code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
1
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = DanceDiffusionPipeline A_ = UNCONDITIONAL_AUDIO_GENERATION_PARAMS A_ = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } A_ = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS A_ = False A_ = False def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) _lowercase : List[str] = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCamelCase_ , use_timestep_embedding=UpperCamelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) _lowercase : List[str] = IPNDMScheduler() _lowercase : Tuple = { 'unet': unet, 'scheduler': scheduler, } return components def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Any=0 ) -> List[Any]: '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): _lowercase : str = torch.manual_seed(UpperCamelCase_ ) else: _lowercase : str = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) _lowercase : Optional[int] = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def __UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' _lowercase : Union[str, Any] = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : int = self.get_dummy_components() _lowercase : Optional[int] = DanceDiffusionPipeline(**UpperCamelCase_ ) _lowercase : int = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : str = self.get_dummy_inputs(UpperCamelCase_ ) _lowercase : Optional[Any] = pipe(**UpperCamelCase_ ) _lowercase : Any = output.audios _lowercase : Dict = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) _lowercase : Union[str, Any] = np.array([-0.72_65, 1.00_00, -0.83_88, 0.11_75, 0.94_98, -1.00_00] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCAmelCase ( self : Dict ) -> int: '''simple docstring''' return super().test_save_load_local() @skip_mps def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def __UpperCAmelCase ( self : int ) -> str: '''simple docstring''' return super().test_attention_slicing_forward_pass() def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' _lowercase : int = torch_device _lowercase : Tuple = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) _lowercase : Dict = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : int = torch.manual_seed(0 ) _lowercase : Dict = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.0_96 ) _lowercase : Union[str, Any] = output.audios _lowercase : Union[str, Any] = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase : List[str] = np.array([-0.01_92, -0.02_31, -0.03_18, -0.00_59, 0.00_02, -0.00_20] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = torch_device _lowercase : int = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) _lowercase : Union[str, Any] = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : List[str] = pipe(generator=UpperCamelCase_ , num_inference_steps=100 , audio_length_in_s=4.0_96 ) _lowercase : Any = output.audios _lowercase : Any = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) _lowercase : Dict = np.array([-0.03_67, -0.04_88, -0.07_71, -0.05_25, -0.04_44, -0.03_41] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
4
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class lowerCamelCase__ : '''simple docstring''' A_ = None A_ = None A_ = None # sigma(t_i) @classmethod def __UpperCAmelCase ( cls : Optional[int] ) -> Optional[int]: '''simple docstring''' return cls() @dataclass class lowerCamelCase__ ( A ): '''simple docstring''' A_ = 42 A_ = 42 A_ = 42 class lowerCamelCase__ ( A , A ): '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[Any] ) -> str: '''simple docstring''' return True @register_to_config def __init__( self : Union[str, Any] , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : float = 100 , UpperCamelCase_ : float = 1.0_07 , UpperCamelCase_ : float = 80 , UpperCamelCase_ : float = 0.05 , UpperCamelCase_ : float = 50 , ) -> Union[str, Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' return KarrasVeSchedulerState.create() def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : KarrasVeSchedulerState , UpperCamelCase_ : int , UpperCamelCase_ : Tuple = () ) -> KarrasVeSchedulerState: '''simple docstring''' _lowercase : Union[str, Any] = jnp.arange(0 , UpperCamelCase_ )[::-1].copy() _lowercase : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=UpperCamelCase_ , schedule=jnp.array(UpperCamelCase_ , dtype=jnp.floataa ) , timesteps=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : KarrasVeSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : random.KeyArray , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: _lowercase : List[str] = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: _lowercase : Any = 0 # sample eps ~ N(0, S_noise^2 * I) _lowercase : Any = random.split(UpperCamelCase_ , num=1 ) _lowercase : str = self.config.s_noise * random.normal(key=UpperCamelCase_ , shape=sample.shape ) _lowercase : List[str] = sigma + gamma * sigma _lowercase : Optional[int] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : KarrasVeSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' _lowercase : int = sample_hat + sigma_hat * model_output _lowercase : Dict = (sample_hat - pred_original_sample) / sigma_hat _lowercase : Union[str, Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase_ , derivative=UpperCamelCase_ , state=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : KarrasVeSchedulerState , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : jnp.ndarray , UpperCamelCase_ : bool = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' _lowercase : List[str] = sample_prev + sigma_prev * model_output _lowercase : Optional[Any] = (sample_prev - pred_original_sample) / sigma_prev _lowercase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=UpperCamelCase_ , derivative=UpperCamelCase_ , state=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : KarrasVeSchedulerState , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' raise NotImplementedError()
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Any ={ '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =[ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
1
'''simple docstring''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : list ) -> None: '''simple docstring''' _lowercase : Any = set_counts _lowercase : Optional[int] = max(UpperCamelCase_ ) _lowercase : Any = len(UpperCamelCase_ ) _lowercase : Dict = [1] * num_sets _lowercase : int = list(range(UpperCamelCase_ ) ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> bool: '''simple docstring''' _lowercase : str = self.get_parent(UpperCamelCase_ ) _lowercase : List[str] = self.get_parent(UpperCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] _lowercase : Optional[Any] = 0 _lowercase : str = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 _lowercase : Optional[Any] = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] _lowercase : int = 0 _lowercase : int = src_parent _lowercase : Any = self.set_counts[src_parent] _lowercase : Any = max(self.max_set , UpperCamelCase_ ) return True def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set _lowercase : Tuple = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
4
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Tuple=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : int=True , UpperCamelCase_ : int=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : int=2 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=37 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Tuple=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Tuple=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=1000 , ) -> str: '''simple docstring''' _lowercase : Optional[int] = parent _lowercase : List[Any] = batch_size _lowercase : Optional[int] = seq_length _lowercase : Any = is_training _lowercase : Union[str, Any] = use_input_mask _lowercase : Dict = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : str = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : int = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : int = type_sequence_label_size _lowercase : str = initializer_range _lowercase : List[Any] = num_labels _lowercase : Optional[int] = num_choices _lowercase : Union[str, Any] = scope _lowercase : List[Any] = range_bbox def __UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : Dict = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : Tuple = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Tuple = bbox[i, j, 2] _lowercase : Tuple = bbox[i, j, 0] _lowercase : Union[str, Any] = t _lowercase : Union[str, Any] = tf.convert_to_tensor(UpperCamelCase_ ) _lowercase : List[str] = None if self.use_input_mask: _lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Any = None _lowercase : Any = None _lowercase : Dict = None if self.use_labels: _lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' _lowercase : Any = TFLayoutLMModel(config=UpperCamelCase_ ) _lowercase : Dict = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) _lowercase : Any = model(UpperCamelCase_ , UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) _lowercase : List[Any] = model(UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = TFLayoutLMForMaskedLM(config=UpperCamelCase_ ) _lowercase : Dict = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = self.num_labels _lowercase : Optional[int] = TFLayoutLMForSequenceClassification(config=UpperCamelCase_ ) _lowercase : str = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = self.num_labels _lowercase : Any = TFLayoutLMForTokenClassification(config=UpperCamelCase_ ) _lowercase : Any = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = TFLayoutLMForQuestionAnswering(config=UpperCamelCase_ ) _lowercase : int = model(UpperCamelCase_ , UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Any = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCamelCase__ ( A , A , unittest.TestCase ): '''simple docstring''' A_ = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) A_ = ( { """feature-extraction""": TFLayoutLMModel, """fill-mask""": TFLayoutLMForMaskedLM, """text-classification""": TFLayoutLMForSequenceClassification, """token-classification""": TFLayoutLMForTokenClassification, """zero-shot""": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) A_ = False A_ = True A_ = 10 def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = TFLayoutLMModelTester(self ) _lowercase : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase_ ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Dict = TFLayoutLMModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def __UpperCamelCase ( ) -> str: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Dict = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 _lowercase : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 _lowercase : Any = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Optional[Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' _lowercase : Optional[int] = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Optional[int] = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the sequence output on [0, :3, :3] _lowercase : Dict = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , UpperCamelCase_ , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : str = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , UpperCamelCase_ , atol=1E-3 ) ) @slow def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : int = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : List[Any] = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[str] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , UpperCamelCase_ ) # test the shape of the logits _lowercase : List[str] = outputs.logits _lowercase : Optional[int] = (2, 2) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : Any ) -> Any: '''simple docstring''' _lowercase : List[str] = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=13 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) # test the shape of the logits _lowercase : Union[str, Any] = outputs.logits _lowercase : Any = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' _lowercase : str = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Optional[Any] = model(input_ids=UpperCamelCase_ , bbox=UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ ) # test the shape of the logits _lowercase : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , UpperCamelCase_ ) self.assertEqual(outputs.end_logits.shape , UpperCamelCase_ )
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
'''simple docstring''' from datetime import datetime as dt import os from github import Github _A : List[str] =[ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def __UpperCamelCase ( ) -> str: _lowercase : Dict = Github(os.environ['GITHUB_TOKEN'] ) _lowercase : Tuple = g.get_repo('huggingface/transformers' ) _lowercase : List[str] = repo.get_issues(state='open' ) for issue in open_issues: _lowercase : int = sorted([comment for comment in issue.get_comments()], key=lambda _lowercase : i.created_at, reverse=_lowercase ) _lowercase : List[Any] = comments[0] if len(_lowercase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='closed' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) if __name__ == "__main__": main()
4
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
1
'''simple docstring''' import qiskit def __UpperCamelCase ( _lowercase, _lowercase ) -> qiskit.result.counts.Counts: _lowercase : Tuple = qiskit.Aer.get_backend('aer_simulator' ) _lowercase : Optional[Any] = qiskit.QuantumCircuit(4, 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0, 2 ) qc_ha.cx(1, 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0, 1, 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2, 0 ) # extract XOR value qc_ha.measure(3, 1 ) # extract AND value # Execute the circuit on the qasm simulator _lowercase : Tuple = qiskit.execute(_lowercase, _lowercase, shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_lowercase ) if __name__ == "__main__": _A : Any =half_adder(1, 1) print(F'''Half Adder Output Qubit Counts: {counts}''')
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _A : Any =logging.get_logger(__name__) _A : Optional[Any] ='''▁''' _A : Optional[Any] ={'''vocab_file''': '''sentencepiece.bpe.model'''} _A : Optional[Any] ={ '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } _A : Any ={ '''facebook/mbart-large-50-one-to-many-mmt''': 1_0_2_4, } # fmt: off _A : Optional[Any] =['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class lowerCamelCase__ ( A ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = ["""input_ids""", """attention_mask"""] A_ = [] A_ = [] def __init__( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : Union[str, Any]="</s>" , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : str="<unk>" , UpperCamelCase_ : List[str]="<pad>" , UpperCamelCase_ : List[str]="<mask>" , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : int , ) -> None: '''simple docstring''' _lowercase : int = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token _lowercase : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs _lowercase : List[str] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=UpperCamelCase_ , tgt_lang=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) _lowercase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase_ ) ) _lowercase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _lowercase : Union[str, Any] = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _lowercase : List[str] = 1 _lowercase : str = len(self.sp_model ) _lowercase : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(UpperCamelCase_ ) } _lowercase : Dict = {v: k for k, v in self.lang_code_to_id.items()} _lowercase : Tuple = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _lowercase : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _lowercase : Any = src_lang if src_lang is not None else 'en_XX' _lowercase : str = self.lang_code_to_id[self._src_lang] _lowercase : Optional[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self : str ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str ) -> None: '''simple docstring''' _lowercase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : str ) -> Dict: '''simple docstring''' _lowercase : int = self.__dict__.copy() _lowercase : Tuple = None return state def __setstate__( self : List[str] , UpperCamelCase_ : Dict ) -> None: '''simple docstring''' _lowercase : Any = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase : Optional[int] = {} _lowercase : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' _lowercase : str = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : int , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str ) -> int: '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _lowercase : Dict = self.sp_model.PieceToId(UpperCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : int ) -> str: '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str ) -> Dict: '''simple docstring''' _lowercase : Tuple = [] _lowercase : Tuple = '' _lowercase : Optional[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCamelCase_ ) + token _lowercase : str = True _lowercase : Tuple = [] else: current_sub_tokens.append(UpperCamelCase_ ) _lowercase : Any = False out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Optional[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , 'wb' ) as fi: _lowercase : int = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) _lowercase : Tuple = [1] * len(self.prefix_tokens ) _lowercase : List[str] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(UpperCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(UpperCamelCase_ )) + ([0] * len(UpperCamelCase_ )) + suffix_ones def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] , UpperCamelCase_ : Optional[str] , **UpperCamelCase_ : Optional[int] ) -> Any: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _lowercase : Optional[Any] = src_lang _lowercase : Optional[Any] = self(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = self.convert_tokens_to_ids(UpperCamelCase_ ) _lowercase : int = tgt_lang_id return inputs def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str = "en_XX" , UpperCamelCase_ : Optional[List[str]] = None , UpperCamelCase_ : str = "ro_RO" , **UpperCamelCase_ : Dict , ) -> BatchEncoding: '''simple docstring''' _lowercase : Any = src_lang _lowercase : int = tgt_lang return super().prepare_seqaseq_batch(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self : Any , UpperCamelCase_ : str ) -> None: '''simple docstring''' _lowercase : List[Any] = self.lang_code_to_id[src_lang] _lowercase : Dict = [self.cur_lang_code_id] _lowercase : Optional[int] = [self.eos_token_id] def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str ) -> None: '''simple docstring''' _lowercase : List[Any] = self.lang_code_to_id[tgt_lang] _lowercase : Union[str, Any] = [self.cur_lang_code_id] _lowercase : Any = [self.eos_token_id]
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' _lowercase : Tuple = tf.convert_to_tensor( [ [ 8.2_22_09_91, # 3rd highest value; idx. 0 -0.5_62_00_44, 5.23_22_97_52, 4.0_38_63_93, -6.8_79_83_78, -0.54_78_58_02, -3.2_01_21_53, 2.92_77_71_76, 1.88_17_19_53, 7.35_34_12_76, # 5th highest value; idx. 9 8.43_20_78_33, # 2nd highest value; idx. 10 -9.85_71_18_36, -5.96_20_92_36, -1.13_03_91_61, -7.1_11_52_94, -0.8_36_96_33, -5.3_18_64_08, 7.06_42_74_07, 0.81_36_93_44, -0.82_02_38_17, -5.9_17_97_96, 0.58_81_34_43, -6.99_77_84_38, 4.71_55_11_89, -0.18_77_16_37, 7.44_02_07_59, # 4th highest value; idx. 25 9.38_45_09_87, # 1st highest value; idx. 26 2.12_66_29_41, -9.32_56_20_38, 2.35_65_25_22, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58_42_55_18, 4.53_13_92_38, -5.57_51_04_64, -6.28_03_06_99, -7.19_52_95_03, -4.02_12_25_51, 1.39_33_70_37, -6.06_70_70_57, 1.59_48_05_17, -9.64_31_19, 0.03_90_77_99, 0.67_23_17_62, -8.88_20_67_26, 6.27_11_59_22, # 4th highest value; idx. 13 2.28_52_07_23, 4.82_76_75_06, 4.30_42_13_68, 8.8_27_53_13, # 2nd highest value; idx. 17 5.44_02_99_58, # 5th highest value; idx. 18 -4.4_73_57_94, 7.38_57_95_36, # 3rd highest value; idx. 20 -2.91_05_16_63, 2.61_94_60_77, -2.5_67_47_62, -9.48_95_93_02, -4.02_92_26_45, -1.35_41_69_18, 9.67_70_23_23, # 1st highest value; idx. 27 -5.89_47_85_53, 1.85_37_04_67, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) _lowercase : List[Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above _lowercase : List[Any] = tf.convert_to_tensor( [8.22_20_99, 7.3_53_41_26, 8.43_20_78, 7.4_40_20_75, 9.3_84_51, 6.27_11_59, 8.82_75_31, 5.4_40_29_95, 7.3_85_79_56, 9.67_70_23] , dtype=tf.floataa , ) # expected non filtered values as noted above _lowercase : Optional[int] = tf_top_k_top_p_filtering(UpperCamelCase_ , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) _lowercase : Tuple = output[output != -float('inf' )] _lowercase : Union[str, Any] = tf.cast( tf.where(tf.not_equal(UpperCamelCase_ , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-12 ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @require_tf class lowerCamelCase__ ( unittest.TestCase , A ): '''simple docstring''' if is_tf_available(): A_ = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowercase : Dict = 2 _lowercase : Tuple = 2 class lowerCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' super(UpperCamelCase_ , self ).__init__() _lowercase : List[str] = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowercase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} _lowercase : int = [[2, 0], [102, 103]] _lowercase : int = [[1, 0], [1, 1]] _lowercase : str = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'serving_default': dummy_model.serving} ) _lowercase : int = tf.saved_model.load(UpperCamelCase_ ).signatures['serving_default'] for batch_size in range(1 , len(UpperCamelCase_ ) + 1 ): _lowercase : List[str] = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } _lowercase : Optional[int] = serving_func(**UpperCamelCase_ )['sequences'] _lowercase : List[str] = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowercase : Any = 1 _lowercase : List[str] = 2 class lowerCamelCase__ ( tf.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' super(UpperCamelCase_ , self ).__init__() _lowercase : List[str] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ) -> Any: '''simple docstring''' _lowercase : List[Any] = self.model.generate( input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ , max_new_tokens=UpperCamelCase_ , return_dict_in_generate=UpperCamelCase_ , ) return {"sequences": outputs["sequences"]} _lowercase : int = [[2], [102, 103]] _lowercase : Optional[Any] = [[1], [1, 1]] _lowercase : Tuple = DummyModel(model=UpperCamelCase_ ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(UpperCamelCase_ , UpperCamelCase_ , signatures={'serving_default': dummy_model.serving} ) _lowercase : Optional[Any] = tf.saved_model.load(UpperCamelCase_ ).signatures['serving_default'] for input_row in range(len(UpperCamelCase_ ) ): _lowercase : int = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } _lowercase : Any = serving_func(**UpperCamelCase_ )['sequences'] _lowercase : int = test_model.generate(**UpperCamelCase_ , max_new_tokens=UpperCamelCase_ ) tf.debugging.assert_equal(UpperCamelCase_ , UpperCamelCase_ ) @slow @require_tensorflow_text def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=UpperCamelCase_ ) class lowerCamelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[Any]: '''simple docstring''' super().__init__() _lowercase : List[Any] = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(UpperCamelCase_ , 'spiece.model' ) , 'rb' ).read() ) _lowercase : int = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Any , *UpperCamelCase_ : Optional[int] , **UpperCamelCase_ : int ) -> str: '''simple docstring''' _lowercase : Dict = self.tokenizer.tokenize(UpperCamelCase_ ) _lowercase , _lowercase : Any = text.pad_model_inputs( UpperCamelCase_ , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) _lowercase : Union[str, Any] = self.model.generate(input_ids=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) return self.tokenizer.detokenize(UpperCamelCase_ ) _lowercase : Optional[int] = CompleteSentenceTransformer() _lowercase : Dict = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) _lowercase : Optional[int] = complete_model(UpperCamelCase_ ) _lowercase : Dict = tf.keras.Model(UpperCamelCase_ , UpperCamelCase_ ) keras_model.save(UpperCamelCase_ ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' _lowercase : Any = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } _lowercase : List[Any] = 14 _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowercase : int = 'Hello, my dog is cute and' _lowercase : str = tokenizer(UpperCamelCase_ , return_tensors='tf' ) _lowercase : List[Any] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) _lowercase : List[Any] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _lowercase : Tuple = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) _lowercase : Union[str, Any] = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) _lowercase : Tuple = model.generate(**UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' _lowercase : Dict = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) _lowercase : List[str] = 'Hugging Face is a technology company based in New York and Paris.' _lowercase : List[Any] = bart_tokenizer(UpperCamelCase_ , return_tensors='tf' ).input_ids _lowercase : Any = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) _lowercase : List[str] = bart_model.generate(UpperCamelCase_ ).numpy() class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' return super().call(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : int = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) _lowercase : int = bart_model.generate(UpperCamelCase_ , foo='bar' ).numpy() self.assertTrue(np.array_equal(UpperCamelCase_ , UpperCamelCase_ ) ) class lowerCamelCase__ ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : int , **UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' return super().call(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Union[str, Any] = FakeEncoder(bart_model.config , bart_model.model.shared ) _lowercase : List[str] = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) _lowercase : Any = bart_model.generate(UpperCamelCase_ ).numpy() with self.assertRaises(UpperCamelCase_ ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(UpperCamelCase_ , foo='bar' )
4
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: _A : Optional[Any] =None _A : List[str] =logging.get_logger(__name__) _A : Optional[Any] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} _A : int ={ '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } _A : Optional[int] ={ '''moussaKam/mbarthez''': 1_0_2_4, '''moussaKam/barthez''': 1_0_2_4, '''moussaKam/barthez-orangesum-title''': 1_0_2_4, } _A : int ='''▁''' class lowerCamelCase__ ( A ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] A_ = BarthezTokenizer def __init__( self : Optional[int] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : List[Any]="<s>" , UpperCamelCase_ : List[str]="</s>" , UpperCamelCase_ : Optional[Any]="</s>" , UpperCamelCase_ : Dict="<s>" , UpperCamelCase_ : List[str]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Union[str, Any]="<mask>" , **UpperCamelCase_ : int , ) -> str: '''simple docstring''' _lowercase : Any = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token super().__init__( UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Optional[Any] = vocab_file _lowercase : Optional[Any] = False if not self.vocab_file else True def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Optional[Any] = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : List[str] = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : Any = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ): copyfile(self.vocab_file , UpperCamelCase_ ) return (out_vocab_file,)
4
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
1
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _A : Optional[int] =logging.get_logger('''transformers.models.speecht5''') def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Dict: hf_model.apply_weight_norm() _lowercase : int = checkpoint['input_conv.weight_g'] _lowercase : Union[str, Any] = checkpoint['input_conv.weight_v'] _lowercase : int = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): _lowercase : List[str] = checkpoint[f'''upsamples.{i}.1.weight_g'''] _lowercase : Tuple = checkpoint[f'''upsamples.{i}.1.weight_v'''] _lowercase : Dict = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _lowercase : Optional[Any] = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] _lowercase : int = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] _lowercase : str = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] _lowercase : Optional[int] = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] _lowercase : int = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] _lowercase : List[Any] = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] _lowercase : int = checkpoint['output_conv.1.weight_g'] _lowercase : List[str] = checkpoint['output_conv.1.weight_v'] _lowercase : str = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase=None, _lowercase=None, ) -> List[str]: if config_path is not None: _lowercase : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(_lowercase ) else: _lowercase : Union[str, Any] = SpeechTaHifiGanConfig() _lowercase : Dict = SpeechTaHifiGan(_lowercase ) _lowercase : Optional[Any] = torch.load(_lowercase ) load_weights(orig_checkpoint['model']['generator'], _lowercase, _lowercase ) _lowercase : Optional[int] = np.load(_lowercase ) _lowercase : Union[str, Any] = stats[0].reshape(-1 ) _lowercase : Tuple = stats[1].reshape(-1 ) _lowercase : Any = torch.from_numpy(_lowercase ).float() _lowercase : List[str] = torch.from_numpy(_lowercase ).float() model.save_pretrained(_lowercase ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_lowercase ) if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) _A : List[str] =parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
4
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : int =logging.get_logger(__name__) _A : List[Any] ={ '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """beit""" def __init__( self : Optional[Any] , UpperCamelCase_ : int=8192 , UpperCamelCase_ : str=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Dict=3072 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[Any]=224 , UpperCamelCase_ : List[str]=16 , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : str=False , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=False , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : int=[3, 5, 7, 11] , UpperCamelCase_ : Optional[int]=[1, 2, 3, 6] , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Tuple=0.4 , UpperCamelCase_ : Optional[Any]=256 , UpperCamelCase_ : Tuple=1 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Tuple=255 , **UpperCamelCase_ : Union[str, Any] , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Union[str, Any] = vocab_size _lowercase : Dict = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Any = num_attention_heads _lowercase : List[Any] = intermediate_size _lowercase : Dict = hidden_act _lowercase : str = hidden_dropout_prob _lowercase : str = attention_probs_dropout_prob _lowercase : int = initializer_range _lowercase : Optional[Any] = layer_norm_eps _lowercase : Optional[int] = image_size _lowercase : Optional[int] = patch_size _lowercase : List[Any] = num_channels _lowercase : Union[str, Any] = use_mask_token _lowercase : int = use_absolute_position_embeddings _lowercase : Union[str, Any] = use_relative_position_bias _lowercase : List[Any] = use_shared_relative_position_bias _lowercase : int = layer_scale_init_value _lowercase : Union[str, Any] = drop_path_rate _lowercase : List[Any] = use_mean_pooling # decode head attributes (semantic segmentation) _lowercase : Dict = out_indices _lowercase : Dict = pool_scales # auxiliary head attributes (semantic segmentation) _lowercase : List[str] = use_auxiliary_head _lowercase : str = auxiliary_loss_weight _lowercase : List[Any] = auxiliary_channels _lowercase : Union[str, Any] = auxiliary_num_convs _lowercase : int = auxiliary_concat_input _lowercase : Union[str, Any] = semantic_loss_ignore_index class lowerCamelCase__ ( A ): '''simple docstring''' A_ = version.parse("""1.11""" ) @property def __UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self : Optional[int] ) -> float: '''simple docstring''' return 1E-4
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
1
