code
stringlengths
81
54k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
_UpperCAmelCase : List[Any] = range(2, 20 + 1) _UpperCAmelCase : int = [10**k for k in range(ks[-1] + 1)] _UpperCAmelCase : int = {} def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = sum(a_i[j] for j in range(lowercase , len(lowercase ) ) ) UpperCamelCase = sum(a_i[j] * base[j] for j in range(min(len(lowercase ) , lowercase ) ) ) UpperCamelCase = 0, 0 UpperCamelCase = n - i UpperCamelCase = memo.get(lowercase ) if sub_memo is not None: UpperCamelCase = sub_memo.get(lowercase ) if jumps is not None and len(lowercase ) > 0: # find and make the largest jump without going over UpperCamelCase = -1 for _k in range(len(lowercase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCamelCase = _k break if max_jump >= 0: UpperCamelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCamelCase = diff + c for j in range(min(lowercase , len(lowercase ) ) ): UpperCamelCase = divmod(lowercase , 10 ) if new_c > 0: add(lowercase , lowercase , lowercase ) else: UpperCamelCase = [] else: UpperCamelCase = {c: []} UpperCamelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCamelCase = next_term(lowercase , k - 1 , i + dn , lowercase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCamelCase = compute(lowercase , lowercase , i + dn , lowercase ) diff += _diff dn += terms_jumped UpperCamelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCamelCase = 0 while j < len(lowercase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowercase , (diff, dn, k) ) return (diff, dn) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' if i >= n: return 0, i if k > len(lowercase ): a_i.extend([0 for _ in range(k - len(lowercase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCamelCase = i UpperCamelCase = 0, 0, 0 for j in range(len(lowercase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCamelCase = ds_c + ds_b diff += addend UpperCamelCase = 0 for j in range(lowercase ): UpperCamelCase = a_i[j] + addend UpperCamelCase = divmod(lowercase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowercase , lowercase , lowercase ) return diff, i - start_i def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' for j in range(lowercase , len(lowercase ) ): UpperCamelCase = digits[j] + addend if s >= 10: UpperCamelCase = divmod(lowercase , 10 ) UpperCamelCase = addend // 10 + quotient else: UpperCamelCase = s UpperCamelCase = addend // 10 if addend == 0: break while addend > 0: UpperCamelCase = divmod(lowercase , 10 ) digits.append(lowercase ) def A ( lowercase = 10**15 ) -> int: '''simple docstring''' UpperCamelCase = [1] UpperCamelCase = 1 UpperCamelCase = 0 while True: UpperCamelCase = next_term(lowercase , 20 , i + dn , lowercase ) dn += terms_jumped if dn == n - i: break UpperCamelCase = 0 for j in range(len(lowercase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'''{solution() = }''')
716
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" # test for the above condition self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
3
0
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Union[str, Any] = ["image_processor", "tokenizer"] __lowercase : int = "BlipImageProcessor" __lowercase : Optional[int] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = False super().__init__(__A , __A ) UpperCamelCase = self.image_processor def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding: """simple docstring""" if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: UpperCamelCase = self.tokenizer UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) return text_encoding # add pixel_values UpperCamelCase = self.image_processor(__A , return_tensors=__A ) if text is not None: UpperCamelCase = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_token_type_ids=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) else: UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__A ) return encoding_image_processor def __UpperCamelCase ( self , *A_ , **A_ ) -> int: """simple docstring""" return self.tokenizer.batch_decode(*__A , **__A ) def __UpperCamelCase ( self , *A_ , **A_ ) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__A , **__A ) @property def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.tokenizer.model_input_names UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ , A_ = None , A_ = None ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase : def __init__( self , A_ , A_ = 13 , A_ = 64 , A_ = 2 , A_ = 3 , A_ = 3 , A_ = True , A_ = True , A_ = 128 , A_=[16, 32, 64, 128] , A_ = 7 , A_ = 4 , A_ = 37 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 10 , A_ = 0.02 , A_ = 2 , A_ = 1 , A_ = 128 , A_ = [2, 2, 2, 2] , A_ = 2 , A_ = 2 , ) -> str: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = encoder_stride UpperCamelCase = num_attention_outputs UpperCamelCase = embed_dim UpperCamelCase = embed_dim + 1 UpperCamelCase = resolution UpperCamelCase = depths UpperCamelCase = hidden_sizes UpperCamelCase = dim UpperCamelCase = mlp_expansion_ratio def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFEfficientFormerModel(config=_lowercase ) UpperCamelCase = model(_lowercase , training=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = TFEfficientFormerForImageClassification(_lowercase ) UpperCamelCase = model(_lowercase , labels=_lowercase , training=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFEfficientFormerForImageClassification(_lowercase ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class lowercase ( __snake_case , __snake_case , unittest.TestCase ): __lowercase : Any = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __lowercase : List[str] = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __lowercase : Dict = False __lowercase : Optional[Any] = False __lowercase : Dict = False __lowercase : Any = False __lowercase : Union[str, Any] = False def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = TFEfficientFormerModelTester(self ) UpperCamelCase = ConfigTester( self , config_class=_lowercase , has_text_modality=_lowercase , hidden_size=37 ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_lowercase ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowercase ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(_lowercase ) UpperCamelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) if hasattr(self.model_tester , 'encoder_seq_length' ): UpperCamelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: UpperCamelCase = seq_length * self.model_tester.chunk_length else: UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: UpperCamelCase = outputs.decoder_hidden_states self.asseretIsInstance(_lowercase , (list, tuple) ) self.assertEqual(len(_lowercase ) , _lowercase ) UpperCamelCase = getattr(self.model_tester , 'seq_length' , _lowercase ) UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , _lowercase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(_lowercase , _lowercase , _lowercase ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> Any: """simple docstring""" UpperCamelCase = super()._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_lowercase ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowercase ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFEfficientFormerModel.from_pretrained(_lowercase ) self.assertIsNotNone(_lowercase ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'seq_length' , _lowercase ) UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , _lowercase ) UpperCamelCase = getattr(self.model_tester , 'key_length' , _lowercase ) UpperCamelCase = getattr(self.model_tester , 'chunk_length' , _lowercase ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): UpperCamelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(_lowercase ) UpperCamelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(_lowercase ) UpperCamelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) , training=_lowercase ) UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowercase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase = model_class(_lowercase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=_lowercase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase = model(_lowercase ) self.assertTrue(outputs_dict is not None ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_lowercase , return_tensors='tf' ) # forward pass UpperCamelCase = model(**_lowercase , training=_lowercase ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) UpperCamelCase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_lowercase , return_tensors='tf' ) # forward pass UpperCamelCase = model(**_lowercase , training=_lowercase ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _lowercase ) UpperCamelCase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowercase , atol=1e-4 ) )
718
from string import ascii_uppercase _UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase)) def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = len(lowercase ) UpperCamelCase = 0 while True: if x == i: UpperCamelCase = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' UpperCamelCase = 'THE GERMAN ATTACK' UpperCamelCase = 'SECRET' UpperCamelCase = generate_key(lowercase , lowercase ) UpperCamelCase = cipher_text(lowercase , lowercase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(lowercase , lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1_600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='utf-8' , check=A__ , ) assert hasattr(self , 'env' ) def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" # configuration for running training on smdistributed Model Parallel UpperCamelCase = { """enabled""": True, """processes_per_host""": 8, } UpperCamelCase = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } UpperCamelCase = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} UpperCamelCase = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=A__ , instance_type=self.instance_type , debugger_hook_config=A__ , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 500, } , metric_definitions=self.env.metric_definitions , distribution=A__ , py_version='py36' , ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" TrainingJobAnalytics(A__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" # create estimator UpperCamelCase = self.create_estimator(A__ ) # run training estimator.fit() # result dataframe UpperCamelCase = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) UpperCamelCase = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , A__ )
719
from collections.abc import Callable def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def A ( lowercase ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
3
0
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = CTRLTokenizer __lowercase : Any = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] UpperCamelCase = dict(zip(_a , range(len(_a ) ) ) ) UpperCamelCase = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_a ) ) def __UpperCamelCase ( self , **A_ ) -> Optional[int]: """simple docstring""" kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname , **_a ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt react readapt apt' return input_text, output_text def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = CTRLTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = 'adapt react readapt apt' UpperCamelCase = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() UpperCamelCase = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a )
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
from math import isqrt def A ( lowercase ) -> int: '''simple docstring''' return all(number % divisor != 0 for divisor in range(2 , isqrt(_lowerCamelCase ) + 1 ) ) def A ( lowercase = 10**6 ) -> str: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 1 UpperCamelCase = 7 while prime_candidate < max_prime: primes_count += is_prime(_lowerCamelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
721
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
0
from ...configuration_utils import PretrainedConfig class lowercase ( snake_case_ ): __lowercase : Dict = """bert-generation""" def __init__( self , A_=50_358 , A_=1_024 , A_=24 , A_=16 , A_=4_096 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=0.02 , A_=1e-12 , A_=0 , A_=2 , A_=1 , A_="absolute" , A_=True , **A_ , ) -> List[str]: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache
700
def A ( lowercase , lowercase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart _UpperCAmelCase : Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } _UpperCAmelCase : List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } class lowercase ( _UpperCAmelCase ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Any = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] __lowercase : Union[str, Any] = BartTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , A_=True , **A_ , ) -> Optional[int]: """simple docstring""" super().__init__( lowercase__ , lowercase__ , tokenizer_file=lowercase__ , errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , unk_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , trim_offsets=lowercase__ , **lowercase__ , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: UpperCamelCase = getattr(lowercase__ , pre_tok_state.pop('type' ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**lowercase__ ) UpperCamelCase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCamelCase = "post_processor" UpperCamelCase = getattr(self.backend_tokenizer , lowercase__ , lowercase__ ) if tokenizer_component_instance: UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase = tuple(state['sep'] ) if "cls" in state: UpperCamelCase = tuple(state['cls'] ) UpperCamelCase = False if state.get('add_prefix_space' , lowercase__ ) != add_prefix_space: UpperCamelCase = add_prefix_space UpperCamelCase = True if state.get('trim_offsets' , lowercase__ ) != trim_offsets: UpperCamelCase = trim_offsets UpperCamelCase = True if changes_to_apply: UpperCamelCase = getattr(lowercase__ , state.pop('type' ) ) UpperCamelCase = component_class(**lowercase__ ) setattr(self.backend_tokenizer , lowercase__ , lowercase__ ) @property def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else value UpperCamelCase = value def __UpperCamelCase ( self , *A_ , **A_ ) -> Tuple: """simple docstring""" UpperCamelCase = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , *A_ , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = kwargs.get('is_split_into_words' , lowercase__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*lowercase__ , **lowercase__ ) def __UpperCamelCase ( self , A_ , A_ = None ) -> str: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(lowercase__ , name=lowercase__ ) return tuple(lowercase__ ) def __UpperCamelCase ( self , A_ , A_=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCamelCase ( self , A_ , A_ = None ) -> str: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
701
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
_UpperCAmelCase : Union[str, Any] = "Alexander Joslin" import operator as op from .stack import Stack def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} UpperCamelCase = Stack() UpperCamelCase = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(SCREAMING_SNAKE_CASE_ ) ) elif i in operators: # RULE 2 operator_stack.push(SCREAMING_SNAKE_CASE_ ) elif i == ")": # RULE 4 UpperCamelCase = operator_stack.peek() operator_stack.pop() UpperCamelCase = operand_stack.peek() operand_stack.pop() UpperCamelCase = operand_stack.peek() operand_stack.pop() UpperCamelCase = operators[opr](SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) operand_stack.push(SCREAMING_SNAKE_CASE_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": _UpperCAmelCase : str = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F'''{equation} = {dijkstras_two_stack_algorithm(equation)}''')
702
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
0
def A ( lowercase = 50_000_000 ) -> Tuple: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = int((limit - 24) ** (1 / 2) ) UpperCamelCase = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowercase ) ) ) for primea in primes: UpperCamelCase = primea * primea for primea in primes: UpperCamelCase = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: UpperCamelCase = primea * primea * primea * primea UpperCamelCase = square + cube + tetr if total >= limit: break ret.add(__lowercase ) return len(__lowercase ) if __name__ == "__main__": print(F'''{solution() = }''')
703
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
0
from collections import namedtuple import requests from lxml import html # type: ignore _UpperCAmelCase : Optional[int] = namedtuple("covid_data", "cases deaths recovered") def A ( lowercase = "https://www.worldometers.info/coronavirus/" ) -> List[str]: '''simple docstring''' UpperCamelCase = '//div[@class = "maincounter-number"]/span/text()' return covid_data(*html.fromstring(requests.get(__snake_case ).content ).xpath(__snake_case ) ) _UpperCAmelCase : str = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
import os from pathlib import Path def A ( ) -> str: '''simple docstring''' from torch.utils.cpp_extension import load UpperCamelCase = Path(lowerCAmelCase__ ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' UpperCamelCase = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , lowerCAmelCase__ , with_cuda=lowerCAmelCase__ , extra_include_paths=[str(lowerCAmelCase__ )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = generate_pascal_triangle(lowerCAmelCase_ ) for row_idx in range(lowerCAmelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=' ' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=' ' ) else: print(triangle[row_idx][col_idx] , end='' ) print() def A ( lowercase ) -> Tuple: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCamelCase = [] for current_row_idx in range(lowerCAmelCase_ ): UpperCamelCase = populate_current_row(lowerCAmelCase_ , lowerCAmelCase_ ) triangle.append(lowerCAmelCase_ ) return triangle def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCamelCase = 1, 1 for current_col_idx in range(1 , lowerCAmelCase_ ): calculate_current_element( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return current_row def A ( lowercase , lowercase , lowercase , lowercase , ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCamelCase = triangle[current_row_idx - 1][current_col_idx] UpperCamelCase = above_to_left_elt + above_to_right_elt def A ( lowercase ) -> Any: '''simple docstring''' if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError('The input value of \'num_rows\' should be \'int\'' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( 'The input value of \'num_rows\' should be greater than or equal to 0' ) UpperCamelCase = [[1]] for row_index in range(1 , lowerCAmelCase_ ): UpperCamelCase = [0] + result[-1] + [0] UpperCamelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCamelCase = sum(divmod(lowerCAmelCase_ , 2 ) ) UpperCamelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCamelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCamelCase = row_first_half + row_second_half result.append(lowerCAmelCase_ ) return result def A ( ) -> int: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase , lowercase ) -> None: UpperCamelCase = f'''{func.__name__}({value})''' UpperCamelCase = timeit(f'''__main__.{call}''' , setup='import __main__' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f'''{call:38} -- {timing:.4f} seconds''' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCAmelCase_ , lowerCAmelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
706
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(lowercase ) UpperCamelCase = sess.run(lowercase ) return centroids, assignments
3
0
import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _UpperCAmelCase : List[str] = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def A ( lowercase ) -> Optional[Any]: '''simple docstring''' from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def A ( lowercase ) -> Dict: '''simple docstring''' from diffusers.utils.testing_utils import pytest_terminal_summary_main UpperCamelCase = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case )
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": _UpperCAmelCase : int = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument( "--original_config_file", type=str, required=True, help="The YAML config file corresponding to the original architecture.", ) parser.add_argument( "--num_in_channels", default=None, type=int, help="The number of input channels. If `None` number of input channels will be automatically inferred.", ) parser.add_argument( "--image_size", default=512, type=int, help=( "The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" " Base. Use 768 for Stable Diffusion v2." ), ) parser.add_argument( "--extract_ema", action="store_true", help=( "Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" " or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" " higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." ), ) parser.add_argument( "--upcast_attention", action="store_true", help=( "Whether the attention computation should always be upcasted. This is necessary when running stable" " diffusion 2.1." ), ) parser.add_argument( "--from_safetensors", action="store_true", help="If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.", ) parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") def A ( lowercase ) -> Optional[int]: '''simple docstring''' if string == "True": return True elif string == "False": return False else: raise ValueError(f'''could not parse string as bool {string}''' ) parser.add_argument( "--use_linear_projection", help="Override for use linear projection", required=False, type=parse_bool ) parser.add_argument("--cross_attention_dim", help="Override for cross attention_dim", required=False, type=int) _UpperCAmelCase : List[Any] = parser.parse_args() _UpperCAmelCase : str = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
708
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase ( unittest.TestCase ): __lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __UpperCamelCase ( cls ) -> Tuple: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __UpperCamelCase ( cls ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
0
from __future__ import annotations def A ( lowercase ) -> Dict: '''simple docstring''' if not nums: raise ValueError('List is empty' ) return sum(A_ ) / len(A_ ) if __name__ == "__main__": import doctest doctest.testmod()
709
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase : List[str] = {'''tokenization_wav2vec2_phoneme''': ['''Wav2Vec2PhonemeCTCTokenizer''']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
710
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = DonutImageProcessingTester(self ) @property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def __UpperCamelCase ( self ) -> int: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() _UpperCAmelCase : int = logging.get_logger(__name__) def A ( lowercase ) -> List[str]: '''simple docstring''' UpperCamelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) UpperCamelCase = MaskFormerConfig(backbone_config=__snake_case ) UpperCamelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok UpperCamelCase = 847 UpperCamelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok UpperCamelCase = 150 UpperCamelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok UpperCamelCase = 171 UpperCamelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO UpperCamelCase = 133 UpperCamelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok UpperCamelCase = 19 UpperCamelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok UpperCamelCase = 65 UpperCamelCase = 'mapillary-vistas-id2label.json' UpperCamelCase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='dataset' ) , 'r' ) ) UpperCamelCase = {int(__snake_case ): v for k, v in idalabel.items()} return config def A ( lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.norm2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.layers.{i}.downsample.reduction.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.weight''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.layers.{i}.downsample.norm.bias''', f'''model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''model.pixel_level_module.encoder.hidden_states_norms.{i}.bias''') ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((f'''sem_seg_head.adapter_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight''') ) rename_keys.append((f'''sem_seg_head.adapter_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.weight''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight''') ) rename_keys.append((f'''sem_seg_head.layer_{source_index}.norm.bias''', f'''model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias''') ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias''') ) # cross-attention out projection rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias''') ) # MLP 1 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc1.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc1.bias''') ) # MLP 2 rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight''', f'''model.transformer_module.decoder.layers.{idx}.fc2.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias''', f'''model.transformer_module.decoder.layers.{idx}.fc2.bias''') ) # layernorm 1 (self-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias''', f'''model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias''') ) # layernorm 2 (cross-attention layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias''', f'''model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias''') ) # layernorm 3 (final layernorm) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias''', f'''model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias''') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.weight''', f'''mask_embedder.{i}.0.weight''') ) rename_keys.append((f'''sem_seg_head.predictor.mask_embed.layers.{i}.bias''', f'''mask_embedder.{i}.0.bias''') ) # fmt: on return rename_keys def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = dct.pop(__snake_case ) UpperCamelCase = val def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCamelCase = state_dict.pop(f'''backbone.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:dim, :] UpperCamelCase = in_proj_bias[: dim] UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] UpperCamelCase = in_proj_bias[ dim : dim * 2 ] UpperCamelCase = in_proj_weight[ -dim :, : ] UpperCamelCase = in_proj_bias[-dim :] # fmt: on def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight''' ) UpperCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[: hidden_size, :] UpperCamelCase = in_proj_bias[:config.hidden_size] UpperCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase = in_proj_weight[-hidden_size :, :] UpperCamelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight''' ) UpperCamelCase = state_dict.pop(f'''sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[: hidden_size, :] UpperCamelCase = in_proj_bias[:config.hidden_size] UpperCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] UpperCamelCase = in_proj_weight[-hidden_size :, :] UpperCamelCase = in_proj_bias[-hidden_size :] # fmt: on def A ( ) -> torch.Tensor: '''simple docstring''' UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def A ( lowercase , lowercase , lowercase , lowercase = False ) -> Tuple: '''simple docstring''' UpperCamelCase = get_maskformer_config(__snake_case ) # load original state_dict with open(__snake_case , 'rb' ) as f: UpperCamelCase = pickle.load(__snake_case ) UpperCamelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys UpperCamelCase = create_rename_keys(__snake_case ) for src, dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) read_in_swin_q_k_v(__snake_case , config.backbone_config ) read_in_decoder_q_k_v(__snake_case , __snake_case ) # update to torch tensors for key, value in state_dict.items(): UpperCamelCase = torch.from_numpy(__snake_case ) # load 🤗 model UpperCamelCase = MaskFormerForInstanceSegmentation(__snake_case ) model.eval() for name, param in model.named_parameters(): print(__snake_case , param.shape ) UpperCamelCase , UpperCamelCase = model.load_state_dict(__snake_case , strict=__snake_case ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(__snake_case ) == 0, f'''Unexpected keys: {unexpected_keys}''' # verify results UpperCamelCase = prepare_img() if "vistas" in model_name: UpperCamelCase = 65 elif "cityscapes" in model_name: UpperCamelCase = 65_535 else: UpperCamelCase = 255 UpperCamelCase = True if 'ade' in model_name else False UpperCamelCase = MaskFormerImageProcessor(ignore_index=__snake_case , reduce_labels=__snake_case ) UpperCamelCase = image_processor(__snake_case , return_tensors='pt' ) UpperCamelCase = model(**__snake_case ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": UpperCamelCase = torch.tensor( [[3.6_3_5_3, -4.4_7_7_0, -2.6_0_6_5], [0.5_0_8_1, -4.2_3_9_4, -3.5_3_4_3], [2.1_9_0_9, -5.0_3_5_3, -1.9_3_2_3]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , __snake_case , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) image_processor.save_pretrained(__snake_case ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(f'''nielsr/{model_name}''' ) image_processor.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": _UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="maskformer-swin-tiny-ade", type=str, help=("Name of the MaskFormer model you'd like to convert",), ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl", type=str, help="Path to the original state dict (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _UpperCAmelCase : int = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCAmelCase : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512} def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char UpperCamelCase = set(lowercase ) return pairs class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ ) UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ ) UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand _UpperCAmelCase : int = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) _UpperCAmelCase : Tuple = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) _UpperCAmelCase : List[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) _UpperCAmelCase : List[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) _UpperCAmelCase : Union[str, Any] = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) _UpperCAmelCase : str = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) _UpperCAmelCase : List[str] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def A ( ) -> Any: '''simple docstring''' UpperCamelCase = randrange(len(lowerCamelCase_ ) ), randrange(len(lowerCamelCase_ ) ) UpperCamelCase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] UpperCamelCase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def A ( lowercase = 100 ) -> Optional[int]: '''simple docstring''' return (generate_random_hand() for _ in range(lowerCamelCase_ )) @pytest.mark.parametrize('hand, expected' , lowerCamelCase_ ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' assert PokerHand(lowerCamelCase_ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , lowerCamelCase_ ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(lowerCamelCase_ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , lowerCamelCase_ ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = PokerHand(lowerCamelCase_ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , lowerCamelCase_ ) def A ( lowercase , lowercase ) -> int: '''simple docstring''' assert PokerHand(lowerCamelCase_ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , lowerCamelCase_ ) def A ( lowercase , lowercase ) -> int: '''simple docstring''' assert PokerHand(lowerCamelCase_ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , lowerCamelCase_ ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' assert PokerHand(lowerCamelCase_ ).compare_with(PokerHand(lowerCamelCase_ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert PokerHand(lowerCamelCase_ ).compare_with(PokerHand(lowerCamelCase_ ) ) == expected def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = [PokerHand(lowerCamelCase_ ) for hand in SORTED_HANDS] UpperCamelCase = poker_hands.copy() shuffle(lowerCamelCase_ ) UpperCamelCase = chain(sorted(lowerCamelCase_ ) ) for index, hand in enumerate(lowerCamelCase_ ): assert hand == poker_hands[index] def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=lowerCamelCase_ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def A ( ) -> str: '''simple docstring''' UpperCamelCase = PokerHand('2C 4S AS 3D 5C' ) UpperCamelCase = True UpperCamelCase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def A ( ) -> Any: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = os.path.abspath(os.path.dirname(lowerCamelCase_ ) ) UpperCamelCase = os.path.join(lowerCamelCase_ , 'poker_hands.txt' ) with open(lowerCamelCase_ ) as file_hand: for line in file_hand: UpperCamelCase = line[:14].strip() UpperCamelCase = line[15:].strip() UpperCamelCase = PokerHand(lowerCamelCase_ ), PokerHand(lowerCamelCase_ ) UpperCamelCase = player.compare_with(lowerCamelCase_ ) if output == "Win": answer += 1 assert answer == 376
712
def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = int(lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase ) UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 ) return binary_recursive(lowercase ) + str(lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = str(lowercase ).strip() if not number: raise ValueError('No input value was provided' ) UpperCamelCase = '-' if number.startswith('-' ) else '' UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(lowercase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
3
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"} _UpperCAmelCase : Optional[Any] = { "vocab_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt", }, "emoji_file": { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json", }, } _UpperCAmelCase : List[Any] = { "abeja/gpt-neox-japanese-2.7b": 2_048, } def A ( lowercase , lowercase ) -> Any: '''simple docstring''' with open(A__ , 'r' , encoding='utf-8' ) as f: UpperCamelCase = json.loads(f.read() ) UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() UpperCamelCase = collections.OrderedDict() with open(A__ , 'r' , encoding='utf-8' ) as f: UpperCamelCase = f.readlines() UpperCamelCase = [[t.rstrip('\n' )] if (t == ',' or ',' not in t) else t.rstrip('\n' ).split(',' ) for t in token] for idx, b in enumerate(A__ ): UpperCamelCase = b UpperCamelCase = idx for wd in b: UpperCamelCase = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowercase ( __lowerCamelCase ): __lowercase : Optional[int] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = ['input_ids', 'attention_mask'] def __init__( self , A_ , A_ , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|startoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ) -> Dict: """simple docstring""" super().__init__( unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , do_clean_text=UpperCamelCase_ , **UpperCamelCase_ , ) if not os.path.isfile(UpperCamelCase_ ): raise ValueError( F'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' ' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) if not os.path.isfile(UpperCamelCase_ ): raise ValueError( F'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' ' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`' ) UpperCamelCase = do_clean_text UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = load_vocab_and_emoji(UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def __UpperCamelCase ( self ) -> str: """simple docstring""" # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def __UpperCamelCase ( self ) -> str: """simple docstring""" return dict(self.raw_vocab , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" return self.subword_tokenizer.tokenize(UpperCamelCase_ , clean=self.do_clean_text ) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" return self.vocab.get(UpperCamelCase_ , self.vocab.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.subword_tokenizer.convert_id_to_token(UpperCamelCase_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = ''.join(UpperCamelCase_ ).strip() return out_string def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) + [self.eos_token_id] ) if len(UpperCamelCase_ ) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids def __UpperCamelCase ( self , A_ , A_ = None ) -> List[str]: """simple docstring""" UpperCamelCase = 0 if os.path.isdir(UpperCamelCase_ ): UpperCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( UpperCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['emoji_file'] ) else: UpperCamelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = ( (filename_prefix + '-' if filename_prefix else '') + save_directory + VOCAB_FILES_NAMES['emoji_file'] ) with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ' Please check that the vocabulary is not corrupted!' ) UpperCamelCase = token_index writer.write(','.join(UpperCamelCase_ ) + '\n' ) index += 1 with open(UpperCamelCase_ , 'w' , encoding='utf-8' ) as writer: json.dump(self.emoji , UpperCamelCase_ ) return vocab_file, emoji_file class lowercase ( __lowerCamelCase ): def __init__( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = vocab # same as swe UpperCamelCase = ids_to_tokens # same as bpe UpperCamelCase = emoji UpperCamelCase = np.max([len(UpperCamelCase_ ) for w in self.vocab.keys()] ) UpperCamelCase = re.compile(r'(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)' ) UpperCamelCase = re.compile(r'[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*' ) UpperCamelCase = re.compile(r'[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}' ) UpperCamelCase = re.compile( r'([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCamelCase = re.compile( r'(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*' ) UpperCamelCase = re.compile( r'((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*' ) UpperCamelCase = '─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿' UpperCamelCase = '▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟' UpperCamelCase = str.maketrans({k: '<BLOCK>' for k in keisen + blocks} ) def __len__( self ) -> Tuple: """simple docstring""" return len(self.ids_to_tokens ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.content_repattera.sub('<URL>' , UpperCamelCase_ ) UpperCamelCase = self.content_repattera.sub('<EMAIL>' , UpperCamelCase_ ) UpperCamelCase = self.content_repattera.sub('<TEL>' , UpperCamelCase_ ) UpperCamelCase = self.content_repattera.sub('<DATE>' , UpperCamelCase_ ) UpperCamelCase = self.content_repattera.sub('<DATE>' , UpperCamelCase_ ) UpperCamelCase = self.content_repattera.sub('<PRICE>' , UpperCamelCase_ ) UpperCamelCase = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: UpperCamelCase = content.replace('<BLOCK><BLOCK>' , '<BLOCK>' ) return content def __UpperCamelCase ( self , A_ , A_=False ) -> Dict: """simple docstring""" UpperCamelCase = text.replace(' ' , '<SP>' ) UpperCamelCase = text.replace(' ' , '<SP>' ) UpperCamelCase = text.replace('\r\n' , '<BR>' ) UpperCamelCase = text.replace('\n' , '<BR>' ) UpperCamelCase = text.replace('\r' , '<BR>' ) UpperCamelCase = text.replace('\t' , '<TAB>' ) UpperCamelCase = text.replace('—' , 'ー' ) UpperCamelCase = text.replace('−' , 'ー' ) for k, v in self.emoji["emoji"].items(): if k in text: UpperCamelCase = text.replace(UpperCamelCase_ , UpperCamelCase_ ) if clean: UpperCamelCase = self.clean_text(UpperCamelCase_ ) def check_simbol(A_ ): UpperCamelCase = x.encode() if len(UpperCamelCase_ ) == 1 and len(UpperCamelCase_ ) == 2: UpperCamelCase = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0XC_2A1 and c <= 0XC_2BF) or (c >= 0XC_780 and c <= 0XC_783) or (c >= 0XC_AB9 and c <= 0XC_BBF) or (c >= 0XC_C80 and c <= 0XC_DA2) ): return True return False def checkuae(A_ ): UpperCamelCase = x.encode() if len(UpperCamelCase_ ) == 1 and len(UpperCamelCase_ ) == 3: UpperCamelCase = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0XE28_080 and c <= 0XE2B_07F: return True return False UpperCamelCase = 0 UpperCamelCase = [] while pos < len(UpperCamelCase_ ): UpperCamelCase = min(len(UpperCamelCase_ ) , pos + self.maxlen + 1 ) if text[pos] == '<' else pos + 3 UpperCamelCase = [] # (token_id, token, pos) for e in range(UpperCamelCase_ , UpperCamelCase_ , -1 ): UpperCamelCase = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(UpperCamelCase_ ) > 2: UpperCamelCase = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(UpperCamelCase_ ) > 0: # the smallest token_id is adopted UpperCamelCase , UpperCamelCase , UpperCamelCase = sorted(UpperCamelCase_ , key=lambda A_ : x[0] )[0] result.append(UpperCamelCase_ ) UpperCamelCase = e else: UpperCamelCase = pos + 1 UpperCamelCase = text[pos:end] if check_simbol(UpperCamelCase_ ): result.append('<KIGOU>' ) elif checkuae(UpperCamelCase_ ): result.append('<U2000U2BFF>' ) else: for i in wd.encode('utf-8' ): result.append('<|byte%d|>' % i ) UpperCamelCase = end return result def __UpperCamelCase ( self , A_ , A_="\n" ) -> Any: """simple docstring""" UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(UpperCamelCase_ ) > 0: words.append(bytearray(UpperCamelCase_ ).decode('utf-8' , errors='replace' ) ) UpperCamelCase = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['emoji_inv'][word] ) elif word == "<SP>": words.append(' ' ) elif word == "<BR>": words.append(UpperCamelCase_ ) elif word == "<TAB>": words.append('\t' ) elif word == "<BLOCK>": words.append('▀' ) elif word == "<KIGOU>": words.append('ǀ' ) elif word == "<U2000U2BFF>": words.append('‖' ) else: words.append(UpperCamelCase_ ) if len(UpperCamelCase_ ) > 0: words.append(bytearray(UpperCamelCase_ ).decode('utf-8' , errors='replace' ) ) UpperCamelCase = ''.join(UpperCamelCase_ ) return text
713
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int: '''simple docstring''' if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' ) else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(lowercase , 'vocab.json' ) if not os.path.isdir(lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowercase , lowercase ) UpperCamelCase = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) UpperCamelCase = WavaVecaConformerForCTC(lowercase ) else: UpperCamelCase = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase = fairseq.tasks.setup_task(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
0
import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( _UpperCamelCase ): def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'neck_hidden_sizes' ) ) self.parent.assertTrue(hasattr(A_ , 'num_attention_heads' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=32 , A_=2 , A_=3 , A_=640 , A_=4 , A_="silu" , A_=3 , A_=32 , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = last_hidden_size UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = conv_kernel_size UpperCamelCase = output_stride UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = MobileViTModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __lowercase : int = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Dict = ( { "feature-extraction": MobileViTModel, "image-classification": MobileViTForImageClassification, "image-segmentation": MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Union[str, Any] = False __lowercase : Union[str, Any] = False __lowercase : List[str] = False __lowercase : List[str] = False def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = MobileViTModelTester(self ) UpperCamelCase = MobileViTConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViT does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='MobileViT does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='MobileViT does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , A_ ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" pass def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 5 self.assertEqual(len(A_ ) , A_ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase = 2 for i in range(len(A_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileViTModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return MobileViTImageProcessor.from_pretrained('apple/mobilevit-xx-small' ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = MobileViTForImageClassification.from_pretrained('apple/mobilevit-xx-small' ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('apple/deeplabv3-mobilevit-xx-small' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] ) UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A_ )
714
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
0
import math def A ( lowercase , lowercase ) -> float: '''simple docstring''' return math.pow(a__ , 2 ) - a def A ( lowercase ) -> float: '''simple docstring''' return 2 * x def A ( lowercase ) -> float: '''simple docstring''' UpperCamelCase = 2.0 while start <= a: UpperCamelCase = math.pow(a__ , 2 ) return start def A ( lowercase , lowercase = 9_999 , lowercase = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ) -> float: '''simple docstring''' if a < 0: raise ValueError('math domain error' ) UpperCamelCase = get_initial_point(a__ ) for _ in range(a__ ): UpperCamelCase = value UpperCamelCase = value - fx(a__ , a__ ) / fx_derivative(a__ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
715
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase : str = "scheduler_config.json" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : List[Any] = 3 __lowercase : str = 4 __lowercase : Optional[Any] = 5 @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : jnp.ndarray class lowercase : __lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = ["dtype"] __lowercase : List[Any] = [] __lowercase : Dict = True @classmethod def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> int: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def A ( lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' assert len(lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase ) def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(lowercase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) ) return jnp.array(lowercase , dtype=lowercase ) @flax.struct.dataclass class lowercase : __lowercase : jnp.ndarray __lowercase : jnp.ndarray __lowercase : jnp.ndarray @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = scheduler.config if config.trained_betas is not None: UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase = 1.0 - betas UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = state.alphas_cumprod UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
3
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) @add_end_docstrings( __lowerCAmelCase , r"\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n " , ) class lowercase ( __lowerCAmelCase ): def __UpperCamelCase ( self , A_ ) -> np.ndarray: """simple docstring""" if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ) else: raise ValueError('Unsupported framework' ) return masked_index def __UpperCamelCase ( self , A_ ) -> np.ndarray: """simple docstring""" UpperCamelCase = self.get_masked_index(lowerCAmelCase_ ) UpperCamelCase = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , F'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['input_ids'][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(lowerCAmelCase_ ) def __UpperCamelCase ( self , A_ , A_=None , **A_ ) -> Dict[str, GenericTensor]: """simple docstring""" if return_tensors is None: UpperCamelCase = self.framework UpperCamelCase = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.ensure_exactly_one_mask_token(lowerCAmelCase_ ) return model_inputs def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model(**lowerCAmelCase_ ) UpperCamelCase = model_inputs['input_ids'] return model_outputs def __UpperCamelCase ( self , A_ , A_=5 , A_=None ) -> Optional[int]: """simple docstring""" # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: UpperCamelCase = target_ids.shape[0] UpperCamelCase = model_outputs['input_ids'][0] UpperCamelCase = model_outputs['logits'] if self.framework == "tf": UpperCamelCase = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCamelCase = outputs.numpy() UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = stable_softmax(lowerCAmelCase_ , axis=-1 ) if target_ids is not None: UpperCamelCase = tf.gather_nd(tf.squeeze(lowerCAmelCase_ , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCamelCase = tf.expand_dims(lowerCAmelCase_ , 0 ) UpperCamelCase = tf.math.top_k(lowerCAmelCase_ , k=lowerCAmelCase_ ) UpperCamelCase , UpperCamelCase = topk.values.numpy(), topk.indices.numpy() else: UpperCamelCase = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=lowerCAmelCase_ ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCamelCase = outputs[0, masked_index, :] UpperCamelCase = logits.softmax(dim=-1 ) if target_ids is not None: UpperCamelCase = probs[..., target_ids] UpperCamelCase , UpperCamelCase = probs.topk(lowerCAmelCase_ ) UpperCamelCase = [] UpperCamelCase = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCamelCase = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCamelCase = input_ids.numpy().copy() if target_ids is not None: UpperCamelCase = target_ids[p].tolist() UpperCamelCase = p # Filter padding out: UpperCamelCase = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCamelCase = self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) UpperCamelCase = {'score': v, 'token': p, 'token_str': self.tokenizer.decode([p] ), 'sequence': sequence} row.append(lowerCAmelCase_ ) result.append(lowerCAmelCase_ ) if single_mask: return result[0] return result def __UpperCamelCase ( self , A_ , A_=None ) -> Optional[Any]: """simple docstring""" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCamelCase = [targets] try: UpperCamelCase = self.tokenizer.get_vocab() except Exception: UpperCamelCase = {} UpperCamelCase = [] for target in targets: UpperCamelCase = vocab.get(lowerCAmelCase_ , lowerCAmelCase_ ) if id_ is None: UpperCamelCase = self.tokenizer( lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , max_length=1 , truncation=lowerCAmelCase_ , )['input_ids'] if len(lowerCAmelCase_ ) == 0: logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' 'We cannot replace it with anything meaningful, ignoring it' ) continue UpperCamelCase = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F'''The specified target token `{target}` does not exist in the model vocabulary. ''' F'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCamelCase = list(set(lowerCAmelCase_ ) ) if len(lowerCAmelCase_ ) == 0: raise ValueError('At least one target must be provided when passed.' ) UpperCamelCase = np.array(lowerCAmelCase_ ) return target_ids def __UpperCamelCase ( self , A_=None , A_=None ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = {} if targets is not None: UpperCamelCase = self.get_target_ids(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCamelCase = target_ids if top_k is not None: UpperCamelCase = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( 'fill-mask' , self.model.base_model_prefix , 'The tokenizer does not define a `mask_token`.' ) return {}, {}, postprocess_params def __call__( self , A_ , *A_ , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and len(lowerCAmelCase_ ) == 1: return outputs[0] return outputs
716
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" # test for the above condition self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
3
0
import math def A ( lowercase ) -> list: '''simple docstring''' UpperCamelCase = [True] * n UpperCamelCase = False UpperCamelCase = False UpperCamelCase = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): UpperCamelCase = i * 2 while index < n: UpperCamelCase = False UpperCamelCase = index + i UpperCamelCase = [2] for i in range(3 , lowercase , 2 ): if is_prime[i]: primes.append(lowercase ) return primes def A ( lowercase = 999_966_663_333 ) -> int: '''simple docstring''' UpperCamelCase = math.floor(math.sqrt(lowercase ) ) + 100 UpperCamelCase = prime_sieve(lowercase ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = primes[prime_index] while (last_prime**2) <= limit: UpperCamelCase = primes[prime_index + 1] UpperCamelCase = last_prime**2 UpperCamelCase = next_prime**2 # Get numbers divisible by lps(current) UpperCamelCase = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) UpperCamelCase = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps UpperCamelCase = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair UpperCamelCase = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ , A_ = None , A_ = None ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
def A ( lowercase ) -> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 UpperCamelCase = 1 UpperCamelCase = 1 while repunit: UpperCamelCase = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def A ( lowercase = 1_000_000 ) -> int: '''simple docstring''' UpperCamelCase = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowercase ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'''{solution() = }''')
718
from string import ascii_uppercase _UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase)) def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = len(lowercase ) UpperCamelCase = 0 while True: if x == i: UpperCamelCase = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' UpperCamelCase = 'THE GERMAN ATTACK' UpperCamelCase = 'SECRET' UpperCamelCase = generate_key(lowercase , lowercase ) UpperCamelCase = cipher_text(lowercase , lowercase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(lowercase , lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
0
import math from collections.abc import Iterator from itertools import takewhile def A ( lowercase ) -> str: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = 2 while True: if is_prime(__a ): yield num num += 1 def A ( lowercase = 2_000_000 ) -> Any: '''simple docstring''' return sum(takewhile(lambda lowercase : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
719
from collections.abc import Callable def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def A ( lowercase ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
3
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _UpperCAmelCase : List[str] = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _UpperCAmelCase : Optional[Any] = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = ( list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) ) ) UpperCamelCase = bs[:] UpperCamelCase = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 UpperCamelCase = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char return pairs class lowercase ( _snake_case ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_ , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , **A_ , ) -> List[Any]: """simple docstring""" UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else bos_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else eos_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else sep_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else cls_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else unk_token UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token super().__init__( errors=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , cls_token=snake_case_ , pad_token=snake_case_ , mask_token=snake_case_ , add_prefix_space=snake_case_ , **snake_case_ , ) with open(snake_case_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(snake_case_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} UpperCamelCase = errors # how to handle errors in decoding UpperCamelCase = bytes_to_unicode() UpperCamelCase = {v: k for k, v in self.byte_encoder.items()} with open(snake_case_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase = dict(zip(snake_case_ , range(len(snake_case_ ) ) ) ) UpperCamelCase = {} UpperCamelCase = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' ) @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = tuple(snake_case_ ) UpperCamelCase = get_pairs(snake_case_ ) if not pairs: return token while True: UpperCamelCase = min(snake_case_ , key=lambda A_ : self.bpe_ranks.get(snake_case_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(snake_case_ ): try: UpperCamelCase = word.index(snake_case_ , snake_case_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase = j if word[i] == first and i < len(snake_case_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(snake_case_ ) UpperCamelCase = new_word if len(snake_case_ ) == 1: break else: UpperCamelCase = get_pairs(snake_case_ ) UpperCamelCase = " ".join(snake_case_ ) UpperCamelCase = word return word def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] for token in re.findall(self.pat , snake_case_ ): UpperCamelCase = "".join( self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(snake_case_ ).split(' ' ) ) return bpe_tokens def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" return self.encoder.get(snake_case_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" return self.decoder.get(snake_case_ ) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = "".join(snake_case_ ) UpperCamelCase = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors ) return text def __UpperCamelCase ( self , A_ , A_ = None ) -> Optional[Any]: """simple docstring""" if not os.path.isdir(snake_case_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( snake_case_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(snake_case_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=snake_case_ , ensure_ascii=snake_case_ ) + '\n' ) UpperCamelCase = 0 with open(snake_case_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(snake_case_ ) + '\n' ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self , A_ , A_ = None ) -> List[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None , A_ = False ) -> int: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case_ , token_ids_a=snake_case_ , already_has_special_tokens=snake_case_ ) if token_ids_a is None: return [1] + ([0] * len(snake_case_ )) + [1] return [1] + ([0] * len(snake_case_ )) + [1, 1] + ([0] * len(snake_case_ )) + [1] def __UpperCamelCase ( self , A_ , A_ = None ) -> int: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_=False , **A_ ) -> List[str]: """simple docstring""" UpperCamelCase = kwargs.pop('add_prefix_space' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(snake_case_ ) > 0 and not text[0].isspace()): UpperCamelCase = " " + text return (text, kwargs)
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase : Any = False, False, False @dataclass class lowercase : __lowercase : List[Any] = None __lowercase : Tuple = True __lowercase : Any = True __lowercase : Union[str, Any] = None # Automatically constructed __lowercase : int = "dict" __lowercase : int = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) __lowercase : Tuple = field(default="Audio" , init=lowercase__ , repr=lowercase__ ) def __call__( self ) -> Tuple: """simple docstring""" return self.pa_type def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return {"bytes": None, "path": value} elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCamelCase = BytesIO() sf.write(UpperCAmelCase__ , value['array'] , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('pcm' ): # "PCM" only has raw audio bytes if value.get('sampling_rate' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' ) if value.get('bytes' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCamelCase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32_767 else: UpperCamelCase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32_767 UpperCamelCase = BytesIO(bytes() ) sf.write(UpperCAmelCase__ , UpperCAmelCase__ , value['sampling_rate'] , format='wav' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def __UpperCamelCase ( self , A_ , A_ = None ) -> Union[str, Any]: """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' ) UpperCamelCase = (value['''path'''], BytesIO(value['bytes'] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(F'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err UpperCamelCase = xsplitext(UpperCAmelCase__ )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( 'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( 'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ' 'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' ) if file is None: UpperCamelCase = token_per_repo_id or {} UpperCamelCase = path.split('::' )[-1] try: UpperCamelCase = string_to_dict(UpperCAmelCase__ , config.HUB_DATASETS_URL )['''repo_id'''] UpperCamelCase = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCamelCase = None with xopen(UpperCAmelCase__ , 'rb' , use_auth_token=UpperCAmelCase__ ) as f: UpperCamelCase = sf.read(UpperCAmelCase__ ) else: UpperCamelCase = sf.read(UpperCAmelCase__ ) UpperCamelCase = array.T if self.mono: UpperCamelCase = librosa.to_mono(UpperCAmelCase__ ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCamelCase = librosa.resample(UpperCAmelCase__ , orig_sr=UpperCAmelCase__ , target_sr=self.sampling_rate ) UpperCamelCase = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def __UpperCamelCase ( self ) -> str: """simple docstring""" from .features import Value if self.decode: raise ValueError('Cannot flatten a decoded Audio feature.' ) return { "bytes": Value('binary' ), "path": Value('string' ), } def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.binary() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ): UpperCamelCase = pa.array([Audio().encode_example(UpperCAmelCase__ ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase = storage.field('bytes' ) else: UpperCamelCase = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase = storage.field('path' ) else: UpperCamelCase = pa.array([None] * len(UpperCAmelCase__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) return array_cast(UpperCAmelCase__ , self.pa_type ) def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" @no_op_if_value_is_null def path_to_bytes(A_ ): with xopen(UpperCAmelCase__ , 'rb' ) as f: UpperCamelCase = f.read() return bytes_ UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase = pa.array( [os.path.basename(UpperCAmelCase__ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(UpperCAmelCase__ , self.pa_type )
721
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( __UpperCAmelCase ): __lowercase : int = "bert" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( __UpperCAmelCase ): @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
700
def A ( lowercase , lowercase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_input_mask UpperCamelCase = use_token_type_ids UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = num_labels UpperCamelCase = num_choices UpperCamelCase = scope def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self ) -> str: """simple docstring""" return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = BioGptModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase ) UpperCamelCase = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = BioGptForCausalLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Dict: """simple docstring""" UpperCamelCase = BioGptModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() # create attention mask UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase ) UpperCamelCase = self.seq_length // 2 UpperCamelCase = 0 # first forward pass UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCamelCase = ids_tensor((1,) , __lowerCamelCase ).item() + 1 UpperCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCamelCase = random_other_next_tokens # append to next input_ids and attn_mask UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__lowerCamelCase )] , dim=1 , ) # get two different outputs UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )['''last_hidden_state'''] UpperCamelCase = model(__lowerCamelCase , past_key_values=__lowerCamelCase , attention_mask=__lowerCamelCase )['''last_hidden_state'''] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = BioGptModel(config=__lowerCamelCase ).to(__lowerCamelCase ).eval() UpperCamelCase = torch.ones(input_ids.shape , dtype=torch.long , device=__lowerCamelCase ) # first forward pass UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) UpperCamelCase = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCamelCase = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )['''last_hidden_state'''] UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[ '''last_hidden_state''' ] # select random slice UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach() UpperCamelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3 ) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ , A_=False ) -> Tuple: """simple docstring""" UpperCamelCase = BioGptForCausalLM(__lowerCamelCase ) model.to(__lowerCamelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCamelCase = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def __UpperCamelCase ( self , A_ , *A_ ) -> Any: """simple docstring""" UpperCamelCase = BioGptModel(__lowerCamelCase ) UpperCamelCase = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , *A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BioGptForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowercase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowercase : Tuple = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __lowercase : str = (BioGptForCausalLM,) if is_torch_available() else () __lowercase : Tuple = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __lowercase : str = False def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = BioGptModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCamelCase = type self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__lowerCamelCase ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*__lowerCamelCase , gradient_checkpointing=__lowerCamelCase ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__lowerCamelCase ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*__lowerCamelCase ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*__lowerCamelCase ) @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__lowerCamelCase ) UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCamelCase = '''left''' # Define PAD Token = EOS Token = 50256 UpperCamelCase = tokenizer.eos_token UpperCamelCase = model.config.eos_token_id # use different length sentences to test batching UpperCamelCase = [ '''Hello, my dog is a little''', '''Today, I''', ] UpperCamelCase = tokenizer(__lowerCamelCase , return_tensors='pt' , padding=__lowerCamelCase ) UpperCamelCase = inputs['''input_ids'''].to(__lowerCamelCase ) UpperCamelCase = model.generate( input_ids=__lowerCamelCase , attention_mask=inputs['attention_mask'].to(__lowerCamelCase ) , ) UpperCamelCase = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(__lowerCamelCase ) UpperCamelCase = model.generate(input_ids=__lowerCamelCase ) UpperCamelCase = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCamelCase = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(__lowerCamelCase ) UpperCamelCase = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) UpperCamelCase = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) UpperCamelCase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BioGptModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = input_dict['''input_ids'''] UpperCamelCase = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCamelCase = BioGptForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = 3 UpperCamelCase = '''multi_label_classification''' UpperCamelCase = input_dict['''input_ids'''] UpperCamelCase = input_ids.ne(1 ).to(__lowerCamelCase ) UpperCamelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCamelCase = BioGptForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() UpperCamelCase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) UpperCamelCase = torch.tensor([[2, 4_805, 9, 656, 21]] ) UpperCamelCase = model(__lowerCamelCase )[0] UpperCamelCase = 42_384 UpperCamelCase = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) UpperCamelCase = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(__lowerCamelCase ) torch.manual_seed(0 ) UpperCamelCase = tokenizer('COVID-19 is' , return_tensors='pt' ).to(__lowerCamelCase ) UpperCamelCase = model.generate( **__lowerCamelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=__lowerCamelCase , ) UpperCamelCase = tokenizer.decode(output_ids[0] , skip_special_tokens=__lowerCamelCase ) UpperCamelCase = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
701
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import pickle import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self , A_ , A_ , A_ , A_ , A_ , A_=0.2 , A_=0.2 ) -> Optional[int]: """simple docstring""" UpperCamelCase = bp_numa UpperCamelCase = bp_numa UpperCamelCase = bp_numa UpperCamelCase = conva_get[:2] UpperCamelCