_A : Dict =r'''
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting "1/2" to "\\frac{1}{2}")
Examples:
>>> metric = datasets.load_metric("competition_math")
>>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])
>>> print(results)
{\'accuracy\': 1.0}
'''
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCamelCase__ ( datasets.Metric ):
'''simple docstring'''
def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' ),
'references': datasets.Value('string' ),
} ) , homepage='https://github.com/hendrycks/math' , codebase_urls=['https://github.com/hendrycks/math'] , )
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : List[str] = 0.0
for i, j in zip(UpperCamelCase_ , UpperCamelCase_ ):
n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase_ , UpperCamelCase_ ) else 0.0
_lowercase : int = n_correct / len(UpperCamelCase_ )
return {
"accuracy": accuracy,
}
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
_A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Tuple =['''XLNetTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =['''XLNetTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =[
'''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XLNetForMultipleChoice''',
'''XLNetForQuestionAnswering''',
'''XLNetForQuestionAnsweringSimple''',
'''XLNetForSequenceClassification''',
'''XLNetForTokenClassification''',
'''XLNetLMHeadModel''',
'''XLNetModel''',
'''XLNetPreTrainedModel''',
'''load_tf_weights_in_xlnet''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFXLNetForMultipleChoice''',
'''TFXLNetForQuestionAnsweringSimple''',
'''TFXLNetForSequenceClassification''',
'''TFXLNetForTokenClassification''',
'''TFXLNetLMHeadModel''',
'''TFXLNetMainLayer''',
'''TFXLNetModel''',
'''TFXLNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
_A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """markuplm"""
def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : List[Any] = vocab_size
_lowercase : Union[str, Any] = hidden_size
_lowercase : Dict = num_hidden_layers
_lowercase : Optional[Any] = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : List[Any] = type_vocab_size
_lowercase : Union[str, Any] = initializer_range
_lowercase : Optional[int] = layer_norm_eps
_lowercase : Optional[Any] = position_embedding_type
_lowercase : str = use_cache
_lowercase : str = classifier_dropout
# additional properties
_lowercase : int = max_depth
_lowercase : Dict = max_xpath_tag_unit_embeddings
_lowercase : str = max_xpath_subs_unit_embeddings
_lowercase : List[str] = tag_pad_id
_lowercase : Optional[int] = subs_pad_id
_lowercase : Any = xpath_unit_hidden_size
| 4 | 1 |
'''simple docstring'''
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
_A : int =logging.get_logger(__name__)
_A : Union[str, Any] ={
'''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''',
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_vision_model"""
def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Optional[Any] = hidden_size
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = num_hidden_layers
_lowercase : str = num_attention_heads
_lowercase : Tuple = patch_size
_lowercase : Dict = image_size
_lowercase : Optional[int] = initializer_range
_lowercase : List[Any] = attention_dropout
_lowercase : int = layer_norm_eps
_lowercase : Optional[int] = hidden_act
_lowercase : str = qkv_bias
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the vision config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Any = config_dict['vision_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip_qformer"""
def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Optional[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : List[Any] = num_attention_heads
_lowercase : Optional[int] = hidden_act
_lowercase : Union[str, Any] = intermediate_size
_lowercase : List[Any] = hidden_dropout_prob
_lowercase : Dict = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : Optional[int] = initializer_range
_lowercase : Tuple = layer_norm_eps
_lowercase : List[str] = position_embedding_type
_lowercase : str = cross_attention_frequency
_lowercase : int = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig":
'''simple docstring'''
cls._set_token_in_kwargs(UpperCamelCase_ )
_lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ )
# get the qformer config dict if we are loading from InstructBlipConfig
if config_dict.get('model_type' ) == "instructblip":
_lowercase : Optional[int] = config_dict['qformer_config']
if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type '''
F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ )
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """instructblip"""
A_ = True
def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
if vision_config is None:
_lowercase : Any = {}
logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' )
if qformer_config is None:
_lowercase : List[Any] = {}
logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' )
if text_config is None:
_lowercase : List[Any] = {}
logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' )
_lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ )
_lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt'
_lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ )
_lowercase : str = self.text_config.tie_word_embeddings
_lowercase : int = self.text_config.is_encoder_decoder
_lowercase : Tuple = num_query_tokens
_lowercase : str = self.vision_config.hidden_size
_lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
_lowercase : List[Any] = 1.0
_lowercase : int = 0.02
@classmethod
def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]:
'''simple docstring'''
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
_lowercase : List[Any] = copy.deepcopy(self.__dict__ )
_lowercase : Optional[int] = self.vision_config.to_dict()
_lowercase : Optional[Any] = self.qformer_config.to_dict()
_lowercase : Tuple = self.text_config.to_dict()
_lowercase : Dict = self.__class__.model_type
return output
| 4 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
_A : Optional[Any] =logging.get_logger(__name__)
_A : Optional[int] ={'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_A : int ={
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
_A : Any ={
'''distilbert-base-uncased''': 5_1_2,
'''distilbert-base-uncased-distilled-squad''': 5_1_2,
'''distilbert-base-cased''': 5_1_2,
'''distilbert-base-cased-distilled-squad''': 5_1_2,
'''distilbert-base-german-cased''': 5_1_2,
'''distilbert-base-multilingual-cased''': 5_1_2,
}
_A : List[str] ={
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = PRETRAINED_INIT_CONFIGURATION
A_ = ["""input_ids""", """attention_mask"""]
A_ = DistilBertTokenizer
def __init__( self : int , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=True , UpperCamelCase_ : Any="[UNK]" , UpperCamelCase_ : List[Any]="[SEP]" , UpperCamelCase_ : Optional[Any]="[PAD]" , UpperCamelCase_ : List[Any]="[CLS]" , UpperCamelCase_ : List[Any]="[MASK]" , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Optional[int] , ) -> Dict:
'''simple docstring'''
super().__init__(
UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , do_lower_case=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , tokenize_chinese_chars=UpperCamelCase_ , strip_accents=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Any = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , UpperCamelCase_ ) != do_lower_case
or normalizer_state.get('strip_accents' , UpperCamelCase_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , UpperCamelCase_ ) != tokenize_chinese_chars
):
_lowercase : int = getattr(UpperCamelCase_ , normalizer_state.pop('type' ) )
_lowercase : str = do_lower_case
_lowercase : Dict = strip_accents
_lowercase : Optional[Any] = tokenize_chinese_chars
_lowercase : Any = normalizer_class(**UpperCamelCase_ )
_lowercase : Optional[Any] = do_lower_case
def __UpperCAmelCase ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[str]=None ) -> Optional[int]:
'''simple docstring'''
_lowercase : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
_lowercase : List[str] = [self.sep_token_id]
_lowercase : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
_lowercase : Optional[Any] = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ )
return tuple(UpperCamelCase_ )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase, _lowercase ) -> list:
_lowercase : List[str] = word.split()
def justify(_lowercase, _lowercase, _lowercase ) -> str:
_lowercase : Dict = max_width - width
_lowercase : Tuple = len(_lowercase )
if len(_lowercase ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_lowercase : Tuple = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_lowercase : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_lowercase : Optional[int] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_lowercase ):
num_spaces_between_words_list[i] += 1
_lowercase : Union[str, Any] = []
for i in range(_lowercase ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ' ' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_lowercase )
_lowercase : str = []
_lowercase : list[str] = []
_lowercase : Union[str, Any] = 0
for word in words:
if width + len(_lowercase ) + len(_lowercase ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_lowercase )
width += len(_lowercase )
else:
# justify the line and add it to result
answer.append(justify(_lowercase, _lowercase, _lowercase ) )
# reset new line and new width
_lowercase , _lowercase : Optional[Any] = [word], len(_lowercase )
_lowercase : Optional[int] = max_width - width - len(_lowercase )
answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 4 | 1 |
'''simple docstring'''
import os
def __UpperCamelCase ( ) -> List[Any]:
_lowercase : Optional[int] = os.path.dirname(os.path.realpath(_lowercase ) )
_lowercase : Tuple = os.path.join(_lowercase, 'triangle.txt' )
with open(_lowercase ) as f:
_lowercase : Dict = f.readlines()
_lowercase : Tuple = []
for line in triangle:
_lowercase : List[Any] = []
for number in line.strip().split(' ' ):
numbers_from_line.append(int(_lowercase ) )
a.append(_lowercase )
for i in range(1, len(_lowercase ) ):
for j in range(len(a[i] ) ):
_lowercase : str = a[i - 1][j] if j != len(a[i - 1] ) else 0
_lowercase : Optional[int] = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(_lowercase, _lowercase )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 4 |
'''simple docstring'''
import os
from collections.abc import Iterator
def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]:
for dir_path, dir_names, filenames in os.walk(_lowercase ):
_lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._']
for filename in filenames:
if filename == "__init__.py":
continue
if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"):
yield os.path.join(_lowercase, _lowercase ).lstrip('./' )
def __UpperCamelCase ( _lowercase ) -> List[str]:
return f'''{i * " "}*''' if i else "\n##"
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
_lowercase : Optional[Any] = old_path.split(os.sep )
for i, new_part in enumerate(new_path.split(os.sep ) ):
if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part:
print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' )
return new_path
def __UpperCamelCase ( _lowercase = "." ) -> None:
_lowercase : Dict = ''
for filepath in sorted(good_file_paths(_lowercase ) ):
_lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase )
if filepath != old_path:
_lowercase : Dict = print_path(_lowercase, _lowercase )
_lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0
_lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' )
_lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0]
print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' )
if __name__ == "__main__":
print_directory_md('''.''')
| 4 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import pi
# Define the Reduced Planck Constant โ (H bar), speed of light C, value of
# Pi and the function
_A : Tuple =1.0_54_57_18_17e-34 # unit of โ : J * s
_A : str =3e8 # unit of c : m * s^-1
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> dict[str, float]:
if (force, area, distance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if force < 0:
raise ValueError('Magnitude of force can not be negative' )
if distance < 0:
raise ValueError('Distance can not be negative' )
if area < 0:
raise ValueError('Area can not be negative' )
if force == 0:
_lowercase : Dict = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (
240 * (distance) ** 4
)
return {"force": force}
elif area == 0:
_lowercase : Optional[Any] = (240 * force * (distance) ** 4) / (
REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2
)
return {"area": area}
elif distance == 0:
_lowercase : int = (
(REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (240 * force)
) ** (1 / 4)
return {"distance": distance}
raise ValueError('One and only one argument must be 0' )
# Run doctest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Dict =['''ReformerTokenizer''']
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Union[str, Any] =['''ReformerTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : str =[
'''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ReformerAttention''',
'''ReformerForMaskedLM''',
'''ReformerForQuestionAnswering''',
'''ReformerForSequenceClassification''',
'''ReformerLayer''',
'''ReformerModel''',
'''ReformerModelWithLMHead''',
'''ReformerPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer import ReformerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_reformer_fast import ReformerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_reformer import (
REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ReformerAttention,
ReformerForMaskedLM,
ReformerForQuestionAnswering,
ReformerForSequenceClassification,
ReformerLayer,
ReformerModel,
ReformerModelWithLMHead,
ReformerPreTrainedModel,
)
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 | 1 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
_A : List[str] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""pixel_values"""]
def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : float = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Union[int, float] = 1 / 255 , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , **UpperCamelCase_ : str , ) -> None:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
_lowercase : Union[str, Any] = size if size is not None else {'shortest_edge': 384}
_lowercase : Union[str, Any] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
_lowercase : Any = do_resize
_lowercase : List[str] = size
# Default value set here for backwards compatibility where the value in config is None
_lowercase : Dict = crop_pct if crop_pct is not None else 224 / 256
_lowercase : Tuple = resample
_lowercase : str = do_rescale
_lowercase : str = rescale_factor
_lowercase : List[str] = do_normalize
_lowercase : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_lowercase : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : float , UpperCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : str , ) -> np.ndarray:
'''simple docstring'''
_lowercase : Optional[int] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
if "shortest_edge" not in size:
raise ValueError(F'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' )
_lowercase : str = size['shortest_edge']
if shortest_edge < 384:
# maintain same ratio, resizing shortest edge to shortest_edge/crop_pct
_lowercase : List[Any] = int(shortest_edge / crop_pct )
_lowercase : Tuple = get_resize_output_image_size(UpperCamelCase_ , size=UpperCamelCase_ , default_to_square=UpperCamelCase_ )
_lowercase : Union[str, Any] = resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
# then crop to (shortest_edge, shortest_edge)
return center_crop(image=UpperCamelCase_ , size=(shortest_edge, shortest_edge) , data_format=UpperCamelCase_ , **UpperCamelCase_ )
else:
# warping (no cropping) when evaluated at 384 or larger
return resize(
UpperCamelCase_ , size=(shortest_edge, shortest_edge) , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[int, float] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Any , ) -> Dict:
'''simple docstring'''
return rescale(UpperCamelCase_ , scale=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : Any , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Union[float, List[float]] , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Dict , ) -> np.ndarray:
'''simple docstring'''
return normalize(UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : float = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : float = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[float, List[float]]] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : int , ) -> PIL.Image.Image:
'''simple docstring'''
_lowercase : Any = do_resize if do_resize is not None else self.do_resize
_lowercase : int = crop_pct if crop_pct is not None else self.crop_pct
_lowercase : Dict = resample if resample is not None else self.resample
_lowercase : Dict = do_rescale if do_rescale is not None else self.do_rescale
_lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor
_lowercase : List[Any] = do_normalize if do_normalize is not None else self.do_normalize
_lowercase : Optional[int] = image_mean if image_mean is not None else self.image_mean
_lowercase : Union[str, Any] = image_std if image_std is not None else self.image_std
_lowercase : str = size if size is not None else self.size
_lowercase : List[str] = get_size_dict(UpperCamelCase_ , default_to_square=UpperCamelCase_ )
_lowercase : Any = make_list_of_images(UpperCamelCase_ )
if not valid_images(UpperCamelCase_ ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_resize and size is None or resample is None:
raise ValueError('Size and resample must be specified if do_resize is True.' )
if do_resize and size["shortest_edge"] < 384 and crop_pct is None:
raise ValueError('crop_pct must be specified if size < 384.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError('Image mean and std must be specified if do_normalize is True.' )
# All transformations expect numpy arrays.
_lowercase : int = [to_numpy_array(UpperCamelCase_ ) for image in images]
if do_resize:
_lowercase : int = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , crop_pct=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images]
if do_rescale:
_lowercase : List[str] = [self.rescale(image=UpperCamelCase_ , scale=UpperCamelCase_ ) for image in images]
if do_normalize:
_lowercase : Any = [self.normalize(image=UpperCamelCase_ , mean=UpperCamelCase_ , std=UpperCamelCase_ ) for image in images]
_lowercase : Optional[Any] = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images]
_lowercase : Optional[int] = {'pixel_values': images}
return BatchFeature(data=UpperCamelCase_ , tensor_type=UpperCamelCase_ )
| 4 |
'''simple docstring'''
import unittest
import numpy as np
from transformers import RoFormerConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roformer.modeling_flax_roformer import (
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
)
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple:
'''simple docstring'''
_lowercase : int = parent
_lowercase : str = batch_size
_lowercase : List[str] = seq_length
_lowercase : Dict = is_training
_lowercase : Optional[int] = use_attention_mask
_lowercase : List[Any] = use_token_type_ids
_lowercase : Union[str, Any] = use_labels
_lowercase : Dict = vocab_size
_lowercase : List[Any] = hidden_size
_lowercase : Any = num_hidden_layers
_lowercase : int = num_attention_heads
_lowercase : Optional[int] = intermediate_size
_lowercase : Any = hidden_act
_lowercase : List[str] = hidden_dropout_prob
_lowercase : Union[str, Any] = attention_probs_dropout_prob
_lowercase : Optional[int] = max_position_embeddings
_lowercase : int = type_vocab_size
_lowercase : Any = type_sequence_label_size
_lowercase : Any = initializer_range
_lowercase : str = num_choices
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_lowercase : int = None
if self.use_attention_mask:
_lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
_lowercase : Any = None
if self.use_token_type_ids:
_lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_lowercase : str = RoFormerConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def __UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
_lowercase : Dict = self.prepare_config_and_inputs()
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs
_lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_flax
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = True
A_ = (
(
FlaxRoFormerModel,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
)
if is_flax_available()
else ()
)
def __UpperCAmelCase ( self : str ) -> int:
'''simple docstring'''
_lowercase : Tuple = FlaxRoFormerModelTester(self )
@slow
def __UpperCAmelCase ( self : List[str] ) -> Optional[int]:
'''simple docstring'''
for model_class_name in self.all_model_classes:
_lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ )
_lowercase : str = model(np.ones((1, 1) ) )
self.assertIsNotNone(UpperCamelCase_ )
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __UpperCAmelCase ( self : List[str] ) -> List[Any]:
'''simple docstring'''
_lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' )
_lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] )
_lowercase : int = model(UpperCamelCase_ )[0]
_lowercase : Union[str, Any] = 5_0000
_lowercase : str = (1, 6, vocab_size)
self.assertEqual(output.shape , UpperCamelCase_ )
_lowercase : int = jnp.array(
[[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] )
self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
| 4 | 1 |
'''simple docstring'''
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def __UpperCamelCase ( _lowercase ) -> Tuple:
_lowercase : Tuple = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_lowercase : Tuple = 4
_lowercase : Union[str, Any] = 48
_lowercase : Any = 'pixelshuffle_aux'
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : Dict = [6, 6, 6, 6]
_lowercase : Optional[int] = 60
_lowercase : List[str] = [6, 6, 6, 6]
_lowercase : Dict = 'pixelshuffledirect'
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : str = 4
_lowercase : str = 'nearest+conv'
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_lowercase : str = 1
_lowercase : Tuple = 1
_lowercase : Dict = 126
_lowercase : Optional[int] = 7
_lowercase : List[Any] = 2_5_5.0
_lowercase : Tuple = ''
return config
def __UpperCamelCase ( _lowercase, _lowercase ) -> str:
if "patch_embed.proj" in name and "layers" not in name:
_lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' )
if "patch_embed.norm" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' )
if "layers" in name:
_lowercase : Tuple = name.replace('layers', 'encoder.stages' )
if "residual_group.blocks" in name:
_lowercase : str = name.replace('residual_group.blocks', 'layers' )
if "attn.proj" in name:
_lowercase : str = name.replace('attn.proj', 'attention.output.dense' )
if "attn" in name:
_lowercase : List[Any] = name.replace('attn', 'attention.self' )
if "norm1" in name:
_lowercase : List[str] = name.replace('norm1', 'layernorm_before' )
if "norm2" in name:
_lowercase : Tuple = name.replace('norm2', 'layernorm_after' )
if "mlp.fc1" in name:
_lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' )
if "mlp.fc2" in name:
_lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' )
if "q_bias" in name:
_lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' )
if "k_bias" in name:
_lowercase : str = name.replace('k_bias', 'key.bias' )
if "v_bias" in name:
_lowercase : int = name.replace('v_bias', 'value.bias' )
if "cpb_mlp" in name:
_lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' )
if "patch_embed.proj" in name:
_lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' )
if name == "norm.weight":
_lowercase : Union[str, Any] = 'layernorm.weight'
if name == "norm.bias":
_lowercase : List[Any] = 'layernorm.bias'
if "conv_first" in name:
_lowercase : Tuple = name.replace('conv_first', 'first_convolution' )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_lowercase : List[str] = name.replace('conv_last', 'final_convolution' )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' )
if "upsample.0" in name:
_lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' )
if "upsample.2" in name:
_lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' )
_lowercase : Optional[int] = 'upsample.' + name
elif config.upsampler == "pixelshuffledirect":
_lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' )
_lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' )
else:
pass
else:
_lowercase : Tuple = 'swin2sr.' + name
return name
def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]:
for key in orig_state_dict.copy().keys():
_lowercase : int = orig_state_dict.pop(_lowercase )
if "qkv" in key:
_lowercase : Tuple = key.split('.' )
_lowercase : Optional[Any] = int(key_split[1] )
_lowercase : Any = int(key_split[4] )
_lowercase : Optional[Any] = config.embed_dim
if "weight" in key:
_lowercase : Optional[int] = val[:dim, :]
_lowercase : int = val[dim : dim * 2, :]
_lowercase : int = val[-dim:, :]
else:
_lowercase : Optional[Any] = val[:dim]
_lowercase : Tuple = val[dim : dim * 2]
_lowercase : List[str] = val[-dim:]
pass
else:
_lowercase : List[Any] = val
return orig_state_dict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : Optional[Any] = get_config(_lowercase )
_lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase )
model.eval()
_lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' )
_lowercase : Any = convert_state_dict(_lowercase, _lowercase )
_lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase )
if len(_lowercase ) > 0:
raise ValueError('Missing keys when converting: {}'.format(_lowercase ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(f'''Unexpected key {key} in state_dict''' )
# verify values
_lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true'
_lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' )
_lowercase : Tuple = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256
_lowercase : List[str] = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ),
] )
_lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 )
if config.num_channels == 1:
_lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 )
_lowercase : Optional[int] = model(_lowercase )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 512, 512] )
_lowercase : Tuple = torch.tensor(
[[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] )
_lowercase : int = torch.tensor(
[[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] )
_lowercase : Dict = torch.tensor(
[[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_lowercase : List[str] = torch.Size([1, 3, 512, 512] )
_lowercase : int = torch.tensor(
[[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_lowercase : Any = torch.Size([1, 3, 1024, 1024] )
_lowercase : Union[str, Any] = torch.tensor(
[[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] )
assert (
outputs.reconstruction.shape == expected_shape
), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}'''
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 )
print('Looks ok!' )
_lowercase : List[str] = {
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': (
'swin2SR-classical-sr-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': (
'swin2SR-classical-sr-x4-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': (
'swin2SR-compressed-sr-x4-48'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': (
'swin2SR-lightweight-x2-64'
),
'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': (
'swin2SR-realworld-sr-x4-64-bsrgan-psnr'
),
}
_lowercase : int = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
processor.save_pretrained(_lowercase )
if push_to_hub:
model.push_to_hub(f'''caidas/{model_name}''' )
processor.push_to_hub(f'''caidas/{model_name}''' )
if __name__ == "__main__":
_A : Dict =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
_A : int =parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 4 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
import torch
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
_A : Optional[int] =logging.get_logger(__name__)
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = ["""input_features""", """is_longer"""]
def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , )
_lowercase : Tuple = top_db
_lowercase : Any = truncation
_lowercase : str = padding
_lowercase : int = fft_window_size
_lowercase : Any = (fft_window_size >> 1) + 1
_lowercase : int = hop_length
_lowercase : Any = max_length_s
_lowercase : str = max_length_s * sampling_rate
_lowercase : Any = sampling_rate
_lowercase : List[Any] = frequency_min
_lowercase : Tuple = frequency_max
_lowercase : Tuple = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , )
_lowercase : Any = mel_filter_bank(
num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , )
def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]:
'''simple docstring'''
_lowercase : Tuple = copy.deepcopy(self.__dict__ )
_lowercase : int = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
if "mel_filters_slaney" in output:
del output["mel_filters_slaney"]
return output
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray:
'''simple docstring'''
_lowercase : List[str] = spectrogram(
UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , )
return log_mel_spectrogram.T
def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
_lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 )
if len(ranges[1] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : int = [0]
if len(ranges[2] ) == 0:
# if the audio is too short, we just use the first chunk
_lowercase : Union[str, Any] = [0]
# randomly choose index for each part
_lowercase : Tuple = np.random.choice(ranges[0] )
_lowercase : int = np.random.choice(ranges[1] )
_lowercase : Any = np.random.choice(ranges[2] )
_lowercase : int = mel[idx_front : idx_front + chunk_frames, :]
_lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :]
_lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :]
_lowercase : List[Any] = torch.tensor(mel[None, None, :] )
_lowercase : Optional[int] = torch.nn.functional.interpolate(
UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ )
_lowercase : str = mel_shrink[0][0].numpy()
_lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 )
return mel_fusion
def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array:
'''simple docstring'''
if waveform.shape[0] > max_length:
if truncation == "rand_trunc":
_lowercase : Tuple = True
# random crop to max_length (for compatibility) -> this should be handled by self.pad
_lowercase : Any = len(UpperCamelCase_ ) - max_length
_lowercase : Dict = np.random.randint(0 , overflow + 1 )
_lowercase : Optional[int] = waveform[idx : idx + max_length]
_lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
elif truncation == "fusion":
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed
_lowercase : Optional[int] = mel.shape[0]
if chunk_frames == total_frames:
# there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length.
# In this case, we just use the whole audio.
_lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 )
_lowercase : List[Any] = False
else:
_lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
_lowercase : int = True
else:
raise NotImplementedError(F'''data_truncating {truncation} not implemented''' )
else:
_lowercase : Any = False
# only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding
if waveform.shape[0] < max_length:
if padding == "repeat":
_lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length]
if padding == "repeatpad":
_lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) )
_lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) )
_lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 )
if truncation == "fusion":
_lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters )
_lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 )
else:
_lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :]
return input_mel, longer
def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature:
'''simple docstring'''
_lowercase : Dict = truncation if truncation is not None else self.truncation
_lowercase : int = padding if padding else self.padding
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a'''
F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input'''
F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the `sampling_rate` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
_lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_lowercase : List[str] = is_batched_numpy or (
isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ):
_lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa )
elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
_lowercase : Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
_lowercase : int = [np.asarray(UpperCamelCase_ )]
# convert to mel spectrogram, truncate and pad if needed.
_lowercase : Optional[Any] = [
self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ )
for waveform in raw_speech
]
_lowercase : List[Any] = []
_lowercase : Dict = []
for mel, longer in padded_inputs:
input_mel.append(UpperCamelCase_ )
is_longer.append(UpperCamelCase_ )
if truncation == "fusion" and sum(UpperCamelCase_ ) == 0:
# if no audio is longer than 10s, then randomly select one audio to be longer
_lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) )
_lowercase : str = True
if isinstance(input_mel[0] , UpperCamelCase_ ):
_lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel]
# is_longer is a list of bool
_lowercase : Tuple = [[longer] for longer in is_longer]
_lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer}
_lowercase : Optional[int] = BatchFeature(UpperCamelCase_ )
if return_tensors is not None:
_lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ )
return input_features
| 4 | 1 |
'''simple docstring'''
import argparse
import os
import re
import packaging.version
_A : int ='''examples/'''
_A : Optional[int] ={
'''examples''': (re.compile(r'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''),
'''init''': (re.compile(r'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''),
'''setup''': (re.compile(r'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), r'''\1version="VERSION",'''),
'''doc''': (re.compile(r'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''),
}
_A : Tuple ={
'''init''': '''src/transformers/__init__.py''',
'''setup''': '''setup.py''',
}
_A : Union[str, Any] ='''README.md'''
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Dict:
with open(_lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
_lowercase : Optional[int] = f.read()
_lowercase , _lowercase : List[str] = REPLACE_PATTERNS[pattern]
_lowercase : Optional[int] = replace.replace('VERSION', _lowercase )
_lowercase : Optional[Any] = re_pattern.sub(_lowercase, _lowercase )
with open(_lowercase, 'w', encoding='utf-8', newline='\n' ) as f:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase ) -> Tuple:
for folder, directories, fnames in os.walk(_lowercase ):
# Removing some of the folders with non-actively maintained examples from the walk
if "research_projects" in directories:
directories.remove('research_projects' )
if "legacy" in directories:
directories.remove('legacy' )
for fname in fnames:
if fname.endswith('.py' ):
update_version_in_file(os.path.join(_lowercase, _lowercase ), _lowercase, pattern='examples' )
def __UpperCamelCase ( _lowercase, _lowercase=False ) -> Dict:
for pattern, fname in REPLACE_FILES.items():
update_version_in_file(_lowercase, _lowercase, _lowercase )
if not patch:
update_version_in_examples(_lowercase )
def __UpperCamelCase ( ) -> str:
_lowercase : Union[str, Any] = '๐ค Transformers currently provides the following architectures'
_lowercase : List[str] = '1. Want to contribute a new model?'
with open(_lowercase, 'r', encoding='utf-8', newline='\n' ) as f:
_lowercase : Dict = f.readlines()
# Find the start of the list.
_lowercase : List[str] = 0
while not lines[start_index].startswith(_start_prompt ):
start_index += 1
start_index += 1
_lowercase : Union[str, Any] = start_index
# Update the lines in the model list.
while not lines[index].startswith(_end_prompt ):
if lines[index].startswith('1.' ):
_lowercase : Optional[Any] = lines[index].replace(
'https://huggingface.co/docs/transformers/main/model_doc', 'https://huggingface.co/docs/transformers/model_doc', )
index += 1
with open(_lowercase, 'w', encoding='utf-8', newline='\n' ) as f:
f.writelines(_lowercase )
def __UpperCamelCase ( ) -> str:
with open(REPLACE_FILES['init'], 'r' ) as f:
_lowercase : Optional[int] = f.read()
_lowercase : List[Any] = REPLACE_PATTERNS['init'][0].search(_lowercase ).groups()[0]
return packaging.version.parse(_lowercase )
def __UpperCamelCase ( _lowercase=False ) -> Tuple:
_lowercase : Dict = get_version()
if patch and default_version.is_devrelease:
raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' )
if default_version.is_devrelease:
_lowercase : int = default_version.base_version
elif patch:
_lowercase : Optional[int] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}'''
else:
_lowercase : Optional[int] = f'''{default_version.major}.{default_version.minor + 1}.0'''
# Now let's ask nicely if that's the right one.
_lowercase : Any = input(f'''Which version are you releasing? [{default_version}]''' )
if len(_lowercase ) == 0:
_lowercase : Optional[int] = default_version
print(f'''Updating version to {version}.''' )
global_version_update(_lowercase, patch=_lowercase )
if not patch:
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
def __UpperCamelCase ( ) -> List[Any]:
_lowercase : Dict = get_version()
_lowercase : Tuple = f'''{current_version.major}.{current_version.minor + 1}.0.dev0'''
_lowercase : Optional[Any] = current_version.base_version
# Check with the user we got that right.
_lowercase : str = input(f'''Which version are we developing now? [{dev_version}]''' )
if len(_lowercase ) == 0:
_lowercase : int = dev_version
print(f'''Updating version to {version}.''' )
global_version_update(_lowercase )
print('Cleaning main README, don\'t forget to run `make fix-copies`.' )
clean_main_ref_in_model_list()
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''')
parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''')
_A : Tuple =parser.parse_args()
if not args.post_release:
pre_release_work(patch=args.patch)
elif args.patch:
print('''Nothing to do after a patch :-)''')
else:
post_release_work()
| 4 |
'''simple docstring'''
from __future__ import annotations
import requests
def __UpperCamelCase ( _lowercase ) -> dict:
_lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(_lowercase ).json()
def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]:
_lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'
_lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories]
return [get_hackernews_story(_lowercase ) for story_id in story_ids]
def __UpperCamelCase ( _lowercase = 10 ) -> str:
_lowercase : Tuple = hackernews_top_stories(_lowercase )
return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 4 | 1 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> np.ndarray:
_lowercase : Optional[Any] = int(np.ceil((x_end - xa) / step_size ) )
_lowercase : int = np.zeros((n + 1,) )
_lowercase : Optional[int] = ya
_lowercase : int = xa
for k in range(_lowercase ):
_lowercase : List[Any] = y[k] + step_size * ode_func(_lowercase, y[k] )
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_A : Dict =logging.get_logger(__name__)
_A : Dict ={
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """megatron-bert"""
def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]:
'''simple docstring'''
super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = vocab_size
_lowercase : Any = hidden_size
_lowercase : Union[str, Any] = num_hidden_layers
_lowercase : Dict = num_attention_heads
_lowercase : Dict = hidden_act
_lowercase : Optional[Any] = intermediate_size
_lowercase : Optional[int] = hidden_dropout_prob
_lowercase : Optional[Any] = attention_probs_dropout_prob
_lowercase : Any = max_position_embeddings
_lowercase : str = type_vocab_size
_lowercase : Optional[Any] = initializer_range
_lowercase : List[str] = layer_norm_eps
_lowercase : List[Any] = position_embedding_type
_lowercase : Optional[Any] = use_cache
| 4 | 1 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCamelCase__ ( A , unittest.TestCase ):
'''simple docstring'''
A_ = DiTPipeline
A_ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
A_ = PipelineTesterMixin.required_optional_params - {
"""latents""",
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
A_ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
A_ = False
def __UpperCAmelCase ( self : List[Any] ) -> Tuple:
'''simple docstring'''
torch.manual_seed(0 )
_lowercase : Union[str, Any] = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=UpperCamelCase_ , activation_fn='gelu-approximate' , num_embeds_ada_norm=1000 , norm_type='ada_norm_zero' , norm_elementwise_affine=UpperCamelCase_ , )
_lowercase : Optional[Any] = AutoencoderKL()
_lowercase : Tuple = DDIMScheduler()
_lowercase : Tuple = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[str]=0 ) -> List[str]:
'''simple docstring'''
if str(UpperCamelCase_ ).startswith('mps' ):
_lowercase : Any = torch.manual_seed(UpperCamelCase_ )
else:
_lowercase : Dict = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
_lowercase : Any = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def __UpperCAmelCase ( self : List[str] ) -> Dict:
'''simple docstring'''
_lowercase : Union[str, Any] = 'cpu'
_lowercase : Union[str, Any] = self.get_dummy_components()
_lowercase : Tuple = self.pipeline_class(**UpperCamelCase_ )
pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
_lowercase : List[str] = self.get_dummy_inputs(UpperCamelCase_ )
_lowercase : Optional[int] = pipe(**UpperCamelCase_ ).images
_lowercase : Dict = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowercase : Tuple = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] )
_lowercase : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(UpperCamelCase_ , 1E-3 )
def __UpperCAmelCase ( self : Dict ) -> str:
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=UpperCamelCase_ , expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def __UpperCAmelCase ( self : Any ) -> Dict:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self : Optional[int] ) -> Dict:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
_lowercase : Union[str, Any] = torch.manual_seed(0 )
_lowercase : Dict = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
_lowercase : List[str] = ['vase', 'umbrella', 'white shark', 'white wolf']
_lowercase : List[str] = pipe.get_label_ids(UpperCamelCase_ )
_lowercase : Optional[int] = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=40 , output_type='np' ).images
for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[str] = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def __UpperCAmelCase ( self : Optional[Any] ) -> int:
'''simple docstring'''
_lowercase : List[str] = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
_lowercase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
_lowercase : Any = ['vase', 'umbrella']
_lowercase : int = pipe.get_label_ids(UpperCamelCase_ )
_lowercase : Optional[int] = torch.manual_seed(0 )
_lowercase : int = pipe(UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=25 , output_type='np' ).images
for word, image in zip(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : Dict = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 4 |
'''simple docstring'''
import argparse
import os
import shutil
import torch
from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
def __UpperCamelCase ( _lowercase ) -> List[Any]:
_lowercase : Tuple = args.pruning_method
_lowercase : int = args.threshold
_lowercase : str = args.model_name_or_path.rstrip('/' )
_lowercase : Dict = args.target_model_path
print(f'''Load fine-pruned model from {model_name_or_path}''' )
_lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) )
_lowercase : List[Any] = {}
for name, tensor in model.items():
if "embeddings" in name or "LayerNorm" in name or "pooler" in name:
_lowercase : Optional[int] = tensor
print(f'''Copied layer {name}''' )
elif "classifier" in name or "qa_output" in name:
_lowercase : List[str] = tensor
print(f'''Copied layer {name}''' )
elif "bias" in name:
_lowercase : Dict = tensor
print(f'''Copied layer {name}''' )
else:
if pruning_method == "magnitude":
_lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase )
_lowercase : Optional[Any] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "topK":
if "mask_scores" in name:
continue
_lowercase : Optional[Any] = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase )
_lowercase : str = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "sigmoied_threshold":
if "mask_scores" in name:
continue
_lowercase : str = name[:-6]
_lowercase : Optional[Any] = model[f'''{prefix_}mask_scores''']
_lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase )
_lowercase : Optional[int] = tensor * mask
print(f'''Pruned layer {name}''' )
elif pruning_method == "l0":
if "mask_scores" in name:
continue
_lowercase : Optional[int] = name[:-6]
_lowercase : List[str] = model[f'''{prefix_}mask_scores''']
_lowercase , _lowercase : Union[str, Any] = -0.1, 1.1
_lowercase : str = torch.sigmoid(_lowercase )
_lowercase : int = s * (r - l) + l
_lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 )
_lowercase : Union[str, Any] = tensor * mask
print(f'''Pruned layer {name}''' )
else:
raise ValueError('Unknown pruning method' )
if target_model_path is None:
_lowercase : List[Any] = os.path.join(
os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' )
if not os.path.isdir(_lowercase ):
shutil.copytree(_lowercase, _lowercase )
print(f'''\nCreated folder {target_model_path}''' )
torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) )
print('\nPruned model saved! See you later!' )
if __name__ == "__main__":
_A : Union[str, Any] =argparse.ArgumentParser()
parser.add_argument(
'''--pruning_method''',
choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''],
type=str,
required=True,
help=(
'''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,'''
''' sigmoied_threshold = Soft movement pruning)'''
),
)
parser.add_argument(
'''--threshold''',
type=float,
required=False,
help=(
'''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.'''
'''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.'''
'''Not needed for `l0`'''
),
)
parser.add_argument(
'''--model_name_or_path''',
type=str,
required=True,
help='''Folder containing the model that was previously fine-pruned''',
)
parser.add_argument(
'''--target_model_path''',
default=None,
type=str,
required=False,
help='''Folder containing the model that was previously fine-pruned''',
)
_A : List[Any] =parser.parse_args()
main(args)
| 4 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
_A : List[Any] ={}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_A : Any =['''GPTSw3Tokenizer''']
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_gpt_swa import GPTSwaTokenizer
else:
import sys
_A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 4 |
'''simple docstring'''
_A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'''
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure the supplied data is a bytes-like object
if not isinstance(_lowercase, _lowercase ):
_lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\''''
raise TypeError(_lowercase )
_lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data )
_lowercase : Dict = len(_lowercase ) % 6 != 0
if padding_needed:
# The padding that will be added later
_lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_lowercase ) % 6)
else:
_lowercase : Optional[int] = B''
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6], 2 )]
for index in range(0, len(_lowercase ), 6 ) ).encode()
+ padding
)
def __UpperCamelCase ( _lowercase ) -> bytes:
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ):
_lowercase : int = (
'argument should be a bytes-like object or ASCII string, '
f'''not \'{encoded_data.__class__.__name__}\''''
)
raise TypeError(_lowercase )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_lowercase, _lowercase ):
try:
_lowercase : Optional[int] = encoded_data.decode('utf-8' )
except UnicodeDecodeError:
raise ValueError('base64 encoded data should only contain ASCII characters' )
_lowercase : Optional[int] = encoded_data.count('=' )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_lowercase : str = encoded_data[:-padding]
_lowercase : Tuple = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_lowercase : Union[str, Any] = ''.join(
bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )
_lowercase : List[str] = [
int(binary_stream[index : index + 8], 2 )
for index in range(0, len(_lowercase ), 8 )
]
return bytes(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 4 | 1 |
'''simple docstring'''
from ...processing_utils import ProcessorMixin
class lowerCamelCase__ ( A ):
'''simple docstring'''
A_ = """SpeechT5FeatureExtractor"""
A_ = """SpeechT5Tokenizer"""
def __init__( self : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] ) -> List[Any]:
'''simple docstring'''
super().__init__(UpperCamelCase_ , UpperCamelCase_ )
def __call__( self : Union[str, Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Any ) -> str:
'''simple docstring'''
_lowercase : str = kwargs.pop('audio' , UpperCamelCase_ )
_lowercase : Any = kwargs.pop('text' , UpperCamelCase_ )
_lowercase : List[str] = kwargs.pop('text_target' , UpperCamelCase_ )
_lowercase : int = kwargs.pop('audio_target' , UpperCamelCase_ )
_lowercase : Any = kwargs.pop('sampling_rate' , UpperCamelCase_ )
if audio is not None and text is not None:
raise ValueError(
'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?' )
if audio_target is not None and text_target is not None:
raise ValueError(
'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?' )
if audio is None and audio_target is None and text is None and text_target is None:
raise ValueError(
'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.' )
if audio is not None:
_lowercase : Union[str, Any] = self.feature_extractor(UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ )
elif text is not None:
_lowercase : int = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ )
else:
_lowercase : Optional[int] = None
if audio_target is not None:
_lowercase : Tuple = self.feature_extractor(audio_target=UpperCamelCase_ , *UpperCamelCase_ , sampling_rate=UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : str = targets['input_values']
elif text_target is not None:
_lowercase : List[str] = self.tokenizer(UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Tuple = targets['input_ids']
else:
_lowercase : Optional[Any] = None
if inputs is None:
return targets
if targets is not None:
_lowercase : Optional[Any] = labels
_lowercase : List[Any] = targets.get('attention_mask' )
if decoder_attention_mask is not None:
_lowercase : Union[str, Any] = decoder_attention_mask
return inputs
def __UpperCAmelCase ( self : List[str] , *UpperCamelCase_ : str , **UpperCamelCase_ : Any ) -> List[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = kwargs.pop('input_values' , UpperCamelCase_ )
_lowercase : int = kwargs.pop('input_ids' , UpperCamelCase_ )
_lowercase : Dict = kwargs.pop('labels' , UpperCamelCase_ )
if input_values is not None and input_ids is not None:
raise ValueError('Cannot process both `input_values` and `input_ids` inputs.' )
if input_values is None and input_ids is None and labels is None:
raise ValueError(
'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.' )
if input_values is not None:
_lowercase : int = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
elif input_ids is not None:
_lowercase : int = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ )
else:
_lowercase : Union[str, Any] = None
if labels is not None:
if "input_ids" in labels or (isinstance(UpperCamelCase_ , UpperCamelCase_ ) and "input_ids" in labels[0]):
_lowercase : Any = self.tokenizer.pad(UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Dict = targets['input_ids']
else:
_lowercase : Dict = self.feature_extractor.feature_size
_lowercase : Union[str, Any] = self.feature_extractor.num_mel_bins
_lowercase : int = self.feature_extractor.pad(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Any = feature_size_hack
_lowercase : List[str] = targets['input_values']
else:
_lowercase : Dict = None
if inputs is None:
return targets
if targets is not None:
_lowercase : Optional[Any] = labels
_lowercase : Union[str, Any] = targets.get('attention_mask' )
if decoder_attention_mask is not None:
_lowercase : Tuple = decoder_attention_mask
return inputs
def __UpperCAmelCase ( self : List[str] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : int , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : int ) -> str:
'''simple docstring'''
return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_ )
| 4 |
'''simple docstring'''
def __UpperCamelCase ( _lowercase ) -> bool:
return str(_lowercase ) == str(_lowercase )[::-1]
def __UpperCamelCase ( _lowercase ) -> int:
return int(_lowercase ) + int(str(_lowercase )[::-1] )
def __UpperCamelCase ( _lowercase = 1_0000 ) -> int:
_lowercase : List[str] = []
for num in range(1, _lowercase ):
_lowercase : Tuple = 0
_lowercase : Tuple = num
while iterations < 50:
_lowercase : Union[str, Any] = sum_reverse(_lowercase )
iterations += 1
if is_palindrome(_lowercase ):
break
else:
lychrel_nums.append(_lowercase )
return len(_lowercase )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 | 1 |
'''simple docstring'''
import json
import logging
import os
import sys
from time import time
from unittest.mock import patch
from transformers.testing_utils import TestCasePlus, require_torch_tpu
logging.basicConfig(level=logging.DEBUG)
_A : Union[str, Any] =logging.getLogger()
def __UpperCamelCase ( _lowercase ) -> Optional[int]:
_lowercase : Dict = {}
_lowercase : Optional[int] = os.path.join(_lowercase, 'all_results.json' )
if os.path.exists(_lowercase ):
with open(_lowercase, 'r' ) as f:
_lowercase : int = json.load(_lowercase )
else:
raise ValueError(f'''can\'t find {path}''' )
return results
_A : Optional[int] =logging.StreamHandler(sys.stdout)
logger.addHandler(stream_handler)
@require_torch_tpu
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __UpperCAmelCase ( self : str ) -> Tuple:
'''simple docstring'''
import xla_spawn
_lowercase : List[Any] = self.get_auto_remove_tmp_dir()
_lowercase : List[str] = F'''
./examples/pytorch/text-classification/run_glue.py
--num_cores=8
./examples/pytorch/text-classification/run_glue.py
--model_name_or_path distilbert-base-uncased
--output_dir {tmp_dir}
--overwrite_output_dir
--train_file ./tests/fixtures/tests_samples/MRPC/train.csv
--validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv
--do_train
--do_eval
--debug tpu_metrics_debug
--per_device_train_batch_size=2
--per_device_eval_batch_size=1
--learning_rate=1e-4
--max_steps=10
--warmup_steps=2
--seed=42
--max_seq_length=128
'''.split()
with patch.object(UpperCamelCase_ , 'argv' , UpperCamelCase_ ):
_lowercase : Union[str, Any] = time()
xla_spawn.main()
_lowercase : Tuple = time()
_lowercase : Optional[Any] = get_results(UpperCamelCase_ )
self.assertGreaterEqual(result['eval_accuracy'] , 0.75 )
# Assert that the script takes less than 500 seconds to make sure it doesn't hang.
self.assertLess(end - start , 500 )
def __UpperCAmelCase ( self : Dict ) -> List[str]:
'''simple docstring'''
import xla_spawn
_lowercase : List[str] = '\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n '.split()
with patch.object(UpperCamelCase_ , 'argv' , UpperCamelCase_ ):
xla_spawn.main()
| 4 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int:
_lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}'''
done_test[_id] += 1
with open(_lowercase, 'r' ) as f:
_lowercase : Optional[int] = f.readlines()
_lowercase : Dict = f'''class {class_name}('''
_lowercase : List[Any] = f'''{4 * " "}def {test_name}('''
_lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}'''
_lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}'''
_lowercase : Dict = False
_lowercase : str = False
_lowercase : List[Any] = False
_lowercase : Union[str, Any] = False
_lowercase : Any = 0
_lowercase : Tuple = 0
_lowercase : Optional[int] = []
for line in lines:
if line.startswith(_lowercase ):
_lowercase : int = True
elif in_class and line.startswith(_lowercase ):
_lowercase : List[Any] = True
elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )):
_lowercase : str = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_lowercase : List[Any] = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_lowercase : Any = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f'''{spaces * " "}{correct_line}''' )
_lowercase : Any = False
else:
new_lines.append(_lowercase )
with open(_lowercase, 'w' ) as f:
for line in new_lines:
f.write(_lowercase )
def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]:
if fail is not None:
with open(_lowercase, 'r' ) as f:
_lowercase : Any = {l.strip() for l in f.readlines()}
else:
_lowercase : str = None
with open(_lowercase, 'r' ) as f:
_lowercase : str = f.readlines()
_lowercase : Union[str, Any] = defaultdict(_lowercase )
for line in correct_lines:
_lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase )
if __name__ == "__main__":
_A : str =argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
_A : Union[str, Any] =parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 4 | 1 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.