'''simple docstring''' from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar _A : Optional[Any] =TypeVar('''T''') def __UpperCamelCase ( _lowercase ) -> int: return (position - 1) // 2 def __UpperCamelCase ( _lowercase ) -> int: return (2 * position) + 1 def __UpperCamelCase ( _lowercase ) -> int: return (2 * position) + 2 class lowerCamelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Any ) -> None: '''simple docstring''' _lowercase : list[tuple[T, int]] = [] _lowercase : dict[T, int] = {} _lowercase : int = 0 def __len__( self : List[str] ) -> int: '''simple docstring''' return self.elements def __repr__( self : List[str] ) -> str: '''simple docstring''' return str(self.heap ) def __UpperCAmelCase ( self : List[str] ) -> bool: '''simple docstring''' return self.elements == 0 def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : T , UpperCamelCase_ : int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) _lowercase : Tuple = self.elements self.elements += 1 self._bubble_up(UpperCamelCase_ ) def __UpperCAmelCase ( self : int ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) _lowercase , _lowercase : Union[str, Any] = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: _lowercase , _lowercase : List[str] = self.heap[0] self._bubble_down(UpperCamelCase_ ) return elem def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : T , UpperCamelCase_ : int ) -> None: '''simple docstring''' _lowercase : List[Any] = self.position_map[elem] _lowercase : Optional[Any] = (elem, weight) if position > 0: _lowercase : Optional[Any] = get_parent_position(UpperCamelCase_ ) _lowercase , _lowercase : str = self.heap[parent_position] if parent_weight > weight: self._bubble_up(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) else: self._bubble_down(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : T ) -> None: '''simple docstring''' _lowercase : Optional[int] = self.position_map[elem] if curr_pos == 0: return None _lowercase : Optional[Any] = get_parent_position(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = self.heap[curr_pos] _lowercase , _lowercase : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_up(UpperCamelCase_ ) return None def __UpperCAmelCase ( self : str , UpperCamelCase_ : T ) -> None: '''simple docstring''' _lowercase : Optional[Any] = self.position_map[elem] _lowercase , _lowercase : Optional[Any] = self.heap[curr_pos] _lowercase : Dict = get_child_left_position(UpperCamelCase_ ) _lowercase : Union[str, Any] = get_child_right_position(UpperCamelCase_ ) if child_left_position < self.elements and child_right_position < self.elements: _lowercase , _lowercase : List[Any] = self.heap[child_left_position] _lowercase , _lowercase : int = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) if child_left_position < self.elements: _lowercase , _lowercase : Dict = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) else: return None if child_right_position < self.elements: _lowercase , _lowercase : Optional[Any] = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(UpperCamelCase_ , UpperCamelCase_ ) return self._bubble_down(UpperCamelCase_ ) return None def __UpperCAmelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> None: '''simple docstring''' _lowercase : Dict = self.heap[nodea_pos][0] _lowercase : List[Any] = self.heap[nodea_pos][0] _lowercase , _lowercase : Any = ( self.heap[nodea_pos], self.heap[nodea_pos], ) _lowercase : str = nodea_pos _lowercase : Optional[int] = nodea_pos class lowerCamelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Any ) -> None: '''simple docstring''' _lowercase : dict[T, dict[T, int]] = {} _lowercase : int = 0 def __repr__( self : Tuple ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self : int ) -> int: '''simple docstring''' return self.nodes def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : T ) -> None: '''simple docstring''' if node not in self.connections: _lowercase : Union[str, Any] = {} self.nodes += 1 def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : T , UpperCamelCase_ : T , UpperCamelCase_ : int ) -> None: '''simple docstring''' self.add_node(UpperCamelCase_ ) self.add_node(UpperCamelCase_ ) _lowercase : int = weight _lowercase : Tuple = weight def __UpperCamelCase ( _lowercase, ) -> tuple[dict[T, int], dict[T, T | None]]: _lowercase : dict[T, int] = {node: maxsize for node in graph.connections} _lowercase : dict[T, T | None] = {node: None for node in graph.connections} _lowercase : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(_lowercase, _lowercase ) if priority_queue.is_empty(): return dist, parent # initialization _lowercase : Dict = priority_queue.extract_min() _lowercase : Any = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowercase : Any = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_lowercase, dist[neighbour] ) _lowercase : str = node # running prim's algorithm while not priority_queue.is_empty(): _lowercase : Dict = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: _lowercase : Tuple = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(_lowercase, dist[neighbour] ) _lowercase : Dict = node return dist, parent
4
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
1
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def __UpperCamelCase ( _lowercase = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1, ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:], 1 ): _lowercase : Optional[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : str = floor(_lowercase ) _lowercase : Optional[int] = ceil(_lowercase ) _lowercase : Optional[int] = triangle_numbers[b_floor] _lowercase : int = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Optional[Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Dict = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """gpt_bigcode""" A_ = ["""past_key_values"""] A_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase_ : List[str]=5_0257 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : str=None , UpperCamelCase_ : int="gelu_pytorch_tanh" , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[Any]=1E-5 , UpperCamelCase_ : Dict=0.02 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : str=5_0256 , UpperCamelCase_ : Tuple=5_0256 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : int=True , **UpperCamelCase_ : str , ) -> str: '''simple docstring''' _lowercase : List[str] = vocab_size _lowercase : Optional[int] = n_positions _lowercase : Any = n_embd _lowercase : Union[str, Any] = n_layer _lowercase : Optional[Any] = n_head _lowercase : Dict = n_inner _lowercase : Dict = activation_function _lowercase : Union[str, Any] = resid_pdrop _lowercase : Union[str, Any] = embd_pdrop _lowercase : str = attn_pdrop _lowercase : Optional[int] = layer_norm_epsilon _lowercase : List[Any] = initializer_range _lowercase : Any = scale_attn_weights _lowercase : Any = use_cache _lowercase : int = attention_softmax_in_fpaa _lowercase : Optional[Any] = scale_attention_softmax_in_fpaa _lowercase : str = multi_query _lowercase : List[Any] = bos_token_id _lowercase : Optional[int] = eos_token_id super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
4
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
1
'''simple docstring''' import os from bleurt import score # From: git+https://github.com/google-research/bleurt.git import datasets _A : Tuple =datasets.logging.get_logger(__name__) _A : Optional[Any] ='''\ @inproceedings{bleurt, title={BLEURT: Learning Robust Metrics for Text Generation}, author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh}, booktitle={ACL}, year={2020}, url={https://arxiv.org/abs/2004.04696} } ''' _A : Dict ='''\ BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018) and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune it for your specific application (the latter is expected to perform better). See the project\'s README at https://github.com/google-research/bleurt#readme for more information. ''' _A : Union[str, Any] =''' BLEURT score. Args: `predictions` (list of str): prediction/candidate sentences `references` (list of str): reference sentences `checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None. Returns: \'scores\': List of scores. Examples: >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> bleurt = datasets.load_metric("bleurt") >>> results = bleurt.compute(predictions=predictions, references=references) >>> print([round(v, 2) for v in results["scores"]]) [1.03, 1.04] ''' _A : Dict ={ '''bleurt-tiny-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip''', '''bleurt-tiny-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip''', '''bleurt-base-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip''', '''bleurt-base-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip''', '''bleurt-large-128''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip''', '''bleurt-large-512''': '''https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip''', '''BLEURT-20-D3''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip''', '''BLEURT-20-D6''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip''', '''BLEURT-20-D12''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip''', '''BLEURT-20''': '''https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip''', } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/google-research/bleurt' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/bleurt'] , reference_urls=['https://github.com/google-research/bleurt', 'https://arxiv.org/abs/2004.04696'] , ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' if self.config_name == "default": logger.warning( 'Using default BLEURT-Base checkpoint for sequence maximum length 128. ' 'You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\').' ) _lowercase : Optional[int] = 'bleurt-base-128' if self.config_name.lower() in CHECKPOINT_URLS: _lowercase : int = self.config_name.lower() elif self.config_name.upper() in CHECKPOINT_URLS: _lowercase : Tuple = self.config_name.upper() else: raise KeyError( F'''{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}''' ) # download the model checkpoint specified by self.config_name and set up the scorer _lowercase : Optional[Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] ) _lowercase : str = score.BleurtScorer(os.path.join(UpperCamelCase_ , UpperCamelCase_ ) ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] ) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = self.scorer.score(references=UpperCamelCase_ , candidates=UpperCamelCase_ ) return {"scores": scores}
4
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _A : int ={ '''configuration_falcon''': ['''FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FalconConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =[ '''FALCON_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FalconForCausalLM''', '''FalconModel''', '''FalconPreTrainedModel''', '''FalconForSequenceClassification''', '''FalconForTokenClassification''', '''FalconForQuestionAnswering''', ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _A : Optional[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
1
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = field(default="""summarization""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) A_ = Features({"""text""": Value("""string""" )} ) A_ = Features({"""summary""": Value("""string""" )} ) A_ = "text" A_ = "summary" @property def __UpperCAmelCase ( self : List[str] ) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING _A : List[Any] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , *UpperCamelCase_ : Any , **UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == 'tf' else MODEL_FOR_VISION_2_SEQ_MAPPING ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : str=None ) -> int: '''simple docstring''' _lowercase : List[str] = {} _lowercase : Any = {} if prompt is not None: _lowercase : List[str] = prompt if generate_kwargs is not None: _lowercase : Tuple = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: _lowercase : str = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( '\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,' ' please use only one' ) _lowercase : Optional[Any] = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Optional[Any] , UpperCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=None ) -> Dict: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) if prompt is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise ValueError( F'''Received an invalid text input, got - {type(UpperCamelCase_ )} - but expected a single string. ''' 'Note also that one single text can be provided for conditional image to text generation.' ) _lowercase : Tuple = self.model.config.model_type if model_type == "git": _lowercase : Tuple = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) _lowercase : List[Any] = self.tokenizer(text=UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ).input_ids _lowercase : Dict = [self.tokenizer.cls_token_id] + input_ids _lowercase : Any = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) model_inputs.update({'input_ids': input_ids} ) elif model_type == "pix2struct": _lowercase : List[str] = self.image_processor(images=UpperCamelCase_ , header_text=UpperCamelCase_ , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation _lowercase : Optional[Any] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) _lowercase : str = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework ) model_inputs.update(UpperCamelCase_ ) else: raise ValueError(F'''Model type {model_type} does not support conditional text generation''' ) else: _lowercase : Any = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: _lowercase : Any = None return model_inputs def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int]=None ) -> str: '''simple docstring''' if ( "input_ids" in model_inputs and isinstance(model_inputs['input_ids'] , UpperCamelCase_ ) and all(x is None for x in model_inputs['input_ids'] ) ): _lowercase : List[Any] = None if generate_kwargs is None: _lowercase : str = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. _lowercase : Any = model_inputs.pop(self.model.main_input_name ) _lowercase : Tuple = self.model.generate(UpperCamelCase_ , **UpperCamelCase_ , **UpperCamelCase_ ) return model_outputs def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : List[str] = [] for output_ids in model_outputs: _lowercase : List[Any] = { 'generated_text': self.tokenizer.decode( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ , ) } records.append(UpperCamelCase_ ) return records
4
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
1
'''simple docstring''' import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def __UpperCamelCase ( _lowercase, _lowercase ) -> Tuple: # Load checkpoint _lowercase : str = torch.load(_lowercase, map_location='cpu' ) _lowercase : Union[str, Any] = chkpt['model'] # We have the base model one level deeper than the original XLM repository _lowercase : Union[str, Any] = {} for k, v in state_dict.items(): if "pred_layer" in k: _lowercase : int = v else: _lowercase : Tuple = v _lowercase : Tuple = chkpt['params'] _lowercase : Any = {n: v for n, v in config.items() if not isinstance(_lowercase, (torch.FloatTensor, numpy.ndarray) )} _lowercase : int = chkpt['dico_word2id'] _lowercase : Any = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@', '' ): i for s, i in vocab.items()} # Save pytorch-model _lowercase : int = pytorch_dump_folder_path + '/' + WEIGHTS_NAME _lowercase : Union[str, Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME _lowercase : str = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(_lowercase, _lowercase ) print(f'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(_lowercase, indent=2 ) + '\n' ) print(f'''Save vocab file to {pytorch_config_dump_path}''' ) with open(_lowercase, 'w', encoding='utf-8' ) as f: f.write(json.dumps(_lowercase, indent=2 ) + '\n' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--xlm_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _A : str =parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
4
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __UpperCamelCase ( ) -> List[str]: _lowercase , _lowercase : Optional[int] = 9, 14 # noqa: F841 _lowercase : int = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowercase : int = defaultdict(_lowercase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _lowercase : Optional[Any] = mst(_lowercase ) _lowercase : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _lowercase : Any = tuple(answer[:2] ) _lowercase : Union[str, Any] = tuple(edge[::-1] ) assert edge in result or reverse in result
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = None A_ = BloomTokenizerFast A_ = BloomTokenizerFast A_ = True A_ = False A_ = """tokenizer_file""" A_ = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""} def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' super().setUp() _lowercase : List[str] = BloomTokenizerFast.from_pretrained('bigscience/tokenizer' ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[str] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_rust_tokenizer() _lowercase : Optional[int] = ['The quick brown fox</s>', 'jumps over the lazy dog</s>'] _lowercase : int = [[2175, 2_3714, 7_3173, 14_4252, 2], [77, 13_2619, 3478, 368, 10_9586, 3_5433, 2]] _lowercase : Dict = tokenizer.batch_encode_plus(UpperCamelCase_ )['input_ids'] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : Tuple = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[Any]=6 ) -> List[str]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _lowercase : int = 'This is a simple input' _lowercase : Optional[Any] = ['This is a simple input 1', 'This is a simple input 2'] _lowercase : str = ('This is a simple input', 'This is a pair') _lowercase : Optional[Any] = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests try: tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.encode(UpperCamelCase_ , max_length=UpperCamelCase_ ) tokenizer_r.batch_encode_plus(UpperCamelCase_ , max_length=UpperCamelCase_ ) except ValueError: self.fail('Bloom Tokenizer should be able to deal with padding' ) _lowercase : Any = None # Hotfixing padding = None self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCamelCase_ , tokenizer_r.encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCamelCase_ , tokenizer_r.batch_encode_plus , UpperCamelCase_ , max_length=UpperCamelCase_ , padding='max_length' , ) def __UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' _lowercase : str = self.get_rust_tokenizer() _lowercase : Any = load_dataset('xnli' , 'all_languages' , split='test' , streaming=UpperCamelCase_ ) _lowercase : str = next(iter(UpperCamelCase_ ) )['premise'] # pick up one data _lowercase : Optional[Any] = list(sample_data.values() ) _lowercase : Optional[Any] = list(map(tokenizer.encode , UpperCamelCase_ ) ) _lowercase : Any = [tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) for x in output_tokens] self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
4
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
1
'''simple docstring''' from __future__ import annotations class lowerCamelCase__ : '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> Tuple: '''simple docstring''' _lowercase , _lowercase : Optional[int] = text, pattern _lowercase , _lowercase : Dict = len(UpperCamelCase_ ), len(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __UpperCAmelCase ( self : str , UpperCamelCase_ : int ) -> int: '''simple docstring''' for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __UpperCAmelCase ( self : Tuple ) -> list[int]: '''simple docstring''' _lowercase : Dict = [] for i in range(self.textLen - self.patLen + 1 ): _lowercase : str = self.mismatch_in_text(UpperCamelCase_ ) if mismatch_index == -1: positions.append(UpperCamelCase_ ) else: _lowercase : Union[str, Any] = self.match_in_pattern(self.text[mismatch_index] ) _lowercase : Tuple = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions _A : List[str] ='''ABAABA''' _A : Optional[Any] ='''AB''' _A : Tuple =BoyerMooreSearch(text, pattern) _A : Union[str, Any] =bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
4
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : int =logging.get_logger(__name__) _A : Optional[Any] ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _A : Any ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _A : Union[str, Any] ={'''facebook/blenderbot-3B''': 1_2_8} class lowerCamelCase__ ( A ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] A_ = BlenderbotTokenizer def __init__( self : str , UpperCamelCase_ : Dict=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any="replace" , UpperCamelCase_ : Optional[int]="<s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Any="</s>" , UpperCamelCase_ : Dict="<s>" , UpperCamelCase_ : Optional[Any]="<unk>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : str="<mask>" , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : str=True , **UpperCamelCase_ : str , ) -> Union[str, Any]: '''simple docstring''' super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , UpperCamelCase_ ) != add_prefix_space: _lowercase : List[Any] = getattr(UpperCamelCase_ , pre_tok_state.pop('type' ) ) _lowercase : List[str] = add_prefix_space _lowercase : Any = pre_tok_class(**UpperCamelCase_ ) _lowercase : Tuple = add_prefix_space _lowercase : Optional[Any] = 'post_processor' _lowercase : Tuple = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) if tokenizer_component_instance: _lowercase : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _lowercase : Any = tuple(state['sep'] ) if "cls" in state: _lowercase : int = tuple(state['cls'] ) _lowercase : Optional[int] = False if state.get('add_prefix_space' , UpperCamelCase_ ) != add_prefix_space: _lowercase : List[Any] = add_prefix_space _lowercase : str = True if state.get('trim_offsets' , UpperCamelCase_ ) != trim_offsets: _lowercase : Optional[int] = trim_offsets _lowercase : Optional[int] = True if changes_to_apply: _lowercase : str = getattr(UpperCamelCase_ , state.pop('type' ) ) _lowercase : List[str] = component_class(**UpperCamelCase_ ) setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : Dict = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value _lowercase : List[Any] = value def __UpperCAmelCase ( self : Optional[Any] , *UpperCamelCase_ : Any , **UpperCamelCase_ : Any ) -> BatchEncoding: '''simple docstring''' _lowercase : Union[str, Any] = kwargs.get('is_split_into_words' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ) -> BatchEncoding: '''simple docstring''' _lowercase : str = kwargs.get('is_split_into_words' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' _lowercase : Union[str, Any] = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : List[str] = [self.sep_token_id] _lowercase : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : "Conversation" ) -> List[int]: '''simple docstring''' _lowercase : Optional[int] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase_ ) _lowercase : Union[str, Any] = ' '.join(UpperCamelCase_ ) _lowercase : Dict = self.encode(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.model_max_length: _lowercase : int = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging _A : Any =logging.get_logger(__name__) _A : Dict ={'''vocab_file''': '''spiece.model'''} _A : Union[str, Any] ={ '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', } } _A : Tuple ={ '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } # Segments (not really needed) _A : List[str] =0 _A : List[str] =1 _A : List[str] =2 _A : Tuple =3 _A : Optional[int] =4 class lowerCamelCase__ ( A ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = """left""" def __init__( self : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=False , UpperCamelCase_ : int=True , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : List[str]="<s>" , UpperCamelCase_ : List[Any]="</s>" , UpperCamelCase_ : Optional[Any]="<unk>" , UpperCamelCase_ : int="<sep>" , UpperCamelCase_ : int="<pad>" , UpperCamelCase_ : Optional[int]="<cls>" , UpperCamelCase_ : int="<mask>" , UpperCamelCase_ : Optional[int]=["<eop>", "<eod>"] , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : List[Any] , ) -> None: '''simple docstring''' _lowercase : Tuple = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else mask_token _lowercase : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase_ , remove_space=UpperCamelCase_ , keep_accents=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) _lowercase : List[Any] = 3 _lowercase : List[str] = do_lower_case _lowercase : List[Any] = remove_space _lowercase : Union[str, Any] = keep_accents _lowercase : Optional[Any] = vocab_file _lowercase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) @property def __UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' return len(self.sp_model ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Tuple = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = self.__dict__.copy() _lowercase : Optional[int] = None return state def __setstate__( self : List[Any] , UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _lowercase : int = {} _lowercase : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' if self.remove_space: _lowercase : Optional[int] = ' '.join(inputs.strip().split() ) else: _lowercase : List[str] = inputs _lowercase : int = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _lowercase : Tuple = unicodedata.normalize('NFKD' , UpperCamelCase_ ) _lowercase : Any = ''.join([c for c in outputs if not unicodedata.combining(UpperCamelCase_ )] ) if self.do_lower_case: _lowercase : int = outputs.lower() return outputs def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Tuple = self.preprocess_text(UpperCamelCase_ ) _lowercase : Dict = self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) _lowercase : List[Any] = [] for piece in pieces: if len(UpperCamelCase_ ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _lowercase : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase_ , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowercase : Optional[int] = cur_pieces[1:] else: _lowercase : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase_ ) else: new_pieces.append(UpperCamelCase_ ) return new_pieces def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Optional[Any] ) -> int: '''simple docstring''' return self.sp_model.PieceToId(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.IdToPiece(UpperCamelCase_ ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Any ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = ''.join(UpperCamelCase_ ).replace(UpperCamelCase_ , ' ' ).strip() return out_string def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = None , UpperCamelCase_ : bool = True , **UpperCamelCase_ : Union[str, Any] , ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = kwargs.pop('use_source_tokenizer' , UpperCamelCase_ ) _lowercase : int = self.convert_ids_to_tokens(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowercase : List[Any] = [] _lowercase : int = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) _lowercase : Optional[int] = [] sub_texts.append(UpperCamelCase_ ) else: current_sub_text.append(UpperCamelCase_ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(UpperCamelCase_ ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowercase : Tuple = ''.join(UpperCamelCase_ ) _lowercase : int = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowercase : List[str] = self.clean_up_tokenization(UpperCamelCase_ ) return clean_text else: return text def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : Any = [self.sep_token_id] _lowercase : List[Any] = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase_ , token_ids_a=UpperCamelCase_ , already_has_special_tokens=UpperCamelCase_ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase_ )) + [1] + ([0] * len(UpperCamelCase_ )) + [1, 1] return ([0] * len(UpperCamelCase_ )) + [1, 1] def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : Union[str, Any] = [self.sep_token_id] _lowercase : Union[str, Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : List[Any] = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , 'wb' ) as fi: _lowercase : List[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
4
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
1
'''simple docstring''' import os import re import shutil import sys import tempfile import unittest import black _A : Optional[int] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. _A : Optional[Any] =''' def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states ''' class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' _lowercase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , 'models/bert/' ) ) _lowercase : List[str] = self.transformer_dir shutil.copy( os.path.join(UpperCamelCase_ , 'src/transformers/models/bert/modeling_bert.py' ) , os.path.join(self.transformer_dir , 'models/bert/modeling_bert.py' ) , ) def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict=None ) -> str: '''simple docstring''' _lowercase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase : Dict = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase : Tuple = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowercase : Any = black.format_str(UpperCamelCase_ , mode=UpperCamelCase_ ) _lowercase : List[Any] = os.path.join(self.transformer_dir , 'new_code.py' ) with open(UpperCamelCase_ , 'w' , newline='\n' ) as f: f.write(UpperCamelCase_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(UpperCamelCase_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=UpperCamelCase_ ) with open(UpperCamelCase_ , 'r' ) as f: self.assertTrue(f.read() , UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' _lowercase : str = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead' ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , REFERENCE_CODE + '\n' , ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead' , 'BertLMPredictionHead' , UpperCamelCase_ , ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , re.sub('Bert' , 'TestModel' , UpperCamelCase_ ) , ) # Copy consistency with a really long name _lowercase : Optional[Any] = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub('Bert' , UpperCamelCase_ , UpperCamelCase_ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel' , 'TestModelLMPredictionHead' , UpperCamelCase_ , overwrite_result=re.sub('Bert' , 'TestModel' , UpperCamelCase_ ) , ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase : List[Any] = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme['format_model_list'] ) self.assertFalse(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) _lowercase , _lowercase : str = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme['format_model_list'] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(UpperCamelCase_ ) _lowercase : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase : int = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : int = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase : Tuple = check_copies.convert_to_localized_md( UpperCamelCase_ , UpperCamelCase_ , localized_readme['format_model_list'] ) # Check if the model link is synchronized. self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' from __future__ import annotations _A : str ='''#''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : Any ) -> None: '''simple docstring''' _lowercase : dict = {} def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : str ) -> None: '''simple docstring''' _lowercase : Any = self._trie for char in text: if char not in trie: _lowercase : Tuple = {} _lowercase : List[Any] = trie[char] _lowercase : Dict = True def __UpperCAmelCase ( self : str , UpperCamelCase_ : str ) -> tuple | list: '''simple docstring''' _lowercase : Any = self._trie for char in prefix: if char in trie: _lowercase : int = trie[char] else: return [] return self._elements(UpperCamelCase_ ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : dict ) -> tuple: '''simple docstring''' _lowercase : Tuple = [] for c, v in d.items(): _lowercase : Optional[int] = [' '] if c == END else [(c + s) for s in self._elements(UpperCamelCase_ )] result.extend(UpperCamelCase_ ) return tuple(UpperCamelCase_ ) _A : Tuple =Trie() _A : List[Any] =('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''') for word in words: trie.insert_word(word) def __UpperCamelCase ( _lowercase ) -> tuple: _lowercase : Optional[int] = trie.find_word(_lowercase ) return tuple(string + word for word in suffixes ) def __UpperCamelCase ( ) -> None: print(autocomplete_using_trie('de' ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
1
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class lowerCamelCase__ ( A , A , A ): '''simple docstring''' A_ = [R"""h\.\d+\.attn\.bias""", R"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : int = 5_0257 , UpperCamelCase_ : int = 1024 , UpperCamelCase_ : int = 768 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : int = 12 , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : str = "gelu_new" , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : float = 0.1 , UpperCamelCase_ : float = 1E-5 , UpperCamelCase_ : float = 0.02 , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = True , UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False , ) -> List[Any]: '''simple docstring''' super().__init__() _lowercase : str = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) _lowercase : List[Any] = prefix_inner_dim _lowercase : Optional[int] = prefix_hidden_dim _lowercase : int = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowercase : Optional[int] = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) _lowercase : Optional[int] = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) _lowercase : Union[str, Any] = GPTaLMHeadModel(UpperCamelCase_ ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : torch.Tensor , UpperCamelCase_ : Optional[torch.Tensor] = None , UpperCamelCase_ : Optional[torch.Tensor] = None , ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[int] = self.transformer.transformer.wte(UpperCamelCase_ ) _lowercase : Any = self.encode_prefix(UpperCamelCase_ ) _lowercase : Union[str, Any] = self.decode_prefix(UpperCamelCase_ ) _lowercase : Dict = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: _lowercase : List[str] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) _lowercase : int = torch.cat((dummy_token, input_ids) , dim=1 ) _lowercase : Dict = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : torch.device ) -> torch.Tensor: '''simple docstring''' return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] ) -> int: '''simple docstring''' _lowercase : List[str] = torch.split(UpperCamelCase_ , 1 , dim=0 ) _lowercase : List[Any] = [] _lowercase : Tuple = [] for feature in features: _lowercase : Dict = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now _lowercase , _lowercase : Any = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) _lowercase : Union[str, Any] = torch.stack(UpperCamelCase_ ) _lowercase : List[Any] = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __UpperCAmelCase ( self : Any , UpperCamelCase_ : int=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int = 5 , UpperCamelCase_ : int = 67 , UpperCamelCase_ : float = 1.0 , UpperCamelCase_ : Optional[int] = None , ) -> str: '''simple docstring''' _lowercase : Dict = eos_token_id _lowercase : Tuple = None _lowercase : Optional[int] = None _lowercase : List[Any] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) _lowercase : Optional[int] = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: _lowercase : Dict = input_embeds else: _lowercase : Optional[int] = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): _lowercase : List[Any] = self.transformer(inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = outputs.logits _lowercase : Tuple = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) _lowercase : List[str] = logits.softmax(-1 ).log() if scores is None: _lowercase , _lowercase : Optional[int] = logits.topk(UpperCamelCase_ , -1 ) _lowercase : Optional[Any] = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) _lowercase , _lowercase : Optional[int] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: _lowercase : List[str] = next_tokens else: _lowercase : Union[str, Any] = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) _lowercase : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: _lowercase : Optional[Any] = -float(np.inf ) _lowercase : Any = 0 _lowercase : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 _lowercase : List[Any] = scores_sum / seq_lengths[:, None] _lowercase , _lowercase : Optional[Any] = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) _lowercase : str = next_tokens // scores_sum.shape[1] _lowercase : int = seq_lengths[next_tokens_source] _lowercase : List[str] = next_tokens % scores_sum.shape[1] _lowercase : Optional[int] = next_tokens.unsqueeze(1 ) _lowercase : Optional[Any] = tokens[next_tokens_source] _lowercase : Optional[int] = torch.cat((tokens, next_tokens) , dim=1 ) _lowercase : Optional[int] = generated[next_tokens_source] _lowercase : List[Any] = scores_sum_average * seq_lengths _lowercase : Dict = is_stopped[next_tokens_source] _lowercase : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) _lowercase : Dict = torch.cat((generated, next_token_embed) , dim=1 ) _lowercase : List[Any] = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break _lowercase : int = scores / seq_lengths _lowercase : Optional[int] = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length _lowercase : Any = [tokens[i] for i in order] _lowercase : Tuple = torch.stack(UpperCamelCase_ , dim=0 ) _lowercase : Optional[int] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
4
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' # Algorithm for the pigeonhole sorting def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : List[Any] = min(_lowercase ) # min() finds the minimum value _lowercase : List[str] = max(_lowercase ) # max() finds the maximum value _lowercase : Dict = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _lowercase : Optional[int] = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(_lowercase, _lowercase ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _lowercase : int = 0 for count in range(_lowercase ): while holes[count] > 0: holes[count] -= 1 _lowercase : List[str] = count + min_val i += 1 def __UpperCamelCase ( ) -> Optional[int]: _lowercase : Dict = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(_lowercase ) print('Sorted order is:', ' '.join(_lowercase ) ) if __name__ == "__main__": main()
4
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule _A : Union[str, Any] ={ '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : int ={ '''configuration_electra''': ['''ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ElectraConfig''', '''ElectraOnnxConfig'''], '''tokenization_electra''': ['''ElectraTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ElectraTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ElectraForCausalLM''', '''ElectraForMaskedLM''', '''ElectraForMultipleChoice''', '''ElectraForPreTraining''', '''ElectraForQuestionAnswering''', '''ElectraForSequenceClassification''', '''ElectraForTokenClassification''', '''ElectraModel''', '''ElectraPreTrainedModel''', '''load_tf_weights_in_electra''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =[ '''TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFElectraForMaskedLM''', '''TFElectraForMultipleChoice''', '''TFElectraForPreTraining''', '''TFElectraForQuestionAnswering''', '''TFElectraForSequenceClassification''', '''TFElectraForTokenClassification''', '''TFElectraModel''', '''TFElectraPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =[ '''FlaxElectraForCausalLM''', '''FlaxElectraForMaskedLM''', '''FlaxElectraForMultipleChoice''', '''FlaxElectraForPreTraining''', '''FlaxElectraForQuestionAnswering''', '''FlaxElectraForSequenceClassification''', '''FlaxElectraForTokenClassification''', '''FlaxElectraModel''', '''FlaxElectraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_electra import ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ElectraConfig, ElectraOnnxConfig from .tokenization_electra import ElectraTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_electra_fast import ElectraTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_electra import ( ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, ElectraForCausalLM, ElectraForMaskedLM, ElectraForMultipleChoice, ElectraForPreTraining, ElectraForQuestionAnswering, ElectraForSequenceClassification, ElectraForTokenClassification, ElectraModel, ElectraPreTrainedModel, load_tf_weights_in_electra, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_electra import ( TF_ELECTRA_PRETRAINED_MODEL_ARCHIVE_LIST, TFElectraForMaskedLM, TFElectraForMultipleChoice, TFElectraForPreTraining, TFElectraForQuestionAnswering, TFElectraForSequenceClassification, TFElectraForTokenClassification, TFElectraModel, TFElectraPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_electra import ( FlaxElectraForCausalLM, FlaxElectraForMaskedLM, FlaxElectraForMultipleChoice, FlaxElectraForPreTraining, FlaxElectraForQuestionAnswering, FlaxElectraForSequenceClassification, FlaxElectraForTokenClassification, FlaxElectraModel, FlaxElectraPreTrainedModel, ) else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' import math import os import sys def __UpperCamelCase ( _lowercase ) -> str: _lowercase : Dict = '' try: with open(_lowercase, 'rb' ) as binary_file: _lowercase : List[Any] = binary_file.read() for dat in data: _lowercase : Optional[Any] = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase ) -> None: lexicon.pop(_lowercase ) _lowercase : Dict = last_match_id if math.loga(_lowercase ).is_integer(): for curr_key in lexicon: _lowercase : Optional[int] = '0' + lexicon[curr_key] _lowercase : Union[str, Any] = bin(_lowercase )[2:] def __UpperCamelCase ( _lowercase ) -> str: _lowercase : Tuple = {'0': '0', '1': '1'} _lowercase , _lowercase : Any = '', '' _lowercase : Dict = len(_lowercase ) for i in range(len(_lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue _lowercase : List[Any] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_lowercase, _lowercase, _lowercase, _lowercase ) index += 1 _lowercase : Tuple = '' while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": _lowercase : Any = lexicon[curr_string] result += last_match_id return result def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Union[str, Any] = os.path.getsize(_lowercase ) _lowercase : Optional[Any] = bin(_lowercase )[2:] _lowercase : str = len(_lowercase ) return "0" * (length_length - 1) + file_length_binary + compressed def __UpperCamelCase ( _lowercase, _lowercase ) -> None: _lowercase : Dict = 8 try: with open(_lowercase, 'wb' ) as opened_file: _lowercase : str = [ to_write[i : i + byte_length] for i in range(0, len(_lowercase ), _lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_lowercase, 2 ).to_bytes(1, byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def __UpperCamelCase ( _lowercase, _lowercase ) -> None: _lowercase : Dict = read_file_binary(_lowercase ) _lowercase : Optional[Any] = compress_data(_lowercase ) _lowercase : int = add_file_length(_lowercase, _lowercase ) write_file_binary(_lowercase, _lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
4
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
1
'''simple docstring''' import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _A : Any =logging.get_logger(__name__) def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : str = set() _lowercase : Optional[Any] = [] def parse_line(_lowercase ): for line in fp: if isinstance(_lowercase, _lowercase ): _lowercase : List[str] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(_lowercase ) > 0: _lowercase : List[str] = '\n'.join(_lowercase ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(_lowercase ) buffer.clear() continue else: _lowercase : Any = line.strip() buffer.append(_lowercase ) if from_gh: for filename in os.listdir(_lowercase ): _lowercase : Dict = os.path.join(_lowercase, _lowercase ) if not os.path.isdir(_lowercase ): # read the file if filename != "warnings.txt": continue with open(_lowercase ) as fp: parse_line(_lowercase ) else: try: with zipfile.ZipFile(_lowercase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowercase ): # read the file if filename != "warnings.txt": continue with z.open(_lowercase ) as fp: parse_line(_lowercase ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[Any]: _lowercase : Tuple = set() _lowercase : Any = [os.path.join(_lowercase, _lowercase ) for p in os.listdir(_lowercase ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_lowercase, _lowercase ) ) return selected_warnings if __name__ == "__main__": def __UpperCamelCase ( _lowercase ) -> Optional[Any]: return values.split(',' ) _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) _A : Any =parser.parse_args() _A : Tuple =args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _A : Dict =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 8_0) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _A : Union[str, Any] =extract_warnings(args.output_dir, args.targets) _A : str =sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
4
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
1
'''simple docstring''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : int ) -> None: '''simple docstring''' _lowercase : List[Any] = size _lowercase : int = [0] * size _lowercase : Dict = [0] * size @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : int ) -> int: '''simple docstring''' return index | (index + 1) @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : int ) -> int: '''simple docstring''' return (index & (index + 1)) - 1 def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> None: '''simple docstring''' _lowercase : Optional[int] = value while index < self.size: _lowercase : int = self.get_prev(UpperCamelCase_ ) + 1 if current_left_border == index: _lowercase : Dict = value else: _lowercase : Dict = max(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : str = self.get_next(UpperCamelCase_ ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: '''simple docstring''' right -= 1 # Because of right is exclusive _lowercase : Any = 0 while left <= right: _lowercase : Optional[int] = self.get_prev(UpperCamelCase_ ) if left <= current_left: _lowercase : Dict = max(UpperCamelCase_ , self.tree[right] ) _lowercase : int = current_left else: _lowercase : Any = max(UpperCamelCase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
'''simple docstring''' import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging _A : str =logging.get_logger(__name__) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> None: _lowercase : List[Any] = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(_lowercase ) == len(_lowercase ), f'''{len(_lowercase )} != {len(_lowercase )}''' dest_layers.load_state_dict(layers_to_copy.state_dict() ) _A : Dict ={ # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 1_2: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 1_1], 4: [0, 4, 8, 1_1], 6: [0, 2, 4, 7, 9, 1_1], 9: [0, 1, 2, 4, 5, 7, 9, 1_0, 1_1], 1_2: list(range(1_2)), }, 1_6: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 1_5], 3: [0, 8, 1_5], 4: [0, 5, 1_0, 1_5], 6: [0, 3, 6, 9, 1_2, 1_5], 8: [0, 2, 4, 6, 8, 1_0, 1_2, 1_5], 9: [0, 1, 3, 5, 7, 9, 1_1, 1_3, 1_5], 1_2: [0, 1, 2, 3, 4, 5, 6, 7, 9, 1_1, 1_3, 1_5], 1_6: list(range(1_6)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } _A : str ={ # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 1_2: {1: [1_1], 2: [5, 1_1], 3: [3, 7, 1_1], 6: [1, 3, 5, 8, 1_0, 1_1]}, 1_6: {1: [1_5], 4: [4, 9, 1_2, 1_5], 8: [1, 3, 5, 7, 9, 1_1, 1_3, 1_5]}, } def __UpperCamelCase ( _lowercase, _lowercase ) -> Any: try: _lowercase : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( f'''no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first''' f''' {n_student}''' ) return list(range(_lowercase ) ) def __UpperCamelCase ( _lowercase, _lowercase ) -> List[int]: if n_student > n_teacher: raise ValueError(f'''Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}''' ) elif n_teacher == n_student: return list(range(_lowercase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __UpperCamelCase ( _lowercase, _lowercase = "student", _lowercase = None, _lowercase = None, _lowercase=False, _lowercase=None, _lowercase=None, **_lowercase, ) -> Tuple[PreTrainedModel, List[int], List[int]]: _lowercase : List[str] = 'encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher.' assert (e is not None) or (d is not None), _msg if isinstance(_lowercase, _lowercase ): AutoTokenizer.from_pretrained(_lowercase ).save_pretrained(_lowercase ) # purely for convenience _lowercase : Any = AutoModelForSeqaSeqLM.from_pretrained(_lowercase ).eval() else: assert isinstance(_lowercase, _lowercase ), f'''teacher must be a model or string got type {type(_lowercase )}''' _lowercase : str = teacher.config.to_diff_dict() try: _lowercase , _lowercase : int = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _lowercase : Optional[int] = teacher_e if d is None: _lowercase : List[str] = teacher_d init_kwargs.update({'encoder_layers': e, 'decoder_layers': d} ) except AttributeError: # T5 if hasattr(teacher.config, 'num_encoder_layers' ): _lowercase , _lowercase : List[str] = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _lowercase , _lowercase : List[Any] = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _lowercase : Any = teacher_e if d is None: _lowercase : Tuple = teacher_d if hasattr(teacher.config, 'num_encoder_layers' ): init_kwargs.update({'num_encoder_layers': e, 'num_decoder_layers': d} ) else: init_kwargs.update({'num_layers': e, 'num_decoder_layers': d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(_lowercase ) # Copy weights _lowercase : List[Any] = teacher.config_class(**_lowercase ) _lowercase : Optional[Any] = AutoModelForSeqaSeqLM.from_config(_lowercase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _lowercase : Tuple = student.load_state_dict(teacher.state_dict(), strict=_lowercase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _lowercase , _lowercase : Dict = list(range(_lowercase ) ), list(range(_lowercase ) ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to''' f''' {save_path}''' ) student.save_pretrained(_lowercase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _lowercase : List[int] = pick_layers_to_copy(_lowercase, _lowercase ) if d_layers_to_copy is None: _lowercase : List[int] = pick_layers_to_copy(_lowercase, _lowercase ) try: if hasattr( _lowercase, 'prophetnet' ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, _lowercase ) copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, _lowercase ) else: copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, _lowercase ) copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, _lowercase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block, student.encoder.block, _lowercase ) copy_layers(teacher.decoder.block, student.decoder.block, _lowercase ) logger.info( f'''Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}''' ) _lowercase : List[str] = { 'teacher_type': teacher.config.model_type, 'copied_encoder_layers': e_layers_to_copy, 'copied_decoder_layers': d_layers_to_copy, } student.save_pretrained(_lowercase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
1
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : Dict = dataset _lowercase : Optional[int] = process _lowercase : Any = params def __len__( self : List[str] ) -> str: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Dict , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Tuple = self.dataset[i] _lowercase : Union[str, Any] = self.process(UpperCamelCase_ , **self.params ) return processed class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple=None ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = loader _lowercase : List[str] = infer _lowercase : Optional[Any] = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether _lowercase : List[str] = None _lowercase : Any = loader_batch_size # Internal bookkeeping _lowercase : Union[str, Any] = None _lowercase : Dict = None def __len__( self : Union[str, Any] ) -> Any: '''simple docstring''' return len(self.loader ) def __iter__( self : Dict ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[Any] = iter(self.loader ) return self def __UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice _lowercase : List[str] = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) _lowercase : Dict = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Convert ModelOutput to tuple first _lowercase : List[str] = element.to_tuple() if isinstance(element[0] , torch.Tensor ): _lowercase : Dict = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowercase : List[Any] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCamelCase_ , UpperCamelCase_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): _lowercase : Union[str, Any] = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): _lowercase : List[str] = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around _lowercase : Optional[int] = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : Union[str, Any] = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers _lowercase : Any = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. _lowercase : Any = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 _lowercase : Optional[int] = self._loader_batch_data.__class__(UpperCamelCase_ ) self._loader_batch_index += 1 return result def __UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch _lowercase : Optional[int] = next(self.iterator ) _lowercase : Optional[Any] = self.infer(UpperCamelCase_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCamelCase_ , torch.Tensor ): _lowercase : Tuple = processed else: _lowercase : Optional[int] = list(processed.keys() )[0] _lowercase : Optional[int] = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Optional[Any] = len(UpperCamelCase_ ) else: _lowercase : Optional[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Any = observed_batch_size # Setting internal index to unwrap the batch _lowercase : str = processed _lowercase : Tuple = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int=None ) -> Dict: '''simple docstring''' super().__init__(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) def __iter__( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = iter(self.loader ) _lowercase : str = None return self def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' if self.subiterator is None: _lowercase : Dict = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item _lowercase : Tuple = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators _lowercase : Optional[Any] = self.infer(next(self.iterator ) , **self.params ) _lowercase : Optional[Any] = next(self.subiterator ) return processed class lowerCamelCase__ ( A ): '''simple docstring''' def __iter__( self : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : List[Any] = iter(self.loader ) return self def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : int = False _lowercase : List[str] = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: _lowercase : Union[str, Any] = self.loader_batch_item() _lowercase : List[Any] = item.pop('is_last' ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator while not is_last: _lowercase : Optional[int] = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCamelCase_ , torch.Tensor ): _lowercase : List[Any] = processed else: _lowercase : List[str] = list(processed.keys() )[0] _lowercase : List[Any] = processed[key] if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : int = len(UpperCamelCase_ ) else: _lowercase : List[Any] = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. _lowercase : Optional[Any] = observed_batch_size _lowercase : Tuple = processed _lowercase : Tuple = 0 while self._loader_batch_index < self.loader_batch_size: _lowercase : List[str] = self.loader_batch_item() _lowercase : Union[str, Any] = item.pop('is_last' ) accumulator.append(UpperCamelCase_ ) if is_last: return accumulator else: _lowercase : Dict = processed _lowercase : Tuple = item.pop('is_last' ) accumulator.append(UpperCamelCase_ ) return accumulator class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Any , UpperCamelCase_ : Dataset , UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Tuple = dataset _lowercase : str = key def __len__( self : int ) -> Any: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Union[str, Any] , UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' return self.dataset[i][self.key] class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : Dataset , UpperCamelCase_ : str , UpperCamelCase_ : str ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = dataset _lowercase : int = keya _lowercase : List[str] = keya def __len__( self : Union[str, Any] ) -> List[str]: '''simple docstring''' return len(self.dataset ) def __getitem__( self : Tuple , UpperCamelCase_ : Any ) -> int: '''simple docstring''' return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
4
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
1
'''simple docstring''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' _lowercase : List[str] = arr.split(',' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = [int(self.array[0] )] * len(self.array ) _lowercase : Union[str, Any] = [int(self.array[0] )] * len(self.array ) for i in range(1 , len(self.array ) ): _lowercase : Union[str, Any] = max( int(self.array[i] ) + sum_value[i - 1] , int(self.array[i] ) ) _lowercase : Any = max(sum_value[i] , rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": _A : Optional[int] =input('''please input some numbers:''') _A : Optional[int] =SubArray(whole_array) _A : Optional[int] =array.solve_sub_array() print(('''the results is:''', re))
4
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Optional[int] =logging.get_logger(__name__) _A : Optional[int] ={ '''bert-base-uncased''': '''https://huggingface.co/bert-base-uncased/resolve/main/config.json''', '''bert-large-uncased''': '''https://huggingface.co/bert-large-uncased/resolve/main/config.json''', '''bert-base-cased''': '''https://huggingface.co/bert-base-cased/resolve/main/config.json''', '''bert-large-cased''': '''https://huggingface.co/bert-large-cased/resolve/main/config.json''', '''bert-base-multilingual-uncased''': '''https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json''', '''bert-base-multilingual-cased''': '''https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json''', '''bert-base-chinese''': '''https://huggingface.co/bert-base-chinese/resolve/main/config.json''', '''bert-base-german-cased''': '''https://huggingface.co/bert-base-german-cased/resolve/main/config.json''', '''bert-large-uncased-whole-word-masking''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json''' ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( '''https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json''' ), '''bert-base-cased-finetuned-mrpc''': '''https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json''', '''bert-base-german-dbmdz-cased''': '''https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json''', '''bert-base-german-dbmdz-uncased''': '''https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese''': '''https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json''', '''cl-tohoku/bert-base-japanese-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json''' ), '''cl-tohoku/bert-base-japanese-char-whole-word-masking''': ( '''https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-cased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json''' ), '''TurkuNLP/bert-base-finnish-uncased-v1''': ( '''https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json''' ), '''wietsedv/bert-base-dutch-cased''': '''https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json''', # See all BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """bert""" def __init__( self : int , UpperCamelCase_ : List[str]=3_0522 , UpperCamelCase_ : Dict=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Dict=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Union[str, Any]=512 , UpperCamelCase_ : Union[str, Any]=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[str]=1E-12 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Tuple , ) -> int: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : List[str] = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Dict = hidden_act _lowercase : List[str] = intermediate_size _lowercase : Dict = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : List[Any] = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Tuple = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : str = position_embedding_type _lowercase : Optional[int] = use_cache _lowercase : str = classifier_dropout class lowerCamelCase__ ( A ): '''simple docstring''' @property def __UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": _lowercase : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowercase : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
4
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
1
'''simple docstring''' from typing import Any class lowerCamelCase__ : '''simple docstring''' def __init__( self : str , UpperCamelCase_ : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = data _lowercase : Union[str, Any] = None def __repr__( self : List[str] ) -> str: '''simple docstring''' return F'''Node({self.data})''' class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[str] ) -> Optional[int]: '''simple docstring''' _lowercase : str = None def __iter__( self : List[Any] ) -> Any: '''simple docstring''' _lowercase : Dict = self.head while node: yield node.data _lowercase : str = node.next def __len__( self : str ) -> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : List[str] ) -> str: '''simple docstring''' return "->".join([str(UpperCamelCase_ ) for item in self] ) def __getitem__( self : Union[str, Any] , UpperCamelCase_ : int ) -> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) _lowercase : Dict = self.head for _ in range(UpperCamelCase_ ): _lowercase : List[str] = current.next _lowercase : Optional[int] = data def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any ) -> None: '''simple docstring''' self.insert_nth(len(self ) , UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> None: '''simple docstring''' self.insert_nth(0 , UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) _lowercase : List[str] = Node(UpperCamelCase_ ) if self.head is None: _lowercase : List[Any] = new_node elif index == 0: _lowercase : Dict = self.head # link new_node to head _lowercase : List[Any] = new_node else: _lowercase : Tuple = self.head for _ in range(index - 1 ): _lowercase : Tuple = temp.next _lowercase : Union[str, Any] = temp.next _lowercase : List[Any] = new_node def __UpperCAmelCase ( self : Optional[int] ) -> None: # print every node data '''simple docstring''' print(self ) def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' return self.delete_nth(0 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : int = 0 ) -> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) _lowercase : List[Any] = self.head # default first node if index == 0: _lowercase : Union[str, Any] = self.head.next else: _lowercase : Dict = self.head for _ in range(index - 1 ): _lowercase : str = temp.next _lowercase : Any = temp.next _lowercase : Dict = temp.next.next return delete_node.data def __UpperCAmelCase ( self : Tuple ) -> bool: '''simple docstring''' return self.head is None def __UpperCAmelCase ( self : Optional[int] ) -> None: '''simple docstring''' _lowercase : List[str] = None _lowercase : Union[str, Any] = self.head while current: # Store the current node's next node. _lowercase : List[Any] = current.next # Make the current node's next point backwards _lowercase : List[Any] = prev # Make the previous node be the current node _lowercase : Optional[Any] = current # Make the current node the next node (to progress iteration) _lowercase : Optional[Any] = next_node # Return prev in order to put the head at the end _lowercase : Any = prev def __UpperCamelCase ( ) -> None: _lowercase : Optional[Any] = LinkedList() assert linked_list.is_empty() is True assert str(_lowercase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_lowercase ) == i linked_list.insert_nth(_lowercase, i + 1 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1, 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(0, 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_lowercase ) == 9 assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(1, 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0, 9 ) ) is True for i in range(0, 9 ): _lowercase : int = -i assert all(linked_list[i] == -i for i in range(0, 9 ) ) is True linked_list.reverse() assert str(_lowercase ) == "->".join(str(_lowercase ) for i in range(-8, 1 ) ) def __UpperCamelCase ( ) -> None: _lowercase : List[Any] = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -1_9_2.5_5_5_5_5, 'Hello, world!', 7_7.9, Node(10 ), None, None, 1_2.2_0, ] _lowercase : int = LinkedList() for i in test_input: linked_list.insert_tail(_lowercase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_lowercase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _lowercase : List[str] = linked_list.delete_head() assert result == -9 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _lowercase : int = linked_list.delete_tail() assert result == 1_2.2 assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _lowercase : Dict = linked_list.delete_nth(10 ) assert result is None assert ( str(_lowercase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_lowercase ) assert ( str(_lowercase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_lowercase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def __UpperCamelCase ( ) -> Dict: from doctest import testmod testmod() _lowercase : Optional[int] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_lowercase ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) _lowercase : List[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(_lowercase ) print(f'''length of linked_list is : {len(_lowercase )}''' ) if __name__ == "__main__": main()
4
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
1
'''simple docstring''' import warnings from typing import Dict import numpy as np from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING def __UpperCamelCase ( _lowercase ) -> int: return 1.0 / (1.0 + np.exp(-_outputs )) def __UpperCamelCase ( _lowercase ) -> List[str]: _lowercase : Union[str, Any] = np.max(_outputs, axis=-1, keepdims=_lowercase ) _lowercase : List[Any] = np.exp(_outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1, keepdims=_lowercase ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """sigmoid""" A_ = """softmax""" A_ = """none""" @add_end_docstrings( A , R""" return_all_scores (`bool`, *optional*, defaults to `False`): Whether to return all prediction scores or just the one of the predicted class. function_to_apply (`str`, *optional*, defaults to `\"default\"`): The function to apply to the model outputs in order to retrieve the scores. Accepts four different values: - `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model has several labels, will apply the softmax function on the output. - `\"sigmoid\"`: Applies the sigmoid function on the output. - `\"softmax\"`: Applies the softmax function on the output. - `\"none\"`: Does not apply any function on the output. """ , ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = False A_ = ClassificationFunction.NONE def __init__( self : List[Any] , **UpperCamelCase_ : Tuple ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) self.check_model_type( TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : str=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Any="" , **UpperCamelCase_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[int] = tokenizer_kwargs _lowercase : Optional[Any] = {} if hasattr(self.model.config , 'return_all_scores' ) and return_all_scores is None: _lowercase : Union[str, Any] = self.model.config.return_all_scores if isinstance(UpperCamelCase_ , UpperCamelCase_ ) or top_k is None: _lowercase : List[Any] = top_k _lowercase : Tuple = False elif return_all_scores is not None: warnings.warn( '`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of' ' `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`.' , UpperCamelCase_ , ) if return_all_scores: _lowercase : Optional[int] = None else: _lowercase : int = 1 if isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Dict = ClassificationFunction[function_to_apply.upper()] if function_to_apply is not None: _lowercase : Optional[Any] = function_to_apply return preprocess_params, {}, postprocess_params def __call__( self : Tuple , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' _lowercase : Optional[int] = super().__call__(*UpperCamelCase_ , **UpperCamelCase_ ) # TODO try and retrieve it in a nicer way from _sanitize_parameters. _lowercase : Union[str, Any] = 'top_k' not in kwargs if isinstance(args[0] , UpperCamelCase_ ) and _legacy: # This pipeline is odd, and return a list when single item is run return [result] else: return result def __UpperCAmelCase ( self : int , UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Union[str, Any] ) -> Dict[str, GenericTensor]: '''simple docstring''' _lowercase : Optional[Any] = self.framework if isinstance(UpperCamelCase_ , UpperCamelCase_ ): return self.tokenizer(**UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ) and len(UpperCamelCase_ ) == 1 and isinstance(inputs[0] , UpperCamelCase_ ) and len(inputs[0] ) == 2: # It used to be valid to use a list of list of list for text pairs, keeping this path for BC return self.tokenizer( text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): # This is likely an invalid usage of the pipeline attempting to pass text pairs. raise ValueError( 'The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a' ' dictionary `{"text": "My text", "text_pair": "My pair"}` in order to send a text pair.' ) return self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : List[Any] ) -> Tuple: '''simple docstring''' return self.model(**UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : List[Any]=True ) -> Union[str, Any]: '''simple docstring''' if function_to_apply is None: if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1: _lowercase : Any = ClassificationFunction.SIGMOID elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1: _lowercase : str = ClassificationFunction.SOFTMAX elif hasattr(self.model.config , 'function_to_apply' ) and function_to_apply is None: _lowercase : List[Any] = self.model.config.function_to_apply else: _lowercase : List[str] = ClassificationFunction.NONE _lowercase : Optional[Any] = model_outputs['logits'][0] _lowercase : int = outputs.numpy() if function_to_apply == ClassificationFunction.SIGMOID: _lowercase : Union[str, Any] = sigmoid(UpperCamelCase_ ) elif function_to_apply == ClassificationFunction.SOFTMAX: _lowercase : List[Any] = softmax(UpperCamelCase_ ) elif function_to_apply == ClassificationFunction.NONE: _lowercase : List[str] = outputs else: raise ValueError(F'''Unrecognized `function_to_apply` argument: {function_to_apply}''' ) if top_k == 1 and _legacy: return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()} _lowercase : Union[str, Any] = [ {'label': self.model.config.idalabel[i], 'score': score.item()} for i, score in enumerate(UpperCamelCase_ ) ] if not _legacy: dict_scores.sort(key=lambda UpperCamelCase_ : x["score"] , reverse=UpperCamelCase_ ) if top_k is not None: _lowercase : Any = dict_scores[:top_k] return dict_scores
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : int = k_size // 2 _lowercase , _lowercase : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] _lowercase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(_lowercase ) + square(_lowercase )) / (2 * square(_lowercase )) ) return g def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[int]: _lowercase , _lowercase : Any = image.shape[0], image.shape[1] # dst image height and width _lowercase : List[str] = height - k_size + 1 _lowercase : List[str] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows _lowercase : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) ) _lowercase : List[str] = 0 for i, j in product(range(_lowercase ), range(_lowercase ) ): _lowercase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] ) _lowercase : Optional[Any] = window row += 1 # turn the kernel into shape(k*k, 1) _lowercase : Optional[Any] = gen_gaussian_kernel(_lowercase, _lowercase ) _lowercase : str = ravel(_lowercase ) # reshape and get the dst image _lowercase : List[str] = dot(_lowercase, _lowercase ).reshape(_lowercase, _lowercase ).astype(_lowercase ) return dst if __name__ == "__main__": # read original image _A : Optional[int] =imread(r'''../image_data/lena.jpg''') # turn image in gray scale value _A : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size _A : Dict =gaussian_filter(gray, 3, sigma=1) _A : Optional[int] =gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
4
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
1
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _A : Optional[int] =logging.get_logger(__name__) _A : Optional[int] ={ '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """marian""" A_ = ["""past_key_values"""] A_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Any , UpperCamelCase_ : Union[str, Any]=5_8101 , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : str=1024 , UpperCamelCase_ : Optional[int]=12 , UpperCamelCase_ : str=4096 , UpperCamelCase_ : Optional[int]=16 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : Union[str, Any]=4096 , UpperCamelCase_ : Tuple=16 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : str=5_8100 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : Union[str, Any]=5_8100 , UpperCamelCase_ : int=0 , UpperCamelCase_ : str=0 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Any , ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = vocab_size _lowercase : Tuple = decoder_vocab_size or vocab_size _lowercase : Optional[int] = max_position_embeddings _lowercase : Tuple = d_model _lowercase : Optional[Any] = encoder_ffn_dim _lowercase : Optional[Any] = encoder_layers _lowercase : List[Any] = encoder_attention_heads _lowercase : int = decoder_ffn_dim _lowercase : List[Any] = decoder_layers _lowercase : List[Any] = decoder_attention_heads _lowercase : Tuple = dropout _lowercase : int = attention_dropout _lowercase : str = activation_dropout _lowercase : int = activation_function _lowercase : Any = init_std _lowercase : Dict = encoder_layerdrop _lowercase : Optional[Any] = decoder_layerdrop _lowercase : List[Any] = use_cache _lowercase : List[str] = encoder_layers _lowercase : int = scale_embedding # scale factor will be sqrt(d_model) if True _lowercase : int = share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class lowerCamelCase__ ( A ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __UpperCAmelCase ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase : List[str] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase : Tuple = {0: 'batch'} _lowercase : List[str] = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowercase : Tuple = {0: 'batch', 1: 'decoder_sequence'} _lowercase : int = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. _lowercase : Union[str, Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: _lowercase , _lowercase : List[Any] = self.num_layers for i in range(UpperCamelCase_ ): _lowercase : str = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase : Dict = {0: 'batch', 2: 'past_sequence + sequence'} else: _lowercase : Optional[Any] = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __UpperCAmelCase ( self : str ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase : List[str] = super().outputs else: _lowercase : int = super(UpperCamelCase_ , self ).outputs if self.use_past: _lowercase , _lowercase : str = self.num_layers for i in range(UpperCamelCase_ ): _lowercase : Any = {0: 'batch', 2: 'past_sequence + sequence'} _lowercase : Any = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase : str = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs _lowercase : Any = seq_length if not self.use_past else 1 _lowercase : List[str] = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : Optional[int] = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} _lowercase : str = dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase : Optional[Any] = common_inputs['input_ids'].shape _lowercase : List[str] = common_inputs['decoder_input_ids'].shape[1] _lowercase , _lowercase : Tuple = self.num_attention_heads _lowercase : List[str] = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase : List[Any] = decoder_seq_length + 3 _lowercase : Optional[Any] = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _lowercase : Any = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) _lowercase : Optional[Any] = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _lowercase , _lowercase : Dict = self.num_layers _lowercase : Dict = min(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers _lowercase : Union[str, Any] = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. _lowercase : Dict = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase : int = self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _lowercase , _lowercase : Any = common_inputs['input_ids'].shape # Not using the same length for past_key_values _lowercase : Any = seqlen + 2 _lowercase , _lowercase : Union[str, Any] = self.num_layers _lowercase , _lowercase : List[Any] = self.num_attention_heads _lowercase : Dict = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _lowercase : Union[str, Any] = common_inputs['attention_mask'].dtype _lowercase : Union[str, Any] = torch.cat( [common_inputs['attention_mask'], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) _lowercase : Optional[Any] = [ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def __UpperCAmelCase ( self : int , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' _lowercase : Optional[Any] = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowercase : int = tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) _lowercase : int = compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence _lowercase : Optional[Any] = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size _lowercase : List[str] = dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase : Optional[Any] = self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: _lowercase : Dict = self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : str ) -> Tuple: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: _lowercase : Tuple = super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: _lowercase : int = super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @property def __UpperCAmelCase ( self : List[Any] ) -> float: '''simple docstring''' return 1E-4
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__ ( A ): '''simple docstring''' A_ = 0 A_ = False A_ = 3.0 class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=UpperCamelCase_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __UpperCAmelCase ( self : int ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowercase : int = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowercase : List[str] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , UpperCamelCase_ ) @require_multi_gpu def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": _A : List[Any] =DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) _A : str =Accelerator(kwargs_handlers=[ddp_scaler]) _A : str =torch.nn.Linear(1_0_0, 2_0_0) _A : List[str] =accelerator.prepare(model) # Check the values changed in kwargs _A : List[str] ='''''' _A : Dict =model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
4
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
1
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _A : Optional[Any] =logging.get_logger(__name__) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[Any]: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def __UpperCamelCase ( _lowercase, _lowercase, _lowercase = None ) -> str: _lowercase : Any = tesseract_config if tesseract_config is not None else '' # apply OCR _lowercase : Any = to_pil_image(_lowercase ) _lowercase , _lowercase : Optional[int] = pil_image.size _lowercase : List[str] = pytesseract.image_to_data(_lowercase, lang=_lowercase, output_type='dict', config=_lowercase ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _lowercase : Dict = [idx for idx, word in enumerate(_lowercase ) if not word.strip()] _lowercase : Optional[int] = [word for idx, word in enumerate(_lowercase ) if idx not in irrelevant_indices] _lowercase : Dict = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _lowercase : int = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _lowercase : Any = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] _lowercase : List[str] = [coord for idx, coord in enumerate(_lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _lowercase : List[Any] = [] for x, y, w, h in zip(_lowercase, _lowercase, _lowercase, _lowercase ): _lowercase : Dict = [x, y, x + w, y + h] actual_boxes.append(_lowercase ) # finally, normalize the bounding boxes _lowercase : Union[str, Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowercase, _lowercase, _lowercase ) ) assert len(_lowercase ) == len(_lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""pixel_values"""] def __init__( self : Optional[int] , UpperCamelCase_ : bool = True , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : bool = True , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = "" , **UpperCamelCase_ : Union[str, Any] , ) -> None: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Tuple = size if size is not None else {'height': 224, 'width': 224} _lowercase : str = get_size_dict(UpperCamelCase_ ) _lowercase : Union[str, Any] = do_resize _lowercase : int = size _lowercase : List[Any] = resample _lowercase : List[str] = apply_ocr _lowercase : Dict = ocr_lang _lowercase : Any = tesseract_config def __UpperCAmelCase ( self : int , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCamelCase_ : Dict , ) -> np.ndarray: '''simple docstring''' _lowercase : List[Any] = get_size_dict(UpperCamelCase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) _lowercase : Tuple = (size['height'], size['width']) return resize(UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ , data_format=UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : ImageInput , UpperCamelCase_ : bool = None , UpperCamelCase_ : Dict[str, int] = None , UpperCamelCase_ : PILImageResampling = None , UpperCamelCase_ : bool = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , UpperCamelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCamelCase_ : Any , ) -> PIL.Image.Image: '''simple docstring''' _lowercase : List[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : List[str] = size if size is not None else self.size _lowercase : Dict = get_size_dict(UpperCamelCase_ ) _lowercase : Union[str, Any] = resample if resample is not None else self.resample _lowercase : int = apply_ocr if apply_ocr is not None else self.apply_ocr _lowercase : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang _lowercase : int = tesseract_config if tesseract_config is not None else self.tesseract_config _lowercase : Union[str, Any] = make_list_of_images(UpperCamelCase_ ) if not valid_images(UpperCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. _lowercase : str = [to_numpy_array(UpperCamelCase_ ) for image in images] if apply_ocr: requires_backends(self , 'pytesseract' ) _lowercase : Tuple = [] _lowercase : Optional[Any] = [] for image in images: _lowercase , _lowercase : List[str] = apply_tesseract(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) words_batch.append(UpperCamelCase_ ) boxes_batch.append(UpperCamelCase_ ) if do_resize: _lowercase : Any = [self.resize(image=UpperCamelCase_ , size=UpperCamelCase_ , resample=UpperCamelCase_ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _lowercase : Tuple = [flip_channel_order(UpperCamelCase_ ) for image in images] _lowercase : int = [to_channel_dimension_format(UpperCamelCase_ , UpperCamelCase_ ) for image in images] _lowercase : int = BatchFeature(data={'pixel_values': images} , tensor_type=UpperCamelCase_ ) if apply_ocr: _lowercase : Dict = words_batch _lowercase : int = boxes_batch return data
4
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
1
'''simple docstring''' import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _A : Optional[Any] =yaml.safe_load( '''\ name: "" allow_empty: false allow_empty_text: true subsections: - name: "Dataset Card for X" # First-level markdown heading allow_empty: false allow_empty_text: true subsections: - name: "Table of Contents" allow_empty: false allow_empty_text: false subsections: null - name: "Dataset Description" allow_empty: false allow_empty_text: false subsections: - name: "Dataset Summary" allow_empty: false allow_empty_text: false subsections: null - name: "Supported Tasks and Leaderboards" allow_empty: true allow_empty_text: true subsections: null - name: Languages allow_empty: false allow_empty_text: true subsections: null ''' ) _A : Optional[int] ={ '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _A : List[Any] ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Optional[int] ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. #### Extra Ignored Subsection ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Any ={ '''name''': '''root''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ { '''name''': '''Dataset Card for My Dataset''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [ {'''name''': '''Table of Contents''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': []}, { '''name''': '''Dataset Description''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Dataset Summary''', '''text''': '''Some text here.''', '''is_empty_text''': False, '''subsections''': [ { '''name''': '''Extra Ignored Subsection''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], } ], }, { '''name''': '''Supported Tasks and Leaderboards''', '''text''': '''''', '''is_empty_text''': True, '''subsections''': [], }, {'''name''': '''Languages''', '''text''': '''Language Text''', '''is_empty_text''': False, '''subsections''': []}, ], }, ], } ], } _A : Optional[Any] ='''\ --- --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Dict =( '''The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.''' ) _A : List[str] ='''\ # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : List[str] =( '''The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.''' ) _A : Optional[Any] ='''\ --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : str ='''The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.''' _A : List[str] ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Optional[Any] ='''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).''' _A : Dict ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ''' _A : Union[str, Any] ='''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.''' _A : Any ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Languages Language Text ''' _A : List[str] ='''The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.''' _A : Tuple ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages ''' _A : str ='''The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.''' _A : Any ='''\ --- language: - zh - en --- ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : str ='''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.''' _A : Optional[Any] ='''\ --- language: - zh - en --- # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text # Dataset Card My Dataset ''' _A : List[Any] ='''The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.''' _A : Tuple ='''\ --- language: - zh - en --- # Dataset Card My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Union[str, Any] ='''The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.''' _A : Union[str, Any] ='''''' _A : Any ='''The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.''' _A : int ='''\ --- language: - zh - en --- # Dataset Card for My Dataset # Dataset Card for My Dataset ## Table of Contents Some text here. ## Dataset Description Some text here. ### Dataset Summary Some text here. ### Supported Tasks and Leaderboards ### Languages Language Text ''' _A : Optional[Any] ='''The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.''' @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: assert ReadMe.from_string(_lowercase, _lowercase ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Tuple: with pytest.raises(_lowercase, match=re.escape(expected_error.format(path='root' ) ) ): _lowercase : Optional[Any] = ReadMe.from_string(_lowercase, _lowercase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Any: with pytest.raises(_lowercase, match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(_lowercase, _lowercase ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCamelCase ( _lowercase ) -> str: ReadMe.from_string(_lowercase, _lowercase, suppress_parsing_errors=_lowercase ) @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> List[Any]: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : List[Any] = Path(_lowercase ) / 'README.md' with open(_lowercase, 'w+' ) as readme_file: readme_file.write(_lowercase ) _lowercase : List[Any] = ReadMe.from_readme(_lowercase, _lowercase ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : str = Path(_lowercase ) / 'README.md' with open(_lowercase, 'w+' ) as readme_file: readme_file.write(_lowercase ) _lowercase : Optional[Any] = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase, match=re.escape(_lowercase ) ): _lowercase : int = ReadMe.from_readme(_lowercase, _lowercase ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCamelCase ( _lowercase, _lowercase ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[Any] = Path(_lowercase ) / 'README.md' with open(_lowercase, 'w+' ) as readme_file: readme_file.write(_lowercase ) _lowercase : Optional[Any] = expected_error.format(path=_lowercase ) with pytest.raises(_lowercase, match=re.escape(_lowercase ) ): ReadMe.from_readme(_lowercase, _lowercase ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def __UpperCamelCase ( _lowercase ) -> str: with tempfile.TemporaryDirectory() as tmp_dir: _lowercase : Optional[Any] = Path(_lowercase ) / 'README.md' with open(_lowercase, 'w+' ) as readme_file: readme_file.write(_lowercase ) ReadMe.from_readme(_lowercase, _lowercase, suppress_parsing_errors=_lowercase )
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
'''simple docstring''' import os def __UpperCamelCase ( _lowercase = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(_lowercase ), _lowercase ) ) as input_file: _lowercase : Optional[Any] = [ [int(_lowercase ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase : Any = len(_lowercase ) _lowercase : Dict = len(matrix[0] ) _lowercase : Tuple = [[-1 for _ in range(_lowercase )] for _ in range(_lowercase )] for i in range(_lowercase ): _lowercase : Union[str, Any] = matrix[i][0] for j in range(1, _lowercase ): for i in range(_lowercase ): _lowercase : Tuple = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, _lowercase ): _lowercase : List[str] = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): _lowercase : Optional[Any] = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(F'''{solution() = }''')
4
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class lowerCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int]=13 , UpperCamelCase_ : Optional[Any]=7 , UpperCamelCase_ : int=True , UpperCamelCase_ : Tuple=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Optional[int]=99 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Dict=37 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Optional[Any]=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : Any=3 , UpperCamelCase_ : Union[str, Any]=4 , UpperCamelCase_ : List[Any]=None , ) -> int: '''simple docstring''' _lowercase : Any = parent _lowercase : Dict = batch_size _lowercase : Any = seq_length _lowercase : Optional[int] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : Union[str, Any] = use_token_type_ids _lowercase : Optional[Any] = use_labels _lowercase : List[Any] = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Union[str, Any] = hidden_act _lowercase : List[Any] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : List[str] = type_vocab_size _lowercase : Optional[int] = type_sequence_label_size _lowercase : str = initializer_range _lowercase : Union[str, Any] = num_labels _lowercase : Union[str, Any] = num_choices _lowercase : Dict = scope def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : List[Any] = None if self.use_input_mask: _lowercase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : int = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Optional[Any] = None _lowercase : Optional[int] = None _lowercase : Optional[Any] = None if self.use_labels: _lowercase : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : Any = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , use_stable_embedding=UpperCamelCase_ , ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> List[Any]: '''simple docstring''' _lowercase : List[str] = OpenLlamaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Optional[Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) _lowercase : List[Any] = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Tuple , ) -> Optional[int]: '''simple docstring''' _lowercase : Optional[int] = True _lowercase : int = OpenLlamaModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : Union[str, Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , ) _lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , ) -> Any: '''simple docstring''' _lowercase : Tuple = OpenLlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = True _lowercase : Optional[Any] = True _lowercase : Optional[Any] = OpenLlamaForCausalLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() # first forward pass _lowercase : Any = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ , ) _lowercase : Any = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _lowercase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _lowercase : Tuple = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _lowercase : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) _lowercase : List[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) _lowercase : int = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['hidden_states'][0] _lowercase : List[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ , output_hidden_states=UpperCamelCase_ , )['hidden_states'][0] # select random slice _lowercase : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() _lowercase : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowercase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : Optional[Any] = config_and_inputs _lowercase : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , A , unittest.TestCase ): '''simple docstring''' A_ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) A_ = (OpenLlamaForCausalLM,) if is_torch_available() else () A_ = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = False def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = OpenLlamaModelTester(self ) _lowercase : Dict = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase : int = type self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' _lowercase , _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[int] = 3 _lowercase : Optional[Any] = input_dict['input_ids'] _lowercase : Dict = input_ids.ne(1 ).to(UpperCamelCase_ ) _lowercase : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase : str = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : int ) -> str: '''simple docstring''' _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[int] = 3 _lowercase : int = 'single_label_classification' _lowercase : Dict = input_dict['input_ids'] _lowercase : int = input_ids.ne(1 ).to(UpperCamelCase_ ) _lowercase : List[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _lowercase : Any = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Any = 3 _lowercase : List[str] = 'multi_label_classification' _lowercase : List[Any] = input_dict['input_ids'] _lowercase : List[str] = input_ids.ne(1 ).to(UpperCamelCase_ ) _lowercase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _lowercase : Union[str, Any] = OpenLlamaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : str = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('Open-Llama buffers include complex numbers, which breaks this test' ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)] ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[str] ) -> Tuple: '''simple docstring''' _lowercase , _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : Optional[Any] = ids_tensor([1, 10] , config.vocab_size ) _lowercase : Union[str, Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : List[str] = OpenLlamaModel(UpperCamelCase_ ) original_model.to(UpperCamelCase_ ) original_model.eval() _lowercase : Optional[int] = original_model(UpperCamelCase_ ).last_hidden_state _lowercase : Dict = original_model(UpperCamelCase_ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _lowercase : List[str] = {'type': scaling_type, 'factor': 10.0} _lowercase : Any = OpenLlamaModel(UpperCamelCase_ ) scaled_model.to(UpperCamelCase_ ) scaled_model.eval() _lowercase : Tuple = scaled_model(UpperCamelCase_ ).last_hidden_state _lowercase : int = scaled_model(UpperCamelCase_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1E-5 ) )
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Any ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : int =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[Any] =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : List[str] =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' import math def __UpperCamelCase ( _lowercase, _lowercase ) -> float: if ( not isinstance(_lowercase, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * power_factor def __UpperCamelCase ( _lowercase, _lowercase ) -> float: if ( not isinstance(_lowercase, (int, float) ) or power_factor < -1 or power_factor > 1 ): raise ValueError('power_factor must be a valid float value between -1 and 1.' ) return apparent_power * math.sqrt(1 - power_factor**2 ) if __name__ == "__main__": import doctest doctest.testmod()
4
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _A : Optional[Any] =[ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] _A : List[str] =[ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] _A : int =( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) _A : Any =( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) _A : Optional[Any] =[ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __UpperCamelCase ( _lowercase, _lowercase ) -> str: for tf_name, hf_name in patterns: _lowercase : List[str] = k.replace(_lowercase, _lowercase ) return k def __UpperCamelCase ( _lowercase, _lowercase ) -> BigBirdPegasusForConditionalGeneration: _lowercase : List[str] = BigBirdPegasusConfig(**_lowercase ) _lowercase : List[Any] = BigBirdPegasusForConditionalGeneration(_lowercase ) _lowercase : Any = torch_model.state_dict() _lowercase : List[str] = {} # separating decoder weights _lowercase : Tuple = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )} _lowercase : Dict = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )} for k, v in tqdm(decoder_weights.items(), 'tf -> hf conversion' ): _lowercase : Tuple = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue _lowercase : str = DECODER_PATTERNS _lowercase : Optional[Any] = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict: raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowercase : Union[str, Any] = v.T _lowercase : str = torch.from_numpy(_lowercase ) assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' for k, v in tqdm(remaining_weights.items(), 'tf -> hf conversion' ): _lowercase : str = [k.endswith(_lowercase ) for ending in KEYS_TO_IGNORE] if any(_lowercase ): continue _lowercase : Tuple = REMAINING_PATTERNS _lowercase : Optional[Any] = rename_state_dict_key(_lowercase, _lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f'''could not find new key {new_k} in state dict. (converted from {k})''' ) if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ): _lowercase : List[Any] = v.T _lowercase : Optional[Any] = torch.from_numpy(_lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f'''{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}''' _lowercase : Any = mapping['model.embed_positions.weight'] _lowercase : Optional[Any] = mapping.pop('model.embed_positions.weight' ) _lowercase , _lowercase : Any = torch_model.load_state_dict(_lowercase, strict=_lowercase ) _lowercase : Any = [ k for k in missing if k not in [ 'final_logits_bias', 'model.encoder.embed_tokens.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight', ] ] assert unexpected_missing == [], f'''no matches found for the following torch keys {unexpected_missing}''' assert extra == [], f'''no matches found for the following tf keys {extra}''' return torch_model def __UpperCamelCase ( _lowercase ) -> Dict: _lowercase : Tuple = tf.train.list_variables(_lowercase ) _lowercase : Union[str, Any] = {} _lowercase : Optional[Any] = ['global_step'] for name, shape in tqdm(_lowercase, desc='converting tf checkpoint to dict' ): _lowercase : str = any(pat in name for pat in ignore_name ) if skip_key: continue _lowercase : Optional[int] = tf.train.load_variable(_lowercase, _lowercase ) _lowercase : str = array return tf_weights def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[Any]: _lowercase : int = get_tf_weights_as_numpy(_lowercase ) _lowercase : Dict = convert_bigbird_pegasus(_lowercase, _lowercase ) torch_model.save_pretrained(_lowercase ) if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') _A : int =parser.parse_args() _A : int ={} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
4
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=A ): '''simple docstring''' A_ = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : str , *UpperCamelCase_ : Dict , **UpperCamelCase_ : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : List[Any] ) -> int: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class lowerCamelCase__ ( metaclass=A ): '''simple docstring''' A_ = ["""flax""", """transformers"""] def __init__( self : List[str] , *UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Union[str, Any] ) -> str: '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *UpperCamelCase_ : Dict , **UpperCamelCase_ : Optional[Any] ) -> Tuple: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : str ) -> str: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class lowerCamelCase__ ( metaclass=A ): '''simple docstring''' A_ = ["""flax""", """transformers"""] def __init__( self : Optional[Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Tuple , *UpperCamelCase_ : str , **UpperCamelCase_ : Union[str, Any] ) -> Dict: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : str , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Dict ) -> List[str]: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) class lowerCamelCase__ ( metaclass=A ): '''simple docstring''' A_ = ["""flax""", """transformers"""] def __init__( self : Any , *UpperCamelCase_ : int , **UpperCamelCase_ : Any ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *UpperCamelCase_ : Dict , **UpperCamelCase_ : str ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] ) @classmethod def __UpperCAmelCase ( cls : Union[str, Any] , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[int] ) -> str: '''simple docstring''' requires_backends(cls , ['flax', 'transformers'] )
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def __UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = self.dummy_uncond_unet _lowercase : List[str] = ScoreSdeVeScheduler() _lowercase : Optional[int] = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) sde_ve.to(UpperCamelCase_ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : Any = torch.manual_seed(0 ) _lowercase : List[str] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=UpperCamelCase_ ).images _lowercase : str = torch.manual_seed(0 ) _lowercase : Union[str, Any] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=UpperCamelCase_ , return_dict=UpperCamelCase_ )[ 0 ] _lowercase : Optional[Any] = image[0, -3:, -3:, -1] _lowercase : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : Union[str, Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = 'google/ncsnpp-church-256' _lowercase : int = UNetaDModel.from_pretrained(UpperCamelCase_ ) _lowercase : List[Any] = ScoreSdeVeScheduler.from_pretrained(UpperCamelCase_ ) _lowercase : Optional[Any] = ScoreSdeVePipeline(unet=UpperCamelCase_ , scheduler=UpperCamelCase_ ) sde_ve.to(UpperCamelCase_ ) sde_ve.set_progress_bar_config(disable=UpperCamelCase_ ) _lowercase : int = torch.manual_seed(0 ) _lowercase : Any = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=UpperCamelCase_ ).images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowercase : List[str] = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
4
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
1
'''simple docstring''' from __future__ import annotations from cmath import sqrt def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> tuple[complex, complex]: if a == 0: raise ValueError('Coefficient \'a\' must not be zero.' ) _lowercase : Tuple = b * b - 4 * a * c _lowercase : List[Any] = (-b + sqrt(_lowercase )) / (2 * a) _lowercase : Dict = (-b - sqrt(_lowercase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def __UpperCamelCase ( ) -> List[Any]: _lowercase , _lowercase : Optional[Any] = quadratic_roots(a=5, b=6, c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
4
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
1
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def __UpperCamelCase ( ) -> None: assert or_gate(0, 0 ) == 0 assert or_gate(0, 1 ) == 1 assert or_gate(1, 0 ) == 1 assert or_gate(1, 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
4
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers _A : List[Any] =[int(0.5 * n * (n + 1)) for n in range(1, 1_0_1)] def __UpperCamelCase ( ) -> Optional[Any]: _lowercase : Dict = os.path.dirname(os.path.realpath(_lowercase ) ) _lowercase : Optional[Any] = os.path.join(_lowercase, 'words.txt' ) _lowercase : List[Any] = '' with open(_lowercase ) as f: _lowercase : str = f.readline() _lowercase : Dict = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] _lowercase : Union[str, Any] = [ word for word in [sum(ord(_lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(_lowercase ) if __name__ == "__main__": print(solution())
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
1
'''simple docstring''' import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed _A : Dict =logging.getLogger(__name__) def __UpperCamelCase ( _lowercase=2, _lowercase=3, _lowercase=16, _lowercase = 10, _lowercase = 2 ) -> Tuple: def get_dataset(_lowercase ): _lowercase : int = torch.randn(batch_size * n_batches, 1 ) return TensorDataset(_lowercase, a * x + b + 0.1 * torch.randn(batch_size * n_batches, 1 ) ) _lowercase : Dict = get_dataset(_lowercase ) _lowercase : Dict = get_dataset(_lowercase ) _lowercase : str = DataLoader(_lowercase, shuffle=_lowercase, batch_size=_lowercase, num_workers=4 ) _lowercase : Any = DataLoader(_lowercase, shuffle=_lowercase, batch_size=_lowercase, num_workers=4 ) return (train_dataloader, valid_dataloader) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase, _lowercase=None ) -> Dict: _lowercase : Any = [] for epoch in range(_lowercase ): # Train quickly model.train() for batch in dataloader: _lowercase , _lowercase : List[Any] = batch _lowercase : Dict = model(_lowercase ) _lowercase : Any = torch.nn.functional.mse_loss(_lowercase, _lowercase ) accelerator.backward(_lowercase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ) -> List[str]: '''simple docstring''' super().__init__() _lowercase : Any = nn.Parameter(torch.randn(1 ) ) _lowercase : Optional[Any] = nn.Parameter(torch.randn(1 ) ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' return x * self.a + self.b class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Union[str, Any] = DummyModel() _lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Union[str, Any] = dummy_dataloaders() _lowercase : List[Any] = ProjectConfiguration(total_limit=1 , project_dir=UpperCamelCase_ , automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _lowercase : List[Any] = Accelerator(project_config=UpperCamelCase_ ) _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Any = DummyModel() _lowercase : Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Dict = dummy_dataloaders() # Train baseline _lowercase : List[Any] = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase : Dict = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial _lowercase : Any = os.path.join(UpperCamelCase_ , 'initial' ) accelerator.save_state(UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : Union[str, Any] = model.a.item(), model.b.item() _lowercase : Optional[Any] = optimizer.state_dict() _lowercase : int = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : str = model.a.item(), model.b.item() _lowercase : Union[str, Any] = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase : int = DummyModel() _lowercase : int = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Any = dummy_dataloaders() _lowercase : List[str] = Accelerator() _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : List[Any] = model.a.item(), model.b.item() _lowercase : int = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : str = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything _lowercase : Tuple = os.path.join(UpperCamelCase_ , 'checkpoint' ) accelerator.save_state(UpperCamelCase_ ) # Load everything back in and make sure all states work accelerator.load_state(UpperCamelCase_ ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : str = model.a.item(), model.b.item() _lowercase : int = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Optional[Any] = DummyModel() _lowercase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : Dict = dummy_dataloaders() _lowercase : Union[str, Any] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _lowercase : Optional[Any] = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) _lowercase , _lowercase , _lowercase , _lowercase : int = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() ((_lowercase) , (_lowercase)) : int = model.a.item(), model.b.item() _lowercase : Dict = optimizer.state_dict() _lowercase : Optional[int] = train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : Optional[int] = model.a.item(), model.b.item() _lowercase : List[str] = optimizer.state_dict() # Train partially set_seed(42 ) _lowercase : Tuple = DummyModel() _lowercase : List[Any] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase , _lowercase : List[Any] = dummy_dataloaders() _lowercase : Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCamelCase_ ) _lowercase : Optional[int] = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) _lowercase , _lowercase , _lowercase , _lowercase : Dict = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) accelerator.load_state(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_0' ) ) ((_lowercase) , (_lowercase)) : str = model.a.item(), model.b.item() _lowercase : Tuple = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = train(2 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_1' ) ) test_rands += train(1 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ((_lowercase) , (_lowercase)) : Any = model.a.item(), model.b.item() _lowercase : List[Any] = optimizer.state_dict() self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' _lowercase : str = torch.tensor([1, 2, 3] ) _lowercase : Union[str, Any] = torch.tensor([2, 3, 4] ) _lowercase : Union[str, Any] = DummyModel() _lowercase : Union[str, Any] = torch.optim.Adam(net.parameters() ) _lowercase : int = Accelerator() with self.assertRaises(UpperCamelCase_ ) as ve: accelerator.register_for_checkpointing(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def __UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Dict = DummyModel() _lowercase : List[str] = torch.optim.Adam(params=model.parameters() , lr=1E-3 ) _lowercase : List[str] = torch.optim.lr_scheduler.StepLR(UpperCamelCase_ , step_size=1 , gamma=0.99 ) _lowercase , _lowercase : str = dummy_dataloaders() _lowercase : Any = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ ) # Train baseline _lowercase : List[str] = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[str] = accelerator.prepare( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Save initial accelerator.save_state() _lowercase : str = scheduler.state_dict() train(3 , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_0' ) ) self.assertEqual(UpperCamelCase_ , scheduler.state_dict() ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) _lowercase : Optional[Any] = DummyModel() _lowercase : List[str] = ProjectConfiguration(automatic_checkpoint_naming=UpperCamelCase_ , total_limit=2 ) # Train baseline _lowercase : List[str] = Accelerator(project_dir=UpperCamelCase_ , project_config=UpperCamelCase_ ) _lowercase : List[Any] = accelerator.prepare(UpperCamelCase_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCamelCase_ , 'checkpoints' , 'checkpoint_10' ) ) ) @require_cuda def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCamelCase_ , env=os.environ.copy() ) if __name__ == "__main__": _A : Union[str, Any] ='''/tmp/accelerate/state_checkpointing''' _A : Any =DummyModel() _A : int =torch.optim.Adam(params=model.parameters(), lr=1e-3) _A : str =torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) _A , _A : int =dummy_dataloaders() _A : Dict =ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline _A : Optional[Any] =Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) _A , _A , _A , _A , _A : Optional[Any] =accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) _A , _A : Any =accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: _A : List[Any] =group['''params'''][0].device break assert param_device.type == accelerator.device.type _A : Optional[Any] =model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: _A : Tuple =group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: _A : Optional[int] =group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
4
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
1
'''simple docstring''' from collections import deque class lowerCamelCase__ : '''simple docstring''' def __init__( self : Any , UpperCamelCase_ : str , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> None: '''simple docstring''' _lowercase : Dict = process_name # process name _lowercase : Dict = arrival_time # arrival time of the process # completion time of finished process or last interrupted time _lowercase : Optional[Any] = arrival_time _lowercase : int = burst_time # remaining burst time _lowercase : Optional[Any] = 0 # total time of the process wait in ready queue _lowercase : Dict = 0 # time from arrival time to completion time class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : list[int] , UpperCamelCase_ : deque[Process] , UpperCamelCase_ : int , ) -> None: '''simple docstring''' _lowercase : List[str] = number_of_queues # time slice of queues that round robin algorithm applied _lowercase : Optional[Any] = time_slices # unfinished process is in this ready_queue _lowercase : List[str] = queue # current time _lowercase : List[Any] = current_time # finished process is in this sequence queue _lowercase : deque[Process] = deque() def __UpperCAmelCase ( self : List[str] ) -> list[str]: '''simple docstring''' _lowercase : Tuple = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def __UpperCAmelCase ( self : Any , UpperCamelCase_ : list[Process] ) -> list[int]: '''simple docstring''' _lowercase : Optional[int] = [] for i in range(len(UpperCamelCase_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : list[Process] ) -> list[int]: '''simple docstring''' _lowercase : Optional[Any] = [] for i in range(len(UpperCamelCase_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : list[Process] ) -> list[int]: '''simple docstring''' _lowercase : Optional[Any] = [] for i in range(len(UpperCamelCase_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : deque[Process] ) -> list[int]: '''simple docstring''' return [q.burst_time for q in queue] def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Process ) -> int: '''simple docstring''' process.waiting_time += self.current_time - process.stop_time return process.waiting_time def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : deque[Process] ) -> deque[Process]: '''simple docstring''' _lowercase : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase_ ) != 0: _lowercase : Dict = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 _lowercase : Any = 0 # set the process's turnaround time because it is finished _lowercase : Optional[Any] = self.current_time - cp.arrival_time # set the completion time _lowercase : Union[str, Any] = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : deque[Process] , UpperCamelCase_ : int ) -> tuple[deque[Process], deque[Process]]: '''simple docstring''' _lowercase : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase_ ) ): _lowercase : Any = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time _lowercase : List[str] = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished _lowercase : Dict = 0 # set the finish time _lowercase : Union[str, Any] = self.current_time # update the process' turnaround time because it is finished _lowercase : str = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase_ ) self.finish_queue.extend(UpperCamelCase_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def __UpperCAmelCase ( self : Optional[int] ) -> deque[Process]: '''simple docstring''' for i in range(self.number_of_queues - 1 ): _lowercase , _lowercase : List[Any] = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _A : Any =Process('''P1''', 0, 5_3) _A : List[Any] =Process('''P2''', 0, 1_7) _A : Dict =Process('''P3''', 0, 6_8) _A : str =Process('''P4''', 0, 2_4) _A : List[str] =3 _A : Optional[Any] =[1_7, 2_5] _A : Any =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _A : List[Any] =Process('''P1''', 0, 5_3) _A : Any =Process('''P2''', 0, 1_7) _A : int =Process('''P3''', 0, 6_8) _A : Any =Process('''P4''', 0, 2_4) _A : List[Any] =3 _A : List[Any] =[1_7, 2_5] _A : List[str] =deque([Pa, Pa, Pa, Pa]) _A : Union[str, Any] =MLFQ(number_of_queues, time_slices, queue, 0) _A : str =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( F'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( F'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
4
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
1
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: if b == 0: return 1 if (b % 2) == 0: return actual_power(_lowercase, int(b / 2 ) ) * actual_power(_lowercase, int(b / 2 ) ) else: return a * actual_power(_lowercase, int(b / 2 ) ) * actual_power(_lowercase, int(b / 2 ) ) def __UpperCamelCase ( _lowercase, _lowercase ) -> float: if b < 0: return 1 / actual_power(_lowercase, _lowercase ) return actual_power(_lowercase, _lowercase ) if __name__ == "__main__": print(power(-2, -3))
4
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : str ={ '''configuration_deberta''': ['''DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DebertaConfig''', '''DebertaOnnxConfig'''], '''tokenization_deberta''': ['''DebertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] =['''DebertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''DebertaForMaskedLM''', '''DebertaForQuestionAnswering''', '''DebertaForSequenceClassification''', '''DebertaForTokenClassification''', '''DebertaModel''', '''DebertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =[ '''TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFDebertaForMaskedLM''', '''TFDebertaForQuestionAnswering''', '''TFDebertaForSequenceClassification''', '''TFDebertaForTokenClassification''', '''TFDebertaModel''', '''TFDebertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys _A : Any =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
1
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: assert isinstance(_lowercase, _lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Tuple: _lowercase : Optional[Any] = tmp_path / 'cache' _lowercase : Any = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : List[Any] = TextDatasetReader(_lowercase, cache_dir=_lowercase, keep_in_memory=_lowercase ).read() _check_text_dataset(_lowercase, _lowercase ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Tuple: _lowercase : List[str] = tmp_path / 'cache' _lowercase : Optional[int] = {'text': 'string'} _lowercase : int = features.copy() if features else default_expected_features _lowercase : List[str] = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : Tuple = TextDatasetReader(_lowercase, features=_lowercase, cache_dir=_lowercase ).read() _check_text_dataset(_lowercase, _lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[Any]: _lowercase : Optional[Any] = tmp_path / 'cache' _lowercase : Any = {'text': 'string'} _lowercase : Tuple = TextDatasetReader(_lowercase, cache_dir=_lowercase, split=_lowercase ).read() _check_text_dataset(_lowercase, _lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type', [str, list] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> int: if issubclass(_lowercase, _lowercase ): _lowercase : Any = text_path elif issubclass(_lowercase, _lowercase ): _lowercase : Any = [text_path] _lowercase : List[Any] = tmp_path / 'cache' _lowercase : Any = {'text': 'string'} _lowercase : List[str] = TextDatasetReader(_lowercase, cache_dir=_lowercase ).read() _check_text_dataset(_lowercase, _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase=("train",) ) -> Optional[Any]: assert isinstance(_lowercase, _lowercase ) for split in splits: _lowercase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory', [False, True] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: _lowercase : Any = tmp_path / 'cache' _lowercase : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _lowercase : List[Any] = TextDatasetReader({'train': text_path}, cache_dir=_lowercase, keep_in_memory=_lowercase ).read() _check_text_datasetdict(_lowercase, _lowercase ) @pytest.mark.parametrize( 'features', [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ], ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> List[Any]: _lowercase : str = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" _lowercase : Optional[int] = {'text': 'string'} _lowercase : Union[str, Any] = features.copy() if features else default_expected_features _lowercase : List[str] = ( Features({feature: Value(_lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _lowercase : Any = TextDatasetReader({'train': text_path}, features=_lowercase, cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase, _lowercase ) @pytest.mark.parametrize('split', [None, NamedSplit('train' ), 'train', 'test'] ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> int: if split: _lowercase : Dict = {split: text_path} else: _lowercase : Union[str, Any] = 'train' _lowercase : Union[str, Any] = {'train': text_path, 'test': text_path} _lowercase : Tuple = tmp_path / 'cache' _lowercase : Union[str, Any] = {'text': 'string'} _lowercase : Optional[int] = TextDatasetReader(_lowercase, cache_dir=_lowercase ).read() _check_text_datasetdict(_lowercase, _lowercase, splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
4
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
1
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCamelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase_ : Dict[str, int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : int = None , UpperCamelCase_ : int = None ) -> Any: '''simple docstring''' super().__init__() _lowercase : Tuple = pad_token_id _lowercase : int = max_length _lowercase : List[Any] = vocab _lowercase : Tuple = merges _lowercase : int = BytePairTokenizer(UpperCamelCase_ , UpperCamelCase_ , sequence_length=UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : Any , UpperCamelCase_ : GPTaTokenizer , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' _lowercase : Union[str, Any] = [' '.join(UpperCamelCase_ ) for m in tokenizer.bpe_ranks.keys()] _lowercase : int = tokenizer.get_vocab() return cls(UpperCamelCase_ , UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : int , UpperCamelCase_ : Union[str, os.PathLike] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' _lowercase : int = GPTaTokenizer.from_pretrained(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) return cls.from_tokenizer(UpperCamelCase_ , *UpperCamelCase_ , **UpperCamelCase_ ) @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Any ) -> List[str]: '''simple docstring''' return cls(**UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int = None ) -> List[Any]: '''simple docstring''' _lowercase : Any = self.tf_tokenizer(UpperCamelCase_ ) _lowercase : Optional[Any] = tf.ones_like(UpperCamelCase_ ) if self.pad_token_id is not None: # pad the tokens up to max length _lowercase : Optional[int] = max_length if max_length is not None else self.max_length if max_length is not None: _lowercase , _lowercase : List[Any] = pad_model_inputs( UpperCamelCase_ , max_seq_length=UpperCamelCase_ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
4
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _A : Optional[Any] =pytest.mark.integration @require_faiss class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> str: '''simple docstring''' _lowercase : int = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' import faiss _lowercase : Dataset = self._create_dummy_dataset() _lowercase : Union[str, Any] = dset.map( lambda UpperCamelCase_ , UpperCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ) _lowercase : List[str] = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _lowercase , _lowercase : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' import faiss _lowercase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _lowercase , _lowercase : Tuple = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' import faiss _lowercase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase_ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) _lowercase , _lowercase : Optional[Any] = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCamelCase_ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' from elasticsearch import Elasticsearch _lowercase : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _lowercase : Optional[int] = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) _lowercase : Union[str, Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} _lowercase : str = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCamelCase_ ) _lowercase , _lowercase : int = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : Tuple ) -> str: '''simple docstring''' import faiss _lowercase : List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _lowercase : List[str] = np.zeros(5 , dtype=np.floataa ) _lowercase : int = 1 _lowercase , _lowercase : Optional[Any] = index.search(UpperCamelCase_ ) self.assertRaises(UpperCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _lowercase : Any = np.eye(5 , dtype=np.floataa )[::-1] _lowercase , _lowercase : Tuple = index.search_batch(UpperCamelCase_ ) self.assertRaises(UpperCamelCase_ , index.search_batch , queries[0] ) _lowercase : List[Any] = [scores[0] for scores in total_scores] _lowercase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' import faiss _lowercase : List[Any] = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _lowercase : int = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCamelCase_ ): _lowercase : Union[str, Any] = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' import faiss _lowercase : Tuple = faiss.IndexFlat(5 ) _lowercase : List[Any] = FaissIndex(custom_index=UpperCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' import faiss _lowercase : List[Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase_ ) as tmp_file: index.save(tmp_file.name ) _lowercase : List[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _lowercase : Dict = np.zeros(5 , dtype=np.floataa ) _lowercase : List[str] = 1 _lowercase , _lowercase : Dict = index.search(UpperCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __UpperCamelCase ( _lowercase ) -> Optional[int]: import faiss _lowercase : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5, dtype=np.floataa ) ) _lowercase : str = 'index.faiss' _lowercase : List[Any] = f'''mock://{index_name}''' index.save(_lowercase, storage_options=mockfs.storage_options ) _lowercase : Any = FaissIndex.load(_lowercase, storage_options=mockfs.storage_options ) _lowercase : Any = np.zeros(5, dtype=np.floataa ) _lowercase : Optional[int] = 1 _lowercase , _lowercase : Tuple = index.search(_lowercase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCamelCase__ ( A ): '''simple docstring''' def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: _lowercase : Tuple = Elasticsearch() _lowercase : Optional[int] = {'acknowledged': True} _lowercase : List[Any] = ElasticSearchIndex(es_client=UpperCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query _lowercase : Optional[Any] = 'foo' _lowercase : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _lowercase , _lowercase : Dict = index.search(UpperCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _lowercase : Optional[Any] = 'foo' _lowercase : int = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} _lowercase , _lowercase : Optional[int] = index.search(UpperCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _lowercase : Dict = ['foo', 'bar', 'foobar'] _lowercase : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _lowercase , _lowercase : Tuple = index.search_batch(UpperCamelCase_ ) _lowercase : Union[str, Any] = [scores[0] for scores in total_scores] _lowercase : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase_ ) # batched queries with timeout _lowercase : List[str] = ['foo', 'bar', 'foobar'] _lowercase : Optional[int] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} _lowercase , _lowercase : Tuple = index.search_batch(UpperCamelCase_ , request_timeout=30 ) _lowercase : Optional[Any] = [scores[0] for scores in total_scores] _lowercase : Any = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase_ )
4
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
1
'''simple docstring''' import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : str , UpperCamelCase_ : str , UpperCamelCase_ : int=13 , UpperCamelCase_ : List[Any]=7 , UpperCamelCase_ : int=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : List[Any]=True , UpperCamelCase_ : Any=99 , UpperCamelCase_ : str=32 , UpperCamelCase_ : List[Any]=5 , UpperCamelCase_ : int=4 , UpperCamelCase_ : List[str]=37 , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Any=16 , UpperCamelCase_ : str=2 , UpperCamelCase_ : List[Any]=0.02 , UpperCamelCase_ : List[str]=False , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : Union[str, Any]="None" , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Optional[int]=4 , UpperCamelCase_ : List[str]=None , ) -> str: '''simple docstring''' _lowercase : List[Any] = parent _lowercase : int = batch_size _lowercase : Any = seq_length _lowercase : List[str] = is_training _lowercase : Optional[Any] = use_input_mask _lowercase : Any = use_token_type_ids _lowercase : List[str] = use_labels _lowercase : List[str] = vocab_size _lowercase : Tuple = hidden_size _lowercase : List[Any] = num_hidden_layers _lowercase : List[str] = num_attention_heads _lowercase : List[str] = intermediate_size _lowercase : List[Any] = hidden_act _lowercase : Any = hidden_dropout_prob _lowercase : List[str] = attention_probs_dropout_prob _lowercase : Dict = max_position_embeddings _lowercase : Optional[Any] = type_vocab_size _lowercase : str = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Union[str, Any] = num_labels _lowercase : Any = num_choices _lowercase : Any = relative_attention _lowercase : str = position_biased_input _lowercase : str = pos_att_type _lowercase : Union[str, Any] = scope def __UpperCAmelCase ( self : Dict ) -> str: '''simple docstring''' _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Dict = None if self.use_input_mask: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _lowercase : int = None if self.use_token_type_ids: _lowercase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[Any] = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : List[str] = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : str = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : str = self.get_config() _lowercase : Union[str, Any] = 300 return config def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str ) -> Any: '''simple docstring''' _lowercase : List[str] = DebertaModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Tuple = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] _lowercase : List[str] = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ )[0] _lowercase : List[str] = model(UpperCamelCase_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' _lowercase : Tuple = DebertaForMaskedLM(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : str , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' _lowercase : List[Any] = self.num_labels _lowercase : Union[str, Any] = DebertaForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Union[str, Any] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : str ) -> Dict: '''simple docstring''' _lowercase : str = self.num_labels _lowercase : Tuple = DebertaForTokenClassification(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : int = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' _lowercase : Dict = DebertaForQuestionAnswering(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() _lowercase : Optional[Any] = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : int = config_and_inputs _lowercase : Dict = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( A , A , unittest.TestCase ): '''simple docstring''' A_ = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) A_ = ( { """feature-extraction""": DebertaModel, """fill-mask""": DebertaForMaskedLM, """question-answering""": DebertaForQuestionAnswering, """text-classification""": DebertaForSequenceClassification, """token-classification""": DebertaForTokenClassification, """zero-shot""": DebertaForSequenceClassification, } if is_torch_available() else {} ) A_ = True A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' _lowercase : str = DebertaModelTester(self ) _lowercase : str = ConfigTester(self , config_class=UpperCamelCase_ , hidden_size=37 ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*UpperCamelCase_ ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*UpperCamelCase_ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> Tuple: '''simple docstring''' _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*UpperCamelCase_ ) @slow def __UpperCAmelCase ( self : int ) -> Optional[int]: '''simple docstring''' for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DebertaModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason='Model not available yet' ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' pass @slow def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' _lowercase : List[str] = DebertaModel.from_pretrained('microsoft/deberta-base' ) _lowercase : Any = torch.tensor([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) _lowercase : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : List[str] = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] # compare the actual values for a slice. _lowercase : Dict = torch.tensor( [[[-0.59_86, -0.80_55, -0.84_62], [1.44_84, -0.93_48, -0.80_59], [0.31_23, 0.00_32, -1.41_31]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , UpperCamelCase_ , atol=1E-4 ) , F'''{output[:, 1:4, 1:4]}''' )
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig _A : List[str] =logging.get_logger(__name__) _A : Any ={ '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """dpt""" def __init__( self : Tuple , UpperCamelCase_ : List[str]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=3072 , UpperCamelCase_ : Tuple="gelu" , UpperCamelCase_ : str=0.0 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : List[str]=0.02 , UpperCamelCase_ : int=1E-12 , UpperCamelCase_ : List[Any]=384 , UpperCamelCase_ : int=16 , UpperCamelCase_ : Union[str, Any]=3 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Union[str, Any]=[2, 5, 8, 11] , UpperCamelCase_ : Tuple="project" , UpperCamelCase_ : Tuple=[4, 2, 1, 0.5] , UpperCamelCase_ : List[Any]=[96, 192, 384, 768] , UpperCamelCase_ : Any=256 , UpperCamelCase_ : Tuple=-1 , UpperCamelCase_ : Dict=False , UpperCamelCase_ : int=True , UpperCamelCase_ : Dict=0.4 , UpperCamelCase_ : List[str]=255 , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : Union[str, Any]=[1, 1024, 24, 24] , UpperCamelCase_ : List[str]=[0, 1] , UpperCamelCase_ : Optional[Any]=None , **UpperCamelCase_ : Dict , ) -> Optional[Any]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : List[Any] = hidden_size _lowercase : Optional[int] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) _lowercase : Optional[int] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _lowercase : List[str] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): logger.info('Initializing the config with a `BiT` backbone.' ) _lowercase : List[Any] = BitConfig(**UpperCamelCase_ ) elif isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Any = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _lowercase : Optional[int] = backbone_featmap_shape _lowercase : str = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: _lowercase : str = None _lowercase : List[str] = None _lowercase : Any = [] _lowercase : List[Any] = num_hidden_layers _lowercase : Optional[int] = num_attention_heads _lowercase : Any = intermediate_size _lowercase : Tuple = hidden_act _lowercase : Optional[int] = hidden_dropout_prob _lowercase : List[Any] = attention_probs_dropout_prob _lowercase : List[str] = initializer_range _lowercase : Union[str, Any] = layer_norm_eps _lowercase : Tuple = image_size _lowercase : List[Any] = patch_size _lowercase : int = num_channels _lowercase : Union[str, Any] = qkv_bias _lowercase : int = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) _lowercase : Any = readout_type _lowercase : str = reassemble_factors _lowercase : Union[str, Any] = neck_hidden_sizes _lowercase : Any = fusion_hidden_size _lowercase : Optional[int] = head_in_index _lowercase : str = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _lowercase : Optional[Any] = use_auxiliary_head _lowercase : Any = auxiliary_loss_weight _lowercase : Tuple = semantic_loss_ignore_index _lowercase : Optional[int] = semantic_classifier_dropout def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _lowercase : Optional[int] = self.backbone_config.to_dict() _lowercase : Union[str, Any] = self.__class__.model_type return output
4
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Union[str, Any] ={ '''configuration_blip_2''': [ '''BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Blip2Config''', '''Blip2QFormerConfig''', '''Blip2VisionConfig''', ], '''processing_blip_2''': ['''Blip2Processor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[int] =[ '''BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Blip2Model''', '''Blip2QFormerModel''', '''Blip2PreTrainedModel''', '''Blip2ForConditionalGeneration''', '''Blip2VisionModel''', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys _A : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
1
'''simple docstring''' from scipy.stats import pearsonr import datasets _A : Optional[Any] =''' Pearson correlation coefficient and p-value for testing non-correlation. The Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. ''' _A : Dict =''' Args: predictions (`list` of `int`): Predicted class labels, as returned by a model. references (`list` of `int`): Ground truth labels. return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`. Returns: pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation. p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities. Examples: Example 1-A simple example using only predictions and references. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5]) >>> print(round(results[\'pearsonr\'], 2)) -0.74 Example 2-The same as Example 1, but that also returns the `p-value`. >>> pearsonr_metric = datasets.load_metric("pearsonr") >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True) >>> print(sorted(list(results.keys()))) [\'p-value\', \'pearsonr\'] >>> print(round(results[\'pearsonr\'], 2)) -0.74 >>> print(round(results[\'p-value\'], 2)) 0.15 ''' _A : List[Any] =''' @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, Ilhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Antonio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=False ) -> List[str]: '''simple docstring''' if return_pvalue: _lowercase : Tuple = pearsonr(UpperCamelCase_ , UpperCamelCase_ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(UpperCamelCase_ , UpperCamelCase_ )[0] )}
4
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
1
'''simple docstring''' import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _A : int =( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) _A : Union[str, Any] =( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) _A : Union[str, Any] =( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) _A : Union[str, Any] =( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) _A : Dict =( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 1_4]), ('''2H 5D 3C AS 5S''', False, [1_4, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) _A : int =( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) _A : Optional[int] =( ('''JH AH TH KH QH''', 2_3), ('''JH 9H TH KH QH''', 2_2), ('''JC KH JS JD JH''', 2_1), ('''KH KC 3S 3H 3D''', 2_0), ('''8C 9C 5C 3C TC''', 1_9), ('''JS QS 9H TS KH''', 1_8), ('''7C 7S KH 2H 7H''', 1_7), ('''3C KH 5D 5S KH''', 1_6), ('''QH 8H KD JH 8S''', 1_5), ('''2D 6D 9D TH 7D''', 1_4), ) def __UpperCamelCase ( ) -> Dict: _lowercase , _lowercase : Optional[Any] = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) _lowercase : List[Any] = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] _lowercase , _lowercase : str = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __UpperCamelCase ( _lowercase = 100 ) -> Any: return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize('hand, expected', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize('hand, expected', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[Any]: _lowercase : List[Any] = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]: assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize('hand, other, expected', _lowercase ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Dict: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize('hand, other, expected', generate_random_hands() ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> str: assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def __UpperCamelCase ( ) -> Dict: _lowercase : Optional[int] = [PokerHand(_lowercase ) for hand in SORTED_HANDS] _lowercase : Tuple = poker_hands.copy() shuffle(_lowercase ) _lowercase : Optional[int] = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def __UpperCamelCase ( ) -> Any: # Test that five high straights are compared correctly. _lowercase : List[Any] = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __UpperCamelCase ( ) -> List[str]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. _lowercase : Tuple = PokerHand('2C 4S AS 3D 5C' ) _lowercase : Any = True _lowercase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __UpperCamelCase ( ) -> Any: # Problem number 54 from Project Euler # Testing from poker_hands.txt file _lowercase : Optional[int] = 0 _lowercase : int = os.path.abspath(os.path.dirname(_lowercase ) ) _lowercase : Optional[int] = os.path.join(_lowercase, 'poker_hands.txt' ) with open(_lowercase ) as file_hand: for line in file_hand: _lowercase : Optional[int] = line[:14].strip() _lowercase : str = line[15:].strip() _lowercase , _lowercase : str = PokerHand(_lowercase ), PokerHand(_lowercase ) _lowercase : Optional[int] = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 376
4
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
1
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union _A : str =TypeVar('''T''') _A : int =Union[List[T], Tuple[T, ...]] _A : Dict =Union[T, List[T], Dict[str, T]] _A : Any =Union[str, bytes, os.PathLike]
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
1
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _A : List[Any] =logging.get_logger(__name__) _A : int =OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) _A : List[Any] =_LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __UpperCamelCase ( _lowercase ) -> Optional[Any]: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : int = model_type_to_module_name(_lowercase ) _lowercase : List[Any] = importlib.import_module(f'''.{module_name}''', 'transformers.models' ) try: return getattr(_lowercase, _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase, '__name__', _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : str = importlib.import_module('transformers' ) if hasattr(_lowercase, _lowercase ): return getattr(_lowercase, _lowercase ) return None def __UpperCamelCase ( _lowercase, _lowercase = None, _lowercase = False, _lowercase = False, _lowercase = None, _lowercase = None, _lowercase = None, _lowercase = False, **_lowercase, ) -> str: _lowercase : List[Any] = get_file_from_repo( _lowercase, _lowercase, cache_dir=_lowercase, force_download=_lowercase, resume_download=_lowercase, proxies=_lowercase, use_auth_token=_lowercase, revision=_lowercase, local_files_only=_lowercase, ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(_lowercase, encoding='utf-8' ) as reader: return json.load(_lowercase ) class lowerCamelCase__ : '''simple docstring''' def __init__( self : Dict ) -> List[Any]: '''simple docstring''' raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __UpperCAmelCase ( cls : Optional[Any] , UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : Optional[int] ) -> Dict: '''simple docstring''' _lowercase : List[Any] = kwargs.pop('config' , UpperCamelCase_ ) _lowercase : Optional[int] = kwargs.pop('trust_remote_code' , UpperCamelCase_ ) _lowercase : Optional[Any] = True _lowercase , _lowercase : Any = FeatureExtractionMixin.get_feature_extractor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = config_dict.get('feature_extractor_type' , UpperCamelCase_ ) _lowercase : Dict = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowercase : Tuple = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Any = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.feature_extractor_type`` _lowercase : Union[str, Any] = getattr(UpperCamelCase_ , 'feature_extractor_type' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: _lowercase : Optional[Any] = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: _lowercase : Any = feature_extractor_class_from_name(UpperCamelCase_ ) _lowercase : str = feature_extractor_auto_map is not None _lowercase : str = feature_extractor_class is not None or type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING _lowercase : List[Any] = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : str = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : int = kwargs.pop('code_revision' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(UpperCamelCase_ ) in FEATURE_EXTRACTOR_MAPPING: _lowercase : List[str] = FEATURE_EXTRACTOR_MAPPING[type(UpperCamelCase_ )] return feature_extractor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple ) -> Dict: '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
4
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def __UpperCamelCase ( _lowercase ) -> Optional[Any]: _lowercase : Optional[int] = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ' f'''{test_file} instead.''' ) _lowercase : Dict = components[-1] if not test_fn.endswith('py' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('test_modeling_' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) _lowercase : Optional[Any] = components[:-1] + [test_fn.replace('.py', '' )] _lowercase : List[Any] = '.'.join(_lowercase ) return test_module_path def __UpperCamelCase ( _lowercase ) -> int: _lowercase : Optional[Any] = get_module_path(_lowercase ) _lowercase : Optional[Any] = importlib.import_module(_lowercase ) return test_module def __UpperCamelCase ( _lowercase ) -> int: _lowercase : str = [] _lowercase : Optional[Any] = get_test_module(_lowercase ) for attr in dir(_lowercase ): if attr.endswith('ModelTester' ): tester_classes.append(getattr(_lowercase, _lowercase ) ) # sort with class names return sorted(_lowercase, key=lambda _lowercase : x.__name__ ) def __UpperCamelCase ( _lowercase ) -> Optional[int]: _lowercase : Any = [] _lowercase : int = get_test_module(_lowercase ) for attr in dir(_lowercase ): _lowercase : Union[str, Any] = getattr(_lowercase, _lowercase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowercase : Optional[Any] = getattr(_lowercase, 'all_model_classes', [] ) if len(_lowercase ) > 0: test_classes.append(_lowercase ) # sort with class names return sorted(_lowercase, key=lambda _lowercase : x.__name__ ) def __UpperCamelCase ( _lowercase ) -> str: _lowercase : Dict = get_test_classes(_lowercase ) _lowercase : str = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowercase, key=lambda _lowercase : x.__name__ ) def __UpperCamelCase ( _lowercase ) -> int: _lowercase : List[str] = test_class() if hasattr(_lowercase, 'setUp' ): test.setUp() _lowercase : Any = None if hasattr(_lowercase, 'model_tester' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowercase : Tuple = test.model_tester.__class__ return model_tester def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: _lowercase : Optional[Any] = get_test_classes(_lowercase ) _lowercase : int = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowercase ) # sort with class names return sorted(_lowercase, key=lambda _lowercase : x.__name__ ) def __UpperCamelCase ( _lowercase, _lowercase ) -> Optional[int]: _lowercase : Union[str, Any] = get_test_classes_for_model(_lowercase, _lowercase ) _lowercase : Union[str, Any] = [] for test_class in test_classes: _lowercase : List[str] = get_model_tester_from_test_class(_lowercase ) if tester_class is not None: tester_classes.append(_lowercase ) # sort with class names return sorted(_lowercase, key=lambda _lowercase : x.__name__ ) def __UpperCamelCase ( _lowercase ) -> int: _lowercase : Optional[int] = get_test_classes(_lowercase ) _lowercase : Tuple = {test_class: get_model_tester_from_test_class(_lowercase ) for test_class in test_classes} return test_tester_mapping def __UpperCamelCase ( _lowercase ) -> int: _lowercase : Any = get_model_classes(_lowercase ) _lowercase : Optional[Any] = { model_class: get_test_classes_for_model(_lowercase, _lowercase ) for model_class in model_classes } return model_test_mapping def __UpperCamelCase ( _lowercase ) -> str: _lowercase : List[Any] = get_model_classes(_lowercase ) _lowercase : str = { model_class: get_tester_classes_for_model(_lowercase, _lowercase ) for model_class in model_classes } return model_to_tester_mapping def __UpperCamelCase ( _lowercase ) -> Union[str, Any]: if isinstance(_lowercase, _lowercase ): return o elif isinstance(_lowercase, _lowercase ): return o.__name__ elif isinstance(_lowercase, (list, tuple) ): return [to_json(_lowercase ) for x in o] elif isinstance(_lowercase, _lowercase ): return {to_json(_lowercase ): to_json(_lowercase ) for k, v in o.items()} else: return o
4
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
1
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING _A : Any =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : List[str] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Tuple ) -> Any: '''simple docstring''' super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type(UpperCamelCase_ ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' return {}, {}, {} def __UpperCAmelCase ( self : Any , UpperCamelCase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[str] = load_image(UpperCamelCase_ ) _lowercase : Optional[Any] = image.size _lowercase : Optional[Any] = self.image_processor(images=UpperCamelCase_ , return_tensors=self.framework ) return model_inputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : Union[str, Any] = self.model(**UpperCamelCase_ ) return model_outputs def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Dict ) -> Dict: '''simple docstring''' _lowercase : int = model_outputs.predicted_depth _lowercase : List[str] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) , size=self.image_size[::-1] , mode='bicubic' , align_corners=UpperCamelCase_ ) _lowercase : Optional[Any] = prediction.squeeze().cpu().numpy() _lowercase : List[str] = (output * 255 / np.max(UpperCamelCase_ )).astype('uint8' ) _lowercase : Union[str, Any] = Image.fromarray(UpperCamelCase_ ) _lowercase : Tuple = {} _lowercase : Tuple = predicted_depth _lowercase : Dict = depth return output_dict
4
'''simple docstring''' import os from collections.abc import Iterator def __UpperCamelCase ( _lowercase = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(_lowercase ): _lowercase : Optional[int] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(_lowercase )[1] in (".py", ".ipynb"): yield os.path.join(_lowercase, _lowercase ).lstrip('./' ) def __UpperCamelCase ( _lowercase ) -> List[str]: return f'''{i * " "}*''' if i else "\n##" def __UpperCamelCase ( _lowercase, _lowercase ) -> str: _lowercase : Optional[Any] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(_lowercase ) or old_parts[i] != new_part) and new_part: print(f'''{md_prefix(_lowercase )} {new_part.replace("_", " " ).title()}''' ) return new_path def __UpperCamelCase ( _lowercase = "." ) -> None: _lowercase : Dict = '' for filepath in sorted(good_file_paths(_lowercase ) ): _lowercase , _lowercase : Optional[Any] = os.path.split(_lowercase ) if filepath != old_path: _lowercase : Dict = print_path(_lowercase, _lowercase ) _lowercase : Optional[int] = (filepath.count(os.sep ) + 1) if filepath else 0 _lowercase : Dict = f'''{filepath}/{filename}'''.replace(' ', '%20' ) _lowercase : Optional[int] = os.path.splitext(filename.replace('_', ' ' ).title() )[0] print(f'''{md_prefix(_lowercase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md('''.''')
4
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' A_ = 42 A_ = 42 def __init__( self : int , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] ) -> List[str]: '''simple docstring''' super().__init__() self.register_modules(unet=A__ , scheduler=A__ ) @torch.no_grad() def __call__( self : Tuple , UpperCamelCase_ : List[str] = 1 , UpperCamelCase_ : Union[str, Any] = 50 , UpperCamelCase_ : List[str] = None , UpperCamelCase_ : Optional[int] = "pil" , UpperCamelCase_ : Dict = True , **UpperCamelCase_ : Dict , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' _lowercase : Union[str, Any] = self.unet.config.sample_size _lowercase : Union[str, Any] = (batch_size, 3, img_size, img_size) _lowercase : Tuple = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowercase : int = randn_tensor(A__ , generator=A__ , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(A__ ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowercase : str = self.scheduler.schedule[t] _lowercase : str = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowercase , _lowercase : Union[str, Any] = self.scheduler.add_noise_to_input(A__ , A__ , generator=A__ ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : List[str] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowercase : int = self.scheduler.step(A__ , A__ , A__ , A__ ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : str = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowercase : str = self.scheduler.step_correct( A__ , A__ , A__ , A__ , step_output.prev_sample , step_output['derivative'] , ) _lowercase : Any = step_output.prev_sample _lowercase : int = (sample / 2 + 0.5).clamp(0 , 1 ) _lowercase : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : str = self.numpy_to_pil(A__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A__ )
700
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _A : Union[str, Any] ={'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Dict =['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Union[str, Any] =['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys _A : Union[str, Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : int ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} _A : List[str] ={ '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } _A : Optional[Any] ={ '''allenai/longformer-base-4096''': 4_0_9_6, '''allenai/longformer-large-4096''': 4_0_9_6, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4_0_9_6, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4_0_9_6, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4_0_9_6, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase ( ) -> List[str]: '''simple docstring''' _lowercase : Tuple = ( list(range(ord('!' ), ord('~' ) + 1 ) ) + list(range(ord('¡' ), ord('¬' ) + 1 ) ) + list(range(ord('®' ), ord('ÿ' ) + 1 ) ) ) _lowercase : List[str] = bs[:] _lowercase : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(__A ) cs.append(2**8 + n ) n += 1 _lowercase : Tuple = [chr(__A ) for n in cs] return dict(zip(__A, __A ) ) def __UpperCamelCase ( _lowercase ) -> List[Any]: '''simple docstring''' _lowercase : List[str] = set() _lowercase : int = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _lowercase : Union[str, Any] = char return pairs class lowerCamelCase__ ( _snake_case ): '''simple docstring''' A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ["""input_ids""", """attention_mask"""] def __init__( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : Tuple="replace" , UpperCamelCase_ : str="<s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : int="</s>" , UpperCamelCase_ : Dict="<s>" , UpperCamelCase_ : Dict="<unk>" , UpperCamelCase_ : Optional[Any]="<pad>" , UpperCamelCase_ : int="<mask>" , UpperCamelCase_ : str=False , **UpperCamelCase_ : List[Any] , ) -> List[str]: '''simple docstring''' _lowercase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token _lowercase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token _lowercase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token _lowercase : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token _lowercase : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token _lowercase : Union[str, Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it _lowercase : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='utf-8' ) as vocab_handle: _lowercase : Optional[Any] = json.load(lowerCAmelCase__ ) _lowercase : str = {v: k for k, v in self.encoder.items()} _lowercase : Tuple = errors # how to handle errors in decoding _lowercase : Any = bytes_to_unicode() _lowercase : Optional[int] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding='utf-8' ) as merges_handle: _lowercase : Optional[Any] = merges_handle.read().split('\n' )[1:-1] _lowercase : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] _lowercase : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) _lowercase : List[str] = {} _lowercase : List[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions _lowercase : str = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return len(self.encoder ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Optional[int] ) -> int: '''simple docstring''' if token in self.cache: return self.cache[token] _lowercase : Any = tuple(lowerCAmelCase__ ) _lowercase : str = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: _lowercase : List[str] = min(lowerCAmelCase__ , key=lambda UpperCamelCase_ : self.bpe_ranks.get(lowerCAmelCase__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break _lowercase , _lowercase : Tuple = bigram _lowercase : Union[str, Any] = [] _lowercase : Any = 0 while i < len(lowerCAmelCase__ ): try: _lowercase : List[str] = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _lowercase : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _lowercase : Optional[int] = tuple(lowerCAmelCase__ ) _lowercase : List[str] = new_word if len(lowerCAmelCase__ ) == 1: break else: _lowercase : List[Any] = get_pairs(lowerCAmelCase__ ) _lowercase : List[Any] = ' '.join(lowerCAmelCase__ ) _lowercase : List[str] = word return word def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' _lowercase : int = [] for token in re.findall(self.pat , lowerCAmelCase__ ): _lowercase : Any = ''.join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(' ' ) ) return bpe_tokens def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[str] ) -> str: '''simple docstring''' return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' return self.decoder.get(lowerCAmelCase__ ) def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = ''.join(lowerCAmelCase__ ) _lowercase : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __UpperCAmelCase ( self : str , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowercase : str = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Dict = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '\n' ) _lowercase : int = 0 with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) _lowercase : Union[str, Any] = token_index writer.write(' '.join(lowerCAmelCase__ ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCAmelCase ( self : Any , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _lowercase : Dict = [self.cls_token_id] _lowercase : Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : str , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None , UpperCamelCase_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : List[int] , UpperCamelCase_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _lowercase : Tuple = [self.sep_token_id] _lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCAmelCase ( self : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=False , **UpperCamelCase_ : List[Any] ) -> str: '''simple docstring''' _lowercase : str = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): _lowercase : Dict = ' ' + text return (text, kwargs)
701
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : Union[str, Any]=7 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Any=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]=True , UpperCamelCase_ : int=99 , UpperCamelCase_ : Tuple=32 , UpperCamelCase_ : List[str]=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=37 , UpperCamelCase_ : int="gelu" , UpperCamelCase_ : int=0.1 , UpperCamelCase_ : Dict=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Tuple=0.02 , UpperCamelCase_ : Union[str, Any]=4 , ) -> Tuple: '''simple docstring''' _lowercase : int = parent _lowercase : str = batch_size _lowercase : List[str] = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_attention_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Dict = vocab_size _lowercase : List[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : int = num_attention_heads _lowercase : Optional[int] = intermediate_size _lowercase : Any = hidden_act _lowercase : List[str] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Optional[int] = max_position_embeddings _lowercase : int = type_vocab_size _lowercase : Any = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : str = num_choices def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : int = None if self.use_attention_mask: _lowercase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Any = None if self.use_token_type_ids: _lowercase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : str = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' _lowercase : Dict = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = config_and_inputs _lowercase : Optional[int] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = True A_ = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCAmelCase ( self : str ) -> int: '''simple docstring''' _lowercase : Tuple = FlaxRoFormerModelTester(self ) @slow def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _lowercase : Optional[int] = model_class_name.from_pretrained('junnyu/roformer_chinese_small' , from_pt=UpperCamelCase_ ) _lowercase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase_ ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Dict = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) _lowercase : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) _lowercase : int = model(UpperCamelCase_ )[0] _lowercase : Union[str, Any] = 5_0000 _lowercase : str = (1, 6, vocab_size) self.assertEqual(output.shape , UpperCamelCase_ ) _lowercase : int = jnp.array( [[[-0.12_05, -1.02_65, 0.29_22], [-1.51_34, 0.19_74, 0.15_19], [-5.01_35, -3.90_03, -0.84_04]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1E-4 ) )
4
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCamelCase ( *_lowercase ) -> int: if not isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ): _lowercase : List[Any] = list(_SCREAMING_SNAKE_CASE ) for i in range(len(_SCREAMING_SNAKE_CASE ) ): _lowercase : List[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCamelCase ( _lowercase ) -> bool: _lowercase : Optional[Any] = [ 'CUDA out of memory.', # CUDA OOM 'cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.', # CUDNN SNAFU 'DefaultCPUAllocator: can\'t allocate memory', # CPU OOM ] if isinstance(_SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCamelCase ( _lowercase = None, _lowercase = 128 ) -> Optional[Any]: if function is None: return functools.partial(_SCREAMING_SNAKE_CASE, starting_batch_size=_SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = starting_batch_size def decorator(*_lowercase, **_lowercase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _lowercase : List[str] = list(inspect.signature(_SCREAMING_SNAKE_CASE ).parameters.keys() ) # Guard against user error if len(_SCREAMING_SNAKE_CASE ) < (len(_SCREAMING_SNAKE_CASE ) + 1): _lowercase : Tuple = ', '.join([f'''{arg}={value}''' for arg, value in zip(params[1:], args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError('No executable batch size found, reached zero.' ) try: return function(_SCREAMING_SNAKE_CASE, *_SCREAMING_SNAKE_CASE, **_SCREAMING_SNAKE_CASE ) except Exception as e: if should_reduce_batch_size(_SCREAMING_SNAKE_CASE ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
702
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _A : Optional[int] =logging.get_logger(__name__) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""input_features""", """is_longer"""] def __init__( self : List[Any] , UpperCamelCase_ : List[Any]=64 , UpperCamelCase_ : int=4_8000 , UpperCamelCase_ : Union[str, Any]=480 , UpperCamelCase_ : Any=10 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4000 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : Optional[Any] , ) -> Dict: '''simple docstring''' super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : Tuple = top_db _lowercase : Any = truncation _lowercase : str = padding _lowercase : int = fft_window_size _lowercase : Any = (fft_window_size >> 1) + 1 _lowercase : int = hop_length _lowercase : Any = max_length_s _lowercase : str = max_length_s * sampling_rate _lowercase : Any = sampling_rate _lowercase : List[Any] = frequency_min _lowercase : Tuple = frequency_max _lowercase : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='htk' , ) _lowercase : Any = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='slaney' , mel_scale='slaney' , ) def __UpperCAmelCase ( self : Tuple ) -> Dict[str, Any]: '''simple docstring''' _lowercase : Tuple = copy.deepcopy(self.__dict__ ) _lowercase : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' _lowercase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='dB' , ) return log_mel_spectrogram.T def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk _lowercase : Union[str, Any] = [0] # randomly choose index for each part _lowercase : Tuple = np.random.choice(ranges[0] ) _lowercase : int = np.random.choice(ranges[1] ) _lowercase : Any = np.random.choice(ranges[2] ) _lowercase : int = mel[idx_front : idx_front + chunk_frames, :] _lowercase : int = mel[idx_middle : idx_middle + chunk_frames, :] _lowercase : Tuple = mel[idx_back : idx_back + chunk_frames, :] _lowercase : List[Any] = torch.tensor(mel[None, None, :] ) _lowercase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 64] , mode='bilinear' , align_corners=UpperCamelCase_ ) _lowercase : str = mel_shrink[0][0].numpy() _lowercase : int = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def __UpperCAmelCase ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": _lowercase : Tuple = True # random crop to max_length (for compatibility) -> this should be handled by self.pad _lowercase : Any = len(UpperCamelCase_ ) - max_length _lowercase : Dict = np.random.randint(0 , overflow + 1 ) _lowercase : Optional[int] = waveform[idx : idx + max_length] _lowercase : Dict = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : List[Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed _lowercase : Optional[int] = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. _lowercase : Optional[Any] = np.stack([mel, mel, mel, mel] , axis=0 ) _lowercase : List[Any] = False else: _lowercase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : int = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: _lowercase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": _lowercase : List[Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : List[str] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": _lowercase : Union[str, Any] = int(max_length / len(UpperCamelCase_ ) ) _lowercase : Union[str, Any] = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) _lowercase : Dict = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": _lowercase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) _lowercase : Dict = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: _lowercase : List[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Union[str, Any] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Dict , ) -> BatchFeature: '''simple docstring''' _lowercase : Dict = truncation if truncation is not None else self.truncation _lowercase : int = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _lowercase : Optional[Any] = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _lowercase : List[str] = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowercase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): _lowercase : Any = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _lowercase : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _lowercase : int = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. _lowercase : Optional[Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] _lowercase : List[Any] = [] _lowercase : Dict = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer _lowercase : Optional[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) _lowercase : str = True if isinstance(input_mel[0] , UpperCamelCase_ ): _lowercase : str = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool _lowercase : Tuple = [[longer] for longer in is_longer] _lowercase : Optional[Any] = {'input_features': input_mel, 'is_longer': is_longer} _lowercase : Optional[int] = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: _lowercase : List[Any] = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
4
0
'''simple docstring''' import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCamelCase__ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' A_ = 0 A_ = False A_ = 3.0 class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'a': 2} ) self.assertDictEqual(MockClass(a=2 , b=A_ ).to_kwargs() , {'a': 2, 'b': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'a': 2, 'c': 2.25} ) @require_cuda def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' _lowercase : Optional[int] = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _lowercase : Tuple = Accelerator(mixed_precision='fp16' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _lowercase : Union[str, Any] = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , A_ ) @require_multi_gpu def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = ['torchrun', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(A_ , env=os.environ.copy() ) if __name__ == "__main__": _A : Optional[Any] =DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) _A : Optional[Any] =Accelerator(kwargs_handlers=[ddp_scaler]) _A : List[str] =torch.nn.Linear(1_0_0, 2_0_0) _A : Optional[Any] =accelerator.prepare(model) # Check the values changed in kwargs _A : Dict ="" _A : Any =model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
703
'''simple docstring''' from __future__ import annotations import requests def __UpperCamelCase ( _lowercase ) -> dict: _lowercase : Optional[int] = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(_lowercase ).json() def __UpperCamelCase ( _lowercase = 10 ) -> list[dict]: _lowercase : Union[str, Any] = 'https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty' _lowercase : Optional[Any] = requests.get(_lowercase ).json()[:max_stories] return [get_hackernews_story(_lowercase ) for story_id in story_ids] def __UpperCamelCase ( _lowercase = 10 ) -> str: _lowercase : Tuple = hackernews_top_stories(_lowercase ) return "\n".join('* [{title}]({url})'.format(**_lowercase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
4
0
'''simple docstring''' from __future__ import annotations from collections.abc import Callable _A : Dict =list[list[float | int]] def __UpperCamelCase ( _lowercase, _lowercase ) -> Dict: _lowercase : int = len(_A ) _lowercase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_A )] _lowercase : int _lowercase : int _lowercase : int _lowercase : int _lowercase : int _lowercase : float for row in range(_A ): for col in range(_A ): _lowercase : Tuple = matrix[row][col] _lowercase : List[str] = vector[row][0] _lowercase : int = 0 _lowercase : List[Any] = 0 while row < size and col < size: # pivoting _lowercase : List[Any] = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_A, _A ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: _lowercase : List[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1, _A ): _lowercase : Union[str, Any] = augmented[rowa][col] / augmented[row][col] _lowercase : int = 0 for cola in range(col + 1, size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1, _A ): for row in range(_A ): _lowercase : Any = augmented[row][col] / augmented[col][col] for cola in range(_A, size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row], 10 )] for row in range(_A ) ] def __UpperCamelCase ( _lowercase ) -> int: _lowercase : int = len(_A ) _lowercase : Matrix = [[0 for _ in range(_A )] for _ in range(_A )] _lowercase : Matrix = [[0] for _ in range(_A )] _lowercase : Matrix _lowercase : int _lowercase : int _lowercase : int for x_val, y_val in enumerate(_A ): for col in range(_A ): _lowercase : List[Any] = (x_val + 1) ** (size - col - 1) _lowercase : str = y_val _lowercase : Optional[int] = solve(_A, _A ) def interpolated_func(_lowercase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_A ) ) return interpolated_func def __UpperCamelCase ( _lowercase ) -> Any: return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __UpperCamelCase ( _lowercase = question_function, _lowercase = 10 ) -> int: _lowercase : list[int] = [func(_A ) for x_val in range(1, order + 1 )] _lowercase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1, order + 1 ) ] _lowercase : int = 0 _lowercase : Callable[[int], int] _lowercase : int for poly in polynomials: _lowercase : Any = 1 while func(_A ) == poly(_A ): x_val += 1 ret += poly(_A ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
704
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Dict =logging.get_logger(__name__) _A : Dict ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """megatron-bert""" def __init__( self : int , UpperCamelCase_ : int=2_9056 , UpperCamelCase_ : Optional[int]=1024 , UpperCamelCase_ : Optional[Any]=24 , UpperCamelCase_ : List[Any]=16 , UpperCamelCase_ : Optional[int]=4096 , UpperCamelCase_ : Optional[Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=2 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : Any=1E-12 , UpperCamelCase_ : Tuple=0 , UpperCamelCase_ : Optional[int]="absolute" , UpperCamelCase_ : Optional[Any]=True , **UpperCamelCase_ : Any , ) -> List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Any = hidden_size _lowercase : Union[str, Any] = num_hidden_layers _lowercase : Dict = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Optional[Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Optional[Any] = initializer_range _lowercase : List[str] = layer_norm_eps _lowercase : List[Any] = position_embedding_type _lowercase : Optional[Any] = use_cache
4
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase__ : '''simple docstring''' A_ = 42 A_ = 42 class lowerCamelCase__ : '''simple docstring''' def __init__( self : Any , UpperCamelCase_ : int ) -> Tuple: '''simple docstring''' _lowercase : list[list[Edge]] = [[] for _ in range(UpperCAmelCase_ )] _lowercase : Dict = size def __getitem__( self : Any , UpperCamelCase_ : int ) -> Optional[Any]: '''simple docstring''' return iter(self._graph[vertex] ) @property def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' return self._size def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> int: '''simple docstring''' if weight not in (0, 1): raise ValueError('Edge weight must be either 0 or 1.' ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError('Vertex indexes must be in [0; size).' ) self._graph[from_vertex].append(Edge(UpperCAmelCase_ , UpperCAmelCase_ ) ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> Tuple: '''simple docstring''' _lowercase : Optional[int] = deque([start_vertex] ) _lowercase : list[int | None] = [None] * self.size _lowercase : Union[str, Any] = 0 while queue: _lowercase : Dict = queue.popleft() _lowercase : Any = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: _lowercase : Optional[int] = current_distance + edge.weight _lowercase : Tuple = distances[edge.destination_vertex] if ( isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and new_distance >= dest_vertex_distance ): continue _lowercase : Dict = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError('No path from start_vertex to finish_vertex.' ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
705
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __UpperCamelCase ( _lowercase ) -> List[Any]: _lowercase : Tuple = args.pruning_method _lowercase : int = args.threshold _lowercase : str = args.model_name_or_path.rstrip('/' ) _lowercase : Dict = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _lowercase : str = torch.load(os.path.join(_lowercase, 'pytorch_model.bin' ) ) _lowercase : List[Any] = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase : Optional[int] = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _lowercase : List[str] = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _lowercase : Dict = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _lowercase : Union[str, Any] = MagnitudeBinarizer.apply(inputs=_lowercase, threshold=_lowercase ) _lowercase : Optional[Any] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase : Optional[Any] = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : List[str] = TopKBinarizer.apply(_lowercase, _lowercase ) _lowercase : str = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase : str = name[:-6] _lowercase : Optional[Any] = model[f'''{prefix_}mask_scores'''] _lowercase : str = ThresholdBinarizer.apply(_lowercase, _lowercase, _lowercase ) _lowercase : Optional[int] = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase : Optional[int] = name[:-6] _lowercase : List[str] = model[f'''{prefix_}mask_scores'''] _lowercase , _lowercase : Union[str, Any] = -0.1, 1.1 _lowercase : str = torch.sigmoid(_lowercase ) _lowercase : int = s * (r - l) + l _lowercase : Optional[Any] = s_bar.clamp(min=0.0, max=1.0 ) _lowercase : Union[str, Any] = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase : List[Any] = os.path.join( os.path.dirname(_lowercase ), f'''bertarized_{os.path.basename(_lowercase )}''' ) if not os.path.isdir(_lowercase ): shutil.copytree(_lowercase, _lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(_lowercase, os.path.join(_lowercase, 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _A : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _A : List[Any] =parser.parse_args() main(args)
4
0
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> list: _lowercase : List[Any] = [0] * len(_lowercase ) for i in range(1, len(_lowercase ) ): # use last results for better performance - dynamic programming _lowercase : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowercase : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowercase : Any = j return prefix_result def __UpperCamelCase ( _lowercase ) -> int: return max(prefix_function(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
'''simple docstring''' _A : Optional[Any] ='''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/''' def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure the supplied data is a bytes-like object if not isinstance(_lowercase, _lowercase ): _lowercase : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) _lowercase : int = ''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) _lowercase : Dict = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later _lowercase : Optional[Any] = B'=' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: _lowercase : Optional[int] = B'' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6], 2 )] for index in range(0, len(_lowercase ), 6 ) ).encode() + padding ) def __UpperCamelCase ( _lowercase ) -> bytes: # Make sure encoded_data is either a string or a bytes-like object if not isinstance(_lowercase, _lowercase ) and not isinstance(_lowercase, _lowercase ): _lowercase : int = ( 'argument should be a bytes-like object or ASCII string, ' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase, _lowercase ): try: _lowercase : Optional[int] = encoded_data.decode('utf-8' ) except UnicodeDecodeError: raise ValueError('base64 encoded data should only contain ASCII characters' ) _lowercase : Optional[int] = encoded_data.count('=' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one _lowercase : str = encoded_data[:-padding] _lowercase : Tuple = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: _lowercase : Union[str, Any] = ''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) _lowercase : List[str] = [ int(binary_stream[index : index + 8], 2 ) for index in range(0, len(_lowercase ), 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
4
0
'''simple docstring''' from __future__ import annotations import queue class lowerCamelCase__ : '''simple docstring''' def __init__( self : Optional[int] , UpperCamelCase_ : List[str] ) -> Optional[int]: '''simple docstring''' _lowercase : List[Any] = data _lowercase : str = None _lowercase : Dict = None def __UpperCamelCase ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) _lowercase : List[str] = input('Enter the value of the root node: ' ).strip().lower() _lowercase : queue.Queue = queue.Queue() _lowercase : Union[str, Any] = TreeNode(int(__A ) ) q.put(__A ) while not q.empty(): _lowercase : Dict = q.get() _lowercase : Optional[Any] = f'''Enter the left node of {node_found.data}: ''' _lowercase : Tuple = input(__A ).strip().lower() or '''n''' if check == "n": return tree_node _lowercase : Tuple = TreeNode(int(__A ) ) _lowercase : Optional[int] = left_node q.put(__A ) _lowercase : Union[str, Any] = f'''Enter the right node of {node_found.data}: ''' _lowercase : Tuple = input(__A ).strip().lower() or '''n''' if check == "n": return tree_node _lowercase : Optional[Any] = TreeNode(int(__A ) ) _lowercase : List[str] = right_node q.put(__A ) raise def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return print(node.data, end=',' ) pre_order(node.left ) pre_order(node.right ) def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return in_order(node.left ) print(node.data, end=',' ) in_order(node.right ) def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data, end=',' ) def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return _lowercase : queue.Queue = queue.Queue() q.put(__A ) while not q.empty(): _lowercase : List[Any] = q.get() print(node_dequeued.data, end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return _lowercase : queue.Queue = queue.Queue() q.put(__A ) while not q.empty(): _lowercase : Optional[Any] = [] while not q.empty(): _lowercase : Tuple = q.get() print(node_dequeued.data, end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__A ) def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return _lowercase : list[TreeNode] = [] _lowercase : Union[str, Any] = node while n or stack: while n: # start from root node, find its left child print(n.data, end=',' ) stack.append(__A ) _lowercase : Dict = n.left # end of while means current node doesn't have left child _lowercase : List[str] = stack.pop() # start to traverse its right child _lowercase : List[str] = n.right def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return _lowercase : list[TreeNode] = [] _lowercase : List[str] = node while n or stack: while n: stack.append(__A ) _lowercase : Optional[Any] = n.left _lowercase : Tuple = stack.pop() print(n.data, end=',' ) _lowercase : Union[str, Any] = n.right def __UpperCamelCase ( _lowercase ) -> None: if not isinstance(__A, __A ) or not node: return _lowercase : Tuple = [], [] _lowercase : Optional[int] = node stacka.append(__A ) while stacka: # to find the reversed order of post order, store it in stack2 _lowercase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__A ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data, end=',' ) def __UpperCamelCase ( _lowercase = "", _lowercase=50, _lowercase="*" ) -> str: if not s: return "\n" + width * char _lowercase : Optional[int] = divmod(width - len(__A ) - 2, 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt('''Binary Tree Traversals''')) _A : Optional[int] =build_tree() print(prompt('''Pre Order Traversal''')) pre_order(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal''')) in_order(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal''')) post_order(node) print(prompt() + '''\n''') print(prompt('''Level Order Traversal''')) level_order(node) print(prompt() + '''\n''') print(prompt('''Actual Level Order Traversal''')) level_order_actual(node) print('''*''' * 5_0 + '''\n''') print(prompt('''Pre Order Traversal - Iteration Version''')) pre_order_iter(node) print(prompt() + '''\n''') print(prompt('''In Order Traversal - Iteration Version''')) in_order_iter(node) print(prompt() + '''\n''') print(prompt('''Post Order Traversal - Iteration Version''')) post_order_iter(node) print(prompt())
707
'''simple docstring''' def __UpperCamelCase ( _lowercase ) -> bool: return str(_lowercase ) == str(_lowercase )[::-1] def __UpperCamelCase ( _lowercase ) -> int: return int(_lowercase ) + int(str(_lowercase )[::-1] ) def __UpperCamelCase ( _lowercase = 1_0000 ) -> int: _lowercase : List[str] = [] for num in range(1, _lowercase ): _lowercase : Tuple = 0 _lowercase : Tuple = num while iterations < 50: _lowercase : Union[str, Any] = sum_reverse(_lowercase ) iterations += 1 if is_palindrome(_lowercase ): break else: lychrel_nums.append(_lowercase ) return len(_lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
4
0
'''simple docstring''' _A : Tuple ='0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
708
'''simple docstring''' import argparse from collections import defaultdict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) -> int: _lowercase : Optional[int] = f'''{file}_{class_name}_{test_name}''' done_test[_id] += 1 with open(_lowercase, 'r' ) as f: _lowercase : Optional[int] = f.readlines() _lowercase : Dict = f'''class {class_name}(''' _lowercase : List[Any] = f'''{4 * " "}def {test_name}(''' _lowercase : List[str] = f'''{8 * " "}{correct_line.split()[0]}''' _lowercase : List[str] = f'''{16 * " "}{correct_line.split()[0]}''' _lowercase : Dict = False _lowercase : str = False _lowercase : List[Any] = False _lowercase : Union[str, Any] = False _lowercase : Any = 0 _lowercase : Tuple = 0 _lowercase : Optional[int] = [] for line in lines: if line.startswith(_lowercase ): _lowercase : int = True elif in_class and line.startswith(_lowercase ): _lowercase : List[Any] = True elif in_class and in_func and (line.startswith(_lowercase ) or line.startswith(_lowercase )): _lowercase : str = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _lowercase : List[Any] = True if in_class and in_func and in_line: if ")" not in line: continue else: _lowercase : Any = True if in_class and in_func and in_line and insert_line: new_lines.append(f'''{spaces * " "}{correct_line}''' ) _lowercase : Any = False else: new_lines.append(_lowercase ) with open(_lowercase, 'w' ) as f: for line in new_lines: f.write(_lowercase ) def __UpperCamelCase ( _lowercase, _lowercase=None ) -> Optional[Any]: if fail is not None: with open(_lowercase, 'r' ) as f: _lowercase : Any = {l.strip() for l in f.readlines()} else: _lowercase : str = None with open(_lowercase, 'r' ) as f: _lowercase : str = f.readlines() _lowercase : Union[str, Any] = defaultdict(_lowercase ) for line in correct_lines: _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_lowercase, _lowercase, _lowercase, _lowercase, _lowercase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _A : Union[str, Any] =parser.parse_args() main(args.correct_filename, args.fail_filename)
4
0
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _A : str =logging.get_logger(__name__) _A : Optional[int] ={ "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = "sew" def __init__( self : List[str] , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : Optional[int]=768 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Dict=12 , UpperCamelCase_ : Optional[int]=3072 , UpperCamelCase_ : int=2 , UpperCamelCase_ : str="gelu" , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : List[Any]=0.0 , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : List[Any]=1E-5 , UpperCamelCase_ : List[Any]="group" , UpperCamelCase_ : List[Any]="gelu" , UpperCamelCase_ : List[Any]=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCamelCase_ : Tuple=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase_ : List[Any]=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase_ : List[Any]=False , UpperCamelCase_ : str=128 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Tuple=0.05 , UpperCamelCase_ : Union[str, Any]=10 , UpperCamelCase_ : str=2 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : int=10 , UpperCamelCase_ : Any=0 , UpperCamelCase_ : Union[str, Any]="mean" , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Optional[int]=256 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : List[Any]=1 , UpperCamelCase_ : List[Any]=2 , **UpperCamelCase_ : List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**UpperCamelCase_ , pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) _lowercase : Tuple = hidden_size _lowercase : Tuple = feat_extract_norm _lowercase : Optional[int] = feat_extract_activation _lowercase : Dict = list(UpperCamelCase_ ) _lowercase : Optional[Any] = list(UpperCamelCase_ ) _lowercase : str = list(UpperCamelCase_ ) _lowercase : Union[str, Any] = conv_bias _lowercase : Any = num_conv_pos_embeddings _lowercase : Optional[int] = num_conv_pos_embedding_groups _lowercase : List[str] = len(self.conv_dim ) _lowercase : Optional[Any] = num_hidden_layers _lowercase : Optional[int] = intermediate_size _lowercase : Tuple = squeeze_factor _lowercase : str = hidden_act _lowercase : Any = num_attention_heads _lowercase : int = hidden_dropout _lowercase : List[str] = attention_dropout _lowercase : List[str] = activation_dropout _lowercase : str = feat_proj_dropout _lowercase : Union[str, Any] = final_dropout _lowercase : Dict = layerdrop _lowercase : Any = layer_norm_eps _lowercase : List[str] = initializer_range _lowercase : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _lowercase : Optional[Any] = apply_spec_augment _lowercase : int = mask_time_prob _lowercase : Optional[int] = mask_time_length _lowercase : Tuple = mask_time_min_masks _lowercase : Dict = mask_feature_prob _lowercase : Optional[int] = mask_feature_length _lowercase : List[str] = mask_feature_min_masks # ctc loss _lowercase : int = ctc_loss_reduction _lowercase : List[Any] = ctc_zero_infinity # sequence classification _lowercase : List[str] = use_weighted_layer_sum _lowercase : List[Any] = classifier_proj_size @property def __UpperCAmelCase ( self : Optional[Any] ) -> int: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
709
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax _A : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(A ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int: '''simple docstring''' super().__init__(**UpperCamelCase_ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]: '''simple docstring''' return super().__call__(UpperCamelCase_ , **UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = {} if "candidate_labels" in kwargs: _lowercase : Union[str, Any] = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _lowercase : int = kwargs['hypothesis_template'] return preprocess_params, {}, {} def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]: '''simple docstring''' _lowercase : Dict = load_image(UpperCamelCase_ ) _lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _lowercase : Optional[Any] = candidate_labels _lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels] _lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ ) _lowercase : Any = [text_inputs] return inputs def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = model_inputs.pop('candidate_labels' ) _lowercase : List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , UpperCamelCase_ ): _lowercase : Optional[int] = text_inputs[0] else: # Batching case. _lowercase : List[str] = text_inputs[0][0] _lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' _lowercase : Optional[int] = model_outputs.pop('candidate_labels' ) _lowercase : Optional[int] = model_outputs['logits'][0] if self.framework == "pt": _lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 ) _lowercase : Tuple = probs.tolist() if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : List[Any] = [scores] elif self.framework == "tf": _lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 ) _lowercase : List[Any] = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase : List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] ) ] return result
4
0
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = KandinskyVaaPriorPipeline A_ = ["""prompt"""] A_ = ["""prompt""", """negative_prompt"""] A_ = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] A_ = False @property def __UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' return 32 @property def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCAmelCase ( self : Optional[int] ) -> Any: '''simple docstring''' return 100 @property def __UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def __UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__A ) @property def __UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) _lowercase : List[str] = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } _lowercase : Any = PriorTransformer(**__A ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 _lowercase : Optional[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' torch.manual_seed(0 ) _lowercase : Optional[int] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) _lowercase : Any = CLIPVisionModelWithProjection(__A ) return model @property def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = CLIPImageProcessor( crop_size=224 , do_center_crop=__A , do_normalize=__A , do_resize=__A , image_mean=[0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] , image_std=[0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] , resample=3 , size=224 , ) return image_processor def __UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = self.dummy_prior _lowercase : Any = self.dummy_image_encoder _lowercase : Any = self.dummy_text_encoder _lowercase : List[str] = self.dummy_tokenizer _lowercase : List[str] = self.dummy_image_processor _lowercase : Optional[Any] = UnCLIPScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1000 , clip_sample=__A , clip_sample_range=10.0 , ) _lowercase : Optional[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def __UpperCAmelCase ( self : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=0 ) -> List[str]: '''simple docstring''' if str(__A ).startswith('mps' ): _lowercase : Any = torch.manual_seed(__A ) else: _lowercase : Optional[int] = torch.Generator(device=__A ).manual_seed(__A ) _lowercase : int = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Tuple = "cpu" _lowercase : Any = self.get_dummy_components() _lowercase : int = self.pipeline_class(**__A ) _lowercase : str = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) _lowercase : int = pipe(**self.get_dummy_inputs(__A ) ) _lowercase : Any = output.image_embeds _lowercase : Optional[int] = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] _lowercase : Any = image[0, -10:] _lowercase : List[str] = image_from_tuple[0, -10:] assert image.shape == (1, 32) _lowercase : str = np.array( [-0.05_32, 1.71_20, 0.36_56, -1.08_52, -0.89_46, -1.17_56, 0.43_48, 0.24_82, 0.51_46, -0.11_56] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def __UpperCAmelCase ( self : str ) -> Optional[Any]: '''simple docstring''' _lowercase : Tuple = torch_device == "cpu" _lowercase : Optional[int] = True _lowercase : Dict = False self._test_inference_batch_single_identical( test_max_difference=__A , relax_max_difference=__A , test_mean_pixel_difference=__A , ) @skip_mps def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _lowercase : Union[str, Any] = torch_device == "cpu" _lowercase : Any = False self._test_attention_slicing_forward_pass( test_max_difference=__A , test_mean_pixel_difference=__A , )
710
'''simple docstring''' from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def __UpperCamelCase ( _lowercase ) -> None: _lowercase , _lowercase : List[Any] = analyze_text(_lowercase ) _lowercase : Any = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. _lowercase : Union[str, Any] = sum(single_char_strings.values() ) # one length string _lowercase : Union[str, Any] = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: _lowercase : Any = single_char_strings[ch] _lowercase : int = my_str / all_sum my_fir_sum += prob * math.loga(_lowercase ) # entropy formula. # print entropy print(f'''{round(-1 * my_fir_sum ):.1f}''' ) # two len string _lowercase : str = sum(two_char_strings.values() ) _lowercase : str = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: _lowercase : Optional[Any] = cha + cha if sequence in two_char_strings: _lowercase : int = two_char_strings[sequence] _lowercase : Optional[int] = int(_lowercase ) / all_sum my_sec_sum += prob * math.loga(_lowercase ) # print second entropy print(f'''{round(-1 * my_sec_sum ):.1f}''' ) # print the difference between them print(f'''{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}''' ) def __UpperCamelCase ( _lowercase ) -> tuple[dict, dict]: _lowercase : Optional[Any] = Counter() # type: ignore _lowercase : List[Any] = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0, len(_lowercase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def __UpperCamelCase ( ) -> List[Any]: import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
0
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def __UpperCamelCase ( _lowercase ) -> Any: warnings.warn( 'The preprocess method is deprecated and will be removed in a future version. Please' ' use VaeImageProcessor.preprocess instead', __lowerCAmelCase, ) if isinstance(__lowerCAmelCase, torch.Tensor ): return image elif isinstance(__lowerCAmelCase, PIL.Image.Image ): _lowercase : Optional[Any] = [image] if isinstance(image[0], PIL.Image.Image ): _lowercase : List[Any] = image[0].size _lowercase : Dict = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 _lowercase : int = [np.array(i.resize((w, h), resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] _lowercase : Dict = np.concatenate(__lowerCAmelCase, axis=0 ) _lowercase : Tuple = np.array(__lowerCAmelCase ).astype(np.floataa ) / 2_5_5.0 _lowercase : List[Any] = image.transpose(0, 3, 1, 2 ) _lowercase : Dict = 2.0 * image - 1.0 _lowercase : Dict = torch.from_numpy(__lowerCAmelCase ) elif isinstance(image[0], torch.Tensor ): _lowercase : Union[str, Any] = torch.cat(__lowerCAmelCase, dim=0 ) return image def __UpperCamelCase ( _lowercase ) -> Optional[int]: if isinstance(__lowerCAmelCase, torch.Tensor ): return mask elif isinstance(__lowerCAmelCase, PIL.Image.Image ): _lowercase : Optional[Any] = [mask] if isinstance(mask[0], PIL.Image.Image ): _lowercase : Union[str, Any] = mask[0].size _lowercase : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 _lowercase : Dict = [np.array(m.convert('L' ).resize((w, h), resample=PIL_INTERPOLATION['nearest'] ) )[None, :] for m in mask] _lowercase : int = np.concatenate(__lowerCAmelCase, axis=0 ) _lowercase : List[Any] = mask.astype(np.floataa ) / 2_5_5.0 _lowercase : Any = 0 _lowercase : Dict = 1 _lowercase : List[str] = torch.from_numpy(__lowerCAmelCase ) elif isinstance(mask[0], torch.Tensor ): _lowercase : Optional[Any] = torch.cat(__lowerCAmelCase, dim=0 ) return mask class lowerCamelCase__ ( UpperCamelCase_ ): '''simple docstring''' A_ = 42 A_ = 42 def __init__( self : int , UpperCamelCase_ : int , UpperCamelCase_ : Any ) -> Any: '''simple docstring''' super().__init__() self.register_modules(unet=_a , scheduler=_a ) @torch.no_grad() def __call__( self : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] = 250 , UpperCamelCase_ : Union[str, Any] = 0.0 , UpperCamelCase_ : Dict = 10 , UpperCamelCase_ : Union[str, Any] = 10 , UpperCamelCase_ : Any = None , UpperCamelCase_ : Dict = "pil" , UpperCamelCase_ : Optional[Any] = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' _lowercase : str = image _lowercase : List[Any] = _preprocess_image(_a ) _lowercase : int = original_image.to(device=self.device , dtype=self.unet.dtype ) _lowercase : Optional[int] = _preprocess_mask(_a ) _lowercase : Optional[Any] = mask_image.to(device=self.device , dtype=self.unet.dtype ) _lowercase : Optional[int] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_a , _a ) and len(_a ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_a )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) _lowercase : int = original_image.shape _lowercase : List[str] = randn_tensor(_a , generator=_a , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_a , _a , _a , self.device ) _lowercase : Dict = eta _lowercase : Dict = self.scheduler.timesteps[0] + 1 _lowercase : Union[str, Any] = generator[0] if isinstance(_a , _a ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual _lowercase : Tuple = self.unet(_a , _a ).sample # compute previous image: x_t -> x_t-1 _lowercase : Tuple = self.scheduler.step(_a , _a , _a , _a , _a , _a ).prev_sample else: # compute the reverse: x_t-1 -> x_t _lowercase : List[Any] = self.scheduler.undo_step(_a , _a , _a ) _lowercase : int = t _lowercase : int = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : Tuple = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
711
'''simple docstring''' import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : List[Any] = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _lowercase : str = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _lowercase : List[Any] = 'The dog is cute and lives in the garden house' _lowercase : Optional[int] = jnp.array([tokenizer.encode(UpperCamelCase_ )] ) _lowercase : int = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _lowercase : Tuple = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) _lowercase : List[str] = model(UpperCamelCase_ )['last_hidden_state'] self.assertEqual(output.shape , UpperCamelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCamelCase_ , atol=1E-3 ) )
4
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available _A : int ={} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Optional[Any] =['''MLukeTokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
712
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): '''simple docstring''' A_ = ["""image_processor""", """tokenizer"""] A_ = """CLIPImageProcessor""" A_ = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : List[Any] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , **UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' _lowercase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _lowercase : Optional[Any] = kwargs.pop('feature_extractor' ) _lowercase : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : List[str] , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : int=None , **UpperCamelCase_ : List[Any] ) -> Optional[int]: '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _lowercase : Tuple = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _lowercase : Any = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if text is not None and images is not None: _lowercase : int = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def __UpperCAmelCase ( self : List[Any] , *UpperCamelCase_ : Tuple , **UpperCamelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def __UpperCAmelCase ( self : str , *UpperCamelCase_ : Optional[Any] , **UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = self.tokenizer.model_input_names _lowercase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
713
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _A : List[str] ='''pt''' elif is_tf_available(): _A : Tuple ='''tf''' else: _A : Optional[int] ='''jax''' class lowerCamelCase__ ( A , unittest.TestCase ): '''simple docstring''' A_ = ByTaTokenizer A_ = False def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' super().setUp() _lowercase : Any = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' return ByTaTokenizer.from_pretrained('google/byt5-small' ) def __UpperCAmelCase ( self : int , **UpperCamelCase_ : List[Any] ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Tuple=20 , UpperCamelCase_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' _lowercase : Dict = [] for i in range(len(UpperCamelCase_ ) ): try: _lowercase : List[Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) _lowercase : Optional[Any] = list(filter(lambda UpperCamelCase_ : re.match(r'^[ a-zA-Z]+$' , t[1] ) , UpperCamelCase_ ) ) _lowercase : List[Any] = list(filter(lambda UpperCamelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase_ ) , UpperCamelCase_ ) ) if max_length is not None and len(UpperCamelCase_ ) > max_length: _lowercase : List[Any] = toks[:max_length] if min_length is not None and len(UpperCamelCase_ ) < min_length and len(UpperCamelCase_ ) > 0: while len(UpperCamelCase_ ) < min_length: _lowercase : Tuple = toks + toks # toks_str = [t[1] for t in toks] _lowercase : Dict = [t[0] for t in toks] # Ensure consistency _lowercase : Any = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) if " " not in output_txt and len(UpperCamelCase_ ) > 1: _lowercase : Any = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase_ ) ) if with_prefix_space: _lowercase : Union[str, Any] = ' ' + output_txt _lowercase : int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) return output_txt, output_ids def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' _lowercase : List[str] = self.ta_base_tokenizer _lowercase : Union[str, Any] = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) _lowercase : Tuple = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = self.ta_base_tokenizer _lowercase : Tuple = 'Unicode €.' _lowercase : List[Any] = tokenizer(UpperCamelCase_ ) _lowercase : List[Any] = [88, 113, 108, 102, 114, 103, 104, 35, 229, 133, 175, 49, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : List[str] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'Unicode €.</s>' ) _lowercase : Any = tokenizer('e è é ê ë' ) _lowercase : Optional[int] = [104, 35, 198, 171, 35, 198, 172, 35, 198, 173, 35, 198, 174, 1] self.assertEqual(encoded['input_ids'] , UpperCamelCase_ ) # decoding _lowercase : Tuple = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.ta_base_tokenizer _lowercase : int = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off _lowercase : Any = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 1, 0] # fmt: on _lowercase : Dict = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) if FRAMEWORK != "jax": _lowercase : Optional[Any] = list(batch.input_ids.numpy()[0] ) else: _lowercase : List[str] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def __UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = self.ta_base_tokenizer _lowercase : List[str] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] _lowercase : str = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , UpperCamelCase_ ) self.assertIn('attention_mask' , UpperCamelCase_ ) self.assertNotIn('decoder_input_ids' , UpperCamelCase_ ) self.assertNotIn('decoder_attention_mask' , UpperCamelCase_ ) def __UpperCAmelCase ( self : Any ) -> int: '''simple docstring''' _lowercase : Tuple = self.ta_base_tokenizer _lowercase : Optional[Any] = [ 'Summary of the text.', 'Another summary.', ] _lowercase : str = tokenizer( text_target=UpperCamelCase_ , max_length=32 , padding='max_length' , truncation=UpperCamelCase_ , return_tensors=UpperCamelCase_ ) self.assertEqual(32 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self : Dict ) -> Tuple: '''simple docstring''' _lowercase : str = self.ta_base_tokenizer _lowercase : str = ['A long paragraph for summarization. </s>'] _lowercase : Optional[int] = ['Summary of the text. </s>'] # fmt: off _lowercase : Optional[Any] = [68, 35, 111, 114, 113, 106, 35, 115, 100, 117, 100, 106, 117, 100, 115, 107, 35, 105, 114, 117, 35, 118, 120, 112, 112, 100, 117, 108, 125, 100, 119, 108, 114, 113, 49, 35, 1] _lowercase : Optional[Any] = [86, 120, 112, 112, 100, 117, 124, 35, 114, 105, 35, 119, 107, 104, 35, 119, 104, 123, 119, 49, 35, 1] # fmt: on _lowercase : Any = tokenizer(UpperCamelCase_ , text_target=UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , batch['input_ids'][0] ) self.assertEqual(UpperCamelCase_ , batch['labels'][0] ) def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test _lowercase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : List[Any] = tempfile.mkdtemp() _lowercase : Any = ' He is very happy, UNwant\u00E9d,running' _lowercase : Union[str, Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Tuple = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) shutil.rmtree(UpperCamelCase_ ) _lowercase : str = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc _lowercase : Dict = tempfile.mkdtemp() _lowercase : List[Any] = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) _lowercase : Optional[int] = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) tokenizer.save_pretrained(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.__class__.from_pretrained(UpperCamelCase_ ) _lowercase : Dict = after_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) _lowercase : Dict = tokenizer.__class__.from_pretrained(UpperCamelCase_ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCamelCase_ ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: '''simple docstring''' _lowercase : List[Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: _lowercase : int = json.load(UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: _lowercase : Tuple = json.load(UpperCamelCase_ ) _lowercase : List[Any] = [F'''<extra_id_{i}>''' for i in range(125 )] _lowercase : Any = added_tokens_extra_ids + [ 'an_additional_special_token' ] _lowercase : int = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(UpperCamelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) with open(os.path.join(UpperCamelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(UpperCamelCase_ , UpperCamelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowercase : Optional[Any] = tokenizer_class.from_pretrained( UpperCamelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowercase : List[str] = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=UpperCamelCase_ )] _lowercase : Tuple = tokenizer_class.from_pretrained( UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self : List[str] ) -> str: '''simple docstring''' _lowercase : Union[str, Any] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase_ ) _lowercase : str = tokenizer_class.from_pretrained(UpperCamelCase_ ) self.assertTrue(tokenizer.decode([255] ) == '' ) def __UpperCAmelCase ( self : Optional[int] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : List[Any] ) -> int: '''simple docstring''' pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' _lowercase : Optional[Any] = self.get_tokenizers(fast=UpperCamelCase_ , do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Any = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] _lowercase : Tuple = tokenizer.convert_tokens_to_string(UpperCamelCase_ ) self.assertIsInstance(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCAmelCase ( self : List[Any] ) -> str: '''simple docstring''' _lowercase : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _lowercase : Optional[int] = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] _lowercase : Optional[int] = 0 _lowercase : int = tokenizer.convert_ids_to_tokens( UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ ) for attr in attributes_list: setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , attr + '_id' , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(getattr(UpperCamelCase_ , attr + '_id' ) , UpperCamelCase_ ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(UpperCamelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
4
0
'''simple docstring''' import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _A : Union[str, Any] =False class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' pass @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : Tuple ) -> List[Any]: '''simple docstring''' _lowercase : int = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : Optional[Any] = """A painting of a squirrel eating a burger """ _lowercase : List[str] = torch.manual_seed(0 ) _lowercase : Tuple = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_UpperCamelCase ) _lowercase : Optional[int] = VersatileDiffusionTextToImagePipeline.from_pretrained(_UpperCamelCase ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[Any] = generator.manual_seed(0 ) _lowercase : str = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=2 , output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __UpperCAmelCase ( self : str ) -> str: '''simple docstring''' _lowercase : Dict = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' , torch_dtype=torch.floataa ) pipe.to(_UpperCamelCase ) pipe.set_progress_bar_config(disable=_UpperCamelCase ) _lowercase : List[str] = """A painting of a squirrel eating a burger """ _lowercase : Union[str, Any] = torch.manual_seed(0 ) _lowercase : Union[str, Any] = pipe( prompt=_UpperCamelCase , generator=_UpperCamelCase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' ).images _lowercase : List[str] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowercase : Optional[int] = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
714
'''simple docstring''' _A : Dict =''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' _A : Dict =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] _A : Dict ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
4
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _A : List[str] =logging.get_logger(__name__) _A : List[str] ={ '''google/bit-50''': '''https://huggingface.co/google/bit-50/resolve/main/config.json''', } class lowerCamelCase__ ( a__ , a__ ): '''simple docstring''' A_ = """bit""" A_ = ["""preactivation""", """bottleneck"""] A_ = ["""SAME""", """VALID"""] def __init__( self : str , UpperCamelCase_ : Optional[int]=3 , UpperCamelCase_ : Tuple=64 , UpperCamelCase_ : Optional[Any]=[256, 512, 1024, 2048] , UpperCamelCase_ : List[str]=[3, 4, 6, 3] , UpperCamelCase_ : Tuple="preactivation" , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=32 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[int]=False , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : Optional[int]=1 , UpperCamelCase_ : Any=None , UpperCamelCase_ : Any=None , **UpperCamelCase_ : List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**_A ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {",".join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: _lowercase : Dict = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) _lowercase : Optional[int] = num_channels _lowercase : str = embedding_size _lowercase : Optional[int] = hidden_sizes _lowercase : Optional[int] = depths _lowercase : Dict = layer_type _lowercase : str = hidden_act _lowercase : Tuple = global_padding _lowercase : Dict = num_groups _lowercase : Optional[Any] = drop_path_rate _lowercase : Tuple = embedding_dynamic_padding _lowercase : Union[str, Any] = output_stride _lowercase : Dict = width_factor _lowercase : List[Any] = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(_A ) + 1 )] _lowercase : Dict = get_aligned_output_features_output_indices( out_features=_A , out_indices=_A , stage_names=self.stage_names )
715
'''simple docstring''' import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : int = torch.exp(_lowercase ) _lowercase : List[str] = torch.sum(_lowercase, dim=1 ) # sum of exp(x_i) _lowercase : str = torch.sum(x * exp_x, dim=1 ) # sum of x_i * exp(x_i) return torch.log(_lowercase ) - B / A class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase_ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__() _lowercase : int = config.output_attentions _lowercase : int = config.output_hidden_states _lowercase : Union[str, Any] = nn.ModuleList([BertLayer(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : List[Any] = nn.ModuleList([BertHighway(UpperCamelCase_ ) for _ in range(config.num_hidden_layers )] ) _lowercase : Tuple = [-1 for _ in range(config.num_hidden_layers )] def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : str ) -> int: '''simple docstring''' if (type(UpperCamelCase_ ) is float) or (type(UpperCamelCase_ ) is int): for i in range(len(self.early_exit_entropy ) ): _lowercase : Optional[Any] = x else: _lowercase : Optional[int] = x def __UpperCAmelCase ( self : List[Any] , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' _lowercase : Optional[int] = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : Optional[Any]=None , ) -> Optional[int]: '''simple docstring''' _lowercase : int = () _lowercase : List[Any] = () _lowercase : Tuple = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: _lowercase : Optional[int] = all_hidden_states + (hidden_states,) _lowercase : str = layer_module( UpperCamelCase_ , UpperCamelCase_ , head_mask[i] , UpperCamelCase_ , UpperCamelCase_ ) _lowercase : List[str] = layer_outputs[0] if self.output_attentions: _lowercase : Tuple = all_attentions + (layer_outputs[1],) _lowercase : Optional[int] = (hidden_states,) if self.output_hidden_states: _lowercase : str = current_outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[int] = current_outputs + (all_attentions,) _lowercase : List[Any] = self.highway[i](UpperCamelCase_ ) # logits, pooled_output if not self.training: _lowercase : Dict = highway_exit[0] _lowercase : Tuple = entropy(UpperCamelCase_ ) _lowercase : Dict = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy _lowercase : str = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: _lowercase : Tuple = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(UpperCamelCase_ , i + 1 ) else: _lowercase : Optional[int] = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: _lowercase : str = all_hidden_states + (hidden_states,) _lowercase : Optional[Any] = (hidden_states,) if self.output_hidden_states: _lowercase : Dict = outputs + (all_hidden_states,) if self.output_attentions: _lowercase : Optional[Any] = outputs + (all_attentions,) _lowercase : Optional[int] = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( """The Bert Model transformer with early exiting (DeeBERT). """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : int = config _lowercase : int = BertEmbeddings(UpperCamelCase_ ) _lowercase : List[Any] = DeeBertEncoder(UpperCamelCase_ ) _lowercase : Any = BertPooler(UpperCamelCase_ ) self.init_weights() def __UpperCAmelCase ( self : int ) -> Union[str, Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: '''simple docstring''' return self.embeddings.word_embeddings def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = value def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> Union[str, Any]: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(UpperCamelCase_ ) @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : int=None , UpperCamelCase_ : Tuple=None , ) -> Union[str, Any]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: _lowercase : Any = input_ids.size() elif inputs_embeds is not None: _lowercase : Any = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) _lowercase : str = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _lowercase : Tuple = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if encoder_attention_mask is None: _lowercase : Dict = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ ) if token_type_ids is None: _lowercase : int = torch.zeros(UpperCamelCase_ , dtype=torch.long , device=UpperCamelCase_ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _lowercase : torch.Tensor = self.get_extended_attention_mask(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: _lowercase : int = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: _lowercase : int = encoder_attention_mask[:, None, None, :] _lowercase : str = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility _lowercase : Optional[int] = (1.0 - encoder_extended_attention_mask) * -1_00_00.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _lowercase : Optional[int] = self.get_head_mask(UpperCamelCase_ , self.config.num_hidden_layers ) _lowercase : Dict = self.embeddings( input_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ ) _lowercase : List[Any] = self.encoder( UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , encoder_hidden_states=UpperCamelCase_ , encoder_attention_mask=UpperCamelCase_ , ) _lowercase : int = encoder_outputs[0] _lowercase : str = self.pooler(UpperCamelCase_ ) _lowercase : List[Any] = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Any = message _lowercase : Dict = exit_layer # start from 1! class lowerCamelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[str] ) -> Dict: '''simple docstring''' super().__init__() _lowercase : Optional[Any] = BertPooler(UpperCamelCase_ ) _lowercase : List[Any] = nn.Dropout(config.hidden_dropout_prob ) _lowercase : int = nn.Linear(config.hidden_size , config.num_labels ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[int] ) -> List[Any]: '''simple docstring''' _lowercase : str = encoder_outputs[0] _lowercase : int = self.pooler(UpperCamelCase_ ) # "return" pooler_output # BertModel _lowercase : Optional[int] = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification _lowercase : Dict = bmodel_output[1] _lowercase : Union[str, Any] = self.dropout(UpperCamelCase_ ) _lowercase : str = self.classifier(UpperCamelCase_ ) return logits, pooled_output @add_start_docstrings( """Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. """ , A , ) class lowerCamelCase__ ( A ): '''simple docstring''' def __init__( self : int , UpperCamelCase_ : List[Any] ) -> List[str]: '''simple docstring''' super().__init__(UpperCamelCase_ ) _lowercase : Dict = config.num_labels _lowercase : Any = config.num_hidden_layers _lowercase : Optional[int] = DeeBertModel(UpperCamelCase_ ) _lowercase : Any = nn.Dropout(config.hidden_dropout_prob ) _lowercase : Optional[Any] = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(UpperCamelCase_ ) def __UpperCAmelCase ( self : Dict , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=None , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Any=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : Optional[int]=None , UpperCamelCase_ : str=-1 , UpperCamelCase_ : Union[str, Any]=False , ) -> Tuple: '''simple docstring''' _lowercase : Union[str, Any] = self.num_layers try: _lowercase : Tuple = self.bert( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , position_ids=UpperCamelCase_ , head_mask=UpperCamelCase_ , inputs_embeds=UpperCamelCase_ , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits _lowercase : List[Any] = outputs[1] _lowercase : int = self.dropout(UpperCamelCase_ ) _lowercase : Optional[int] = self.classifier(UpperCamelCase_ ) _lowercase : Union[str, Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: _lowercase : Union[str, Any] = e.message _lowercase : Any = e.exit_layer _lowercase : Optional[int] = outputs[0] if not self.training: _lowercase : Union[str, Any] = entropy(UpperCamelCase_ ) _lowercase : Tuple = [] _lowercase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression _lowercase : Tuple = MSELoss() _lowercase : Tuple = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Union[str, Any] = CrossEntropyLoss() _lowercase : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits _lowercase : Optional[Any] = [] for highway_exit in outputs[-1]: _lowercase : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(UpperCamelCase_ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression _lowercase : Union[str, Any] = MSELoss() _lowercase : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: _lowercase : Dict = CrossEntropyLoss() _lowercase : Optional[int] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(UpperCamelCase_ ) if train_highway: _lowercase : List[str] = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: _lowercase : Optional[Any] = (loss,) + outputs if not self.training: _lowercase : List[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: _lowercase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
4
0
'''simple docstring''' from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Union[str, Any]=32 , UpperCamelCase_ : List[Any]=3 , UpperCamelCase_ : Optional[int]=10 , UpperCamelCase_ : Optional[Any]=[10, 20, 30, 40] , UpperCamelCase_ : Tuple=[1, 1, 2, 1] , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : List[str]="relu" , UpperCamelCase_ : Tuple=3 , UpperCamelCase_ : Union[str, Any]=None , ) -> str: '''simple docstring''' _lowercase : Optional[Any] = parent _lowercase : Optional[int] = batch_size _lowercase : List[str] = image_size _lowercase : List[str] = num_channels _lowercase : Tuple = embeddings_size _lowercase : Optional[int] = hidden_sizes _lowercase : Dict = depths _lowercase : Optional[int] = is_training _lowercase : List[str] = use_labels _lowercase : List[Any] = hidden_act _lowercase : Optional[int] = num_labels _lowercase : int = scope _lowercase : List[Any] = len(__lowerCamelCase ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: '''simple docstring''' _lowercase : str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowercase : Optional[Any] = None if self.use_labels: _lowercase : Any = ids_tensor([self.batch_size] , self.num_labels ) _lowercase : List[Any] = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : List[str] ) -> int: '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] ) -> Tuple: '''simple docstring''' _lowercase : List[str] = TFRegNetModel(config=__lowerCamelCase ) _lowercase : str = model(__lowerCamelCase , training=__lowerCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCAmelCase ( self : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = self.num_labels _lowercase : int = TFRegNetForImageClassification(__lowerCamelCase ) _lowercase : str = model(__lowerCamelCase , labels=__lowerCamelCase , training=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' _lowercase : Any = self.prepare_config_and_inputs() _lowercase : str = config_and_inputs _lowercase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCamelCase__ ( _A , _A , unittest.TestCase ): '''simple docstring''' A_ = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () A_ = ( {"""feature-extraction""": TFRegNetModel, """image-classification""": TFRegNetForImageClassification} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = False A_ = False def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' _lowercase : Optional[Any] = TFRegNetModelTester(self ) _lowercase : int = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: '''simple docstring''' return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __UpperCAmelCase ( self : str ) -> Any: '''simple docstring''' super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' pass def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: '''simple docstring''' _lowercase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Union[str, Any] = model_class(__lowerCamelCase ) _lowercase : int = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Union[str, Any] = [*signature.parameters.keys()] _lowercase : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' def check_hidden_states_output(UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str ): _lowercase : int = model_class(__lowerCamelCase ) _lowercase : int = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) , training=__lowerCamelCase ) _lowercase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowercase : Dict = self.model_tester.num_stages self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) _lowercase : int = self.model_tester.prepare_config_and_inputs_for_common() _lowercase : str = ["basic", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: _lowercase : List[str] = layer_type _lowercase : List[Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Union[str, Any] = True check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' _lowercase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]={} ): _lowercase : Optional[int] = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ) _lowercase : int = model(__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase ).to_tuple() def recursive_check(UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ): if isinstance(__lowerCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase ): recursive_check(__lowerCamelCase , __lowerCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__lowerCamelCase , __lowerCamelCase ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase ) for model_class in self.all_model_classes: _lowercase : Tuple = model_class(__lowerCamelCase ) _lowercase : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _lowercase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowercase : Optional[int] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) _lowercase : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _lowercase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _lowercase : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {'output_hidden_states': True} ) _lowercase : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) _lowercase : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {'output_hidden_states': True} ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: '''simple docstring''' for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Union[str, Any] = TFRegNetModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCamelCase ( ) -> Any: _lowercase : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : List[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowercase : Optional[int] = self.default_image_processor _lowercase : List[Any] = prepare_img() _lowercase : str = image_processor(images=__lowerCamelCase , return_tensors='tf' ) # forward pass _lowercase : List[Any] = model(**__lowerCamelCase , training=__lowerCamelCase ) # verify the logits _lowercase : Dict = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowerCamelCase ) _lowercase : Optional[Any] = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 )
716
'''simple docstring''' import unittest from knapsack import greedy_knapsack as kp class lowerCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : int ) -> Any: '''simple docstring''' _lowercase : List[Any] = [10, 20, 30, 40, 50, 60] _lowercase : Tuple = [2, 4, 6, 8, 10, 12] _lowercase : Optional[Any] = 100 self.assertEqual(kp.calc_profit(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , 210 ) def __UpperCAmelCase ( self : int ) -> int: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Weight can not be negative.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'Profit can not be negative.' ) def __UpperCAmelCase ( self : int ) -> List[str]: '''simple docstring''' self.assertRaisesRegex(UpperCamelCase_ , 'max_weight must greater than zero.' ) def __UpperCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' self.assertRaisesRegex( UpperCamelCase_ , 'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
4
0
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class lowerCamelCase__ ( _UpperCAmelCase ): '''simple docstring''' A_ = """M-CLIP""" def __init__( self : Optional[Any] , UpperCamelCase_ : Union[str, Any]=1024 , UpperCamelCase_ : Optional[int]=768 , **UpperCamelCase_ : List[str] ) -> List[Any]: '''simple docstring''' _lowercase : Tuple = transformerDimSize _lowercase : int = imageDimSize super().__init__(**lowerCamelCase_ ) class lowerCamelCase__ ( _UpperCAmelCase ): '''simple docstring''' A_ = MCLIPConfig def __init__( self : Optional[int] , UpperCamelCase_ : List[Any] , *UpperCamelCase_ : str , **UpperCamelCase_ : str ) -> Union[str, Any]: '''simple docstring''' super().__init__(lowerCamelCase_ , *lowerCamelCase_ , **lowerCamelCase_ ) _lowercase : Optional[int] = XLMRobertaModel(lowerCamelCase_ ) _lowercase : Optional[int] = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def __UpperCAmelCase ( self : int , UpperCamelCase_ : Any , UpperCamelCase_ : Dict ) -> Optional[Any]: '''simple docstring''' _lowercase : Union[str, Any] = self.transformer(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ )[0] _lowercase : List[str] = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(lowerCamelCase_ ), embs
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
0
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def __UpperCamelCase ( _lowercase ) -> Tuple: return 1 / (1 + np.exp(-z )) def __UpperCamelCase ( _lowercase, _lowercase ) -> int: return (-y * np.log(_A ) - (1 - y) * np.log(1 - h )).mean() def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Dict: _lowercase : Optional[Any] = np.dot(_A, _A ) return np.sum(y * scores - np.log(1 + np.exp(_A ) ) ) def __UpperCamelCase ( _lowercase, _lowercase, _lowercase, _lowercase=7_0000 ) -> int: _lowercase : Optional[Any] = np.zeros(x.shape[1] ) for iterations in range(_A ): _lowercase : Union[str, Any] = np.dot(_A, _A ) _lowercase : str = sigmoid_function(_A ) _lowercase : Any = np.dot(x.T, h - y ) / y.size _lowercase : str = theta - alpha * gradient # updating the weights _lowercase : List[Any] = np.dot(_A, _A ) _lowercase : Union[str, Any] = sigmoid_function(_A ) _lowercase : List[Any] = cost_function(_A, _A ) if iterations % 100 == 0: print(f'''loss: {j} \t''' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _A : List[Any] =datasets.load_iris() _A : List[str] =iris.data[:, :2] _A : Optional[Any] =(iris.target != 0) * 1 _A : List[Any] =0.1 _A : Optional[int] =logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print('''theta: ''', theta) # printing the theta i.e our weights vector def __UpperCamelCase ( _lowercase ) -> str: return sigmoid_function( np.dot(_A, _A ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='''b''', label='''0''') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='''r''', label='''1''') (_A) : str =(x[:, 0].min(), x[:, 0].max()) (_A) : Tuple =(x[:, 1].min(), x[:, 1].max()) (_A) : List[str] =np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _A : Any =np.c_[xxa.ravel(), xxa.ravel()] _A : str =predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='''black''') plt.legend() plt.show()
718
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _A : Optional[Any] =logging.get_logger(__name__) _A : Optional[int] ={ '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """markuplm""" def __init__( self : int , UpperCamelCase_ : Optional[Any]=3_0522 , UpperCamelCase_ : Optional[Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Union[str, Any]=12 , UpperCamelCase_ : Tuple=3072 , UpperCamelCase_ : Union[str, Any]="gelu" , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : Dict=512 , UpperCamelCase_ : Optional[int]=2 , UpperCamelCase_ : Any=0.02 , UpperCamelCase_ : Optional[Any]=1E-12 , UpperCamelCase_ : List[str]=0 , UpperCamelCase_ : Optional[int]=0 , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : str=256 , UpperCamelCase_ : Optional[Any]=1024 , UpperCamelCase_ : Union[str, Any]=216 , UpperCamelCase_ : int=1001 , UpperCamelCase_ : int=32 , UpperCamelCase_ : int=50 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Any , ) -> Optional[int]: '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) _lowercase : List[Any] = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : Dict = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Dict = hidden_act _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : List[Any] = type_vocab_size _lowercase : Union[str, Any] = initializer_range _lowercase : Optional[int] = layer_norm_eps _lowercase : Optional[Any] = position_embedding_type _lowercase : str = use_cache _lowercase : str = classifier_dropout # additional properties _lowercase : int = max_depth _lowercase : Dict = max_xpath_tag_unit_embeddings _lowercase : str = max_xpath_subs_unit_embeddings _lowercase : List[str] = tag_pad_id _lowercase : Optional[int] = subs_pad_id _lowercase : Any = xpath_unit_hidden_size
4
0
from argparse import ArgumentParser from . import BaseTransformersCLICommand def __UpperCamelCase ( _lowercase ) -> Dict: return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code ) class lowerCamelCase__ ( _a ): '''simple docstring''' @staticmethod def __UpperCAmelCase ( UpperCamelCase_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' _lowercase : int = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=snake_case_ , default=snake_case_ , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=snake_case_ , help='Name of the model to download' ) download_parser.set_defaults(func=snake_case_ ) def __init__( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple ) -> str: '''simple docstring''' _lowercase : Tuple = model _lowercase : Optional[int] = cache _lowercase : Any = force _lowercase : Dict = trust_remote_code def __UpperCAmelCase ( self : str ) -> List[Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
719
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
0
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _A : Tuple =logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] = None , UpperCamelCase_ : Dict = None ) -> List[str]: '''simple docstring''' super().__init__() _lowercase : int = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _lowercase : Union[str, Any] = torch.zeros(_lowercase , _lowercase ) else: _lowercase : Tuple = None _lowercase : Optional[Any] = torch.nn.Parameter(_lowercase ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 A_ = 42 def __init__( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] , ) -> Optional[Any]: '''simple docstring''' super().__init__() self.register_modules( vqvae=_lowercase , transformer=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , scheduler=_lowercase , learned_classifier_free_sampling_embeddings=_lowercase , ) def __UpperCAmelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : List[str] , UpperCamelCase_ : str ) -> int: '''simple docstring''' _lowercase : Union[str, Any] = len(_lowercase ) if isinstance(_lowercase , _lowercase ) else 1 # get prompt text embeddings _lowercase : Dict = self.tokenizer( _lowercase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _lowercase : List[Any] = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _lowercase : Any = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) _lowercase : Optional[int] = text_input_ids[:, : self.tokenizer.model_max_length] _lowercase : Any = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _lowercase : Union[str, Any] = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate text embeddings for each generation per prompt _lowercase : Tuple = prompt_embeds.repeat_interleave(_lowercase , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _lowercase : Optional[Any] = self.learned_classifier_free_sampling_embeddings.embeddings _lowercase : Any = negative_prompt_embeds.unsqueeze(0 ).repeat(_lowercase , 1 , 1 ) else: _lowercase : Union[str, Any] = [""""""] * batch_size _lowercase : Tuple = text_input_ids.shape[-1] _lowercase : Dict = self.tokenizer( _lowercase , padding='max_length' , max_length=_lowercase , truncation=_lowercase , return_tensors='pt' , ) _lowercase : Dict = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings _lowercase : Optional[int] = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=_lowercase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _lowercase : List[Any] = negative_prompt_embeds.shape[1] _lowercase : int = negative_prompt_embeds.repeat(1 , _lowercase , 1 ) _lowercase : int = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _lowercase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _lowercase : Tuple = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Any = 100 , UpperCamelCase_ : Tuple = 5.0 , UpperCamelCase_ : int = 1.0 , UpperCamelCase_ : Any = 1 , UpperCamelCase_ : List[Any] = None , UpperCamelCase_ : Dict = None , UpperCamelCase_ : int = "pil" , UpperCamelCase_ : Union[str, Any] = True , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : List[Any] = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(_lowercase , _lowercase ): _lowercase : Optional[Any] = 1 elif isinstance(_lowercase , _lowercase ): _lowercase : List[str] = len(_lowercase ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(_lowercase )}''' ) _lowercase : List[str] = batch_size * num_images_per_prompt _lowercase : List[str] = guidance_scale > 1.0 _lowercase : Tuple = self._encode_prompt(_lowercase , _lowercase , _lowercase ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_lowercase , _lowercase ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(_lowercase )}.''' ) # get the initial completely masked latents unless the user supplied it _lowercase : Optional[Any] = (batch_size, self.transformer.num_latent_pixels) if latents is None: _lowercase : Optional[Any] = self.transformer.num_vector_embeds - 1 _lowercase : List[str] = torch.full(_lowercase , _lowercase ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) _lowercase : Optional[int] = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_lowercase , device=self.device ) _lowercase : Optional[Any] = self.scheduler.timesteps.to(self.device ) _lowercase : int = latents for i, t in enumerate(self.progress_bar(_lowercase ) ): # expand the sample if we are doing classifier free guidance _lowercase : Dict = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _lowercase : Dict = self.transformer(_lowercase , encoder_hidden_states=_lowercase , timestep=_lowercase ).sample if do_classifier_free_guidance: _lowercase : Any = model_output.chunk(2 ) _lowercase : Any = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(_lowercase , dim=1 , keepdim=_lowercase ) _lowercase : str = self.truncate(_lowercase , _lowercase ) # remove `log(0)`'s (`-inf`s) _lowercase : Union[str, Any] = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 _lowercase : List[str] = self.scheduler.step(_lowercase , timestep=_lowercase , sample=_lowercase , generator=_lowercase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_lowercase , _lowercase , _lowercase ) _lowercase : str = self.vqvae.config.vq_embed_dim _lowercase : Optional[Any] = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) _lowercase : Optional[int] = self.vqvae.quantize.get_codebook_entry(_lowercase , shape=_lowercase ) _lowercase : int = self.vqvae.decode(_lowercase , force_not_quantize=_lowercase ).sample _lowercase : int = (image / 2 + 0.5).clamp(0 , 1 ) _lowercase : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : Any = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase ) def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ) -> torch.FloatTensor: '''simple docstring''' _lowercase : List[Any] = torch.sort(_lowercase , 1 , descending=_lowercase ) _lowercase : Optional[Any] = torch.exp(_lowercase ) _lowercase : Optional[Any] = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out _lowercase : Optional[Any] = torch.full_like(keep_mask[:, 0:1, :] , _lowercase ) _lowercase : Tuple = torch.cat((all_true, keep_mask) , dim=1 ) _lowercase : int = keep_mask[:, :-1, :] _lowercase : List[Any] = keep_mask.gather(1 , indices.argsort(1 ) ) _lowercase : int = log_p_x_0.clone() _lowercase : Any = -torch.inf # -inf = log(0) return rv
720
'''simple docstring''' def __UpperCamelCase ( _lowercase, _lowercase ) -> list: _lowercase : List[str] = word.split() def justify(_lowercase, _lowercase, _lowercase ) -> str: _lowercase : Dict = max_width - width _lowercase : Tuple = len(_lowercase ) if len(_lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: _lowercase : Tuple = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] _lowercase : str = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] _lowercase : Optional[int] = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(_lowercase ): num_spaces_between_words_list[i] += 1 _lowercase : Union[str, Any] = [] for i in range(_lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ' ' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(_lowercase ) _lowercase : str = [] _lowercase : list[str] = [] _lowercase : Union[str, Any] = 0 for word in words: if width + len(_lowercase ) + len(_lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(_lowercase ) width += len(_lowercase ) else: # justify the line and add it to result answer.append(justify(_lowercase, _lowercase, _lowercase ) ) # reset new line and new width _lowercase , _lowercase : Optional[Any] = [word], len(_lowercase ) _lowercase : Optional[int] = max_width - width - len(_lowercase ) answer.append(' '.join(_lowercase ) + (remaining_spaces + 1) * ' ' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
4
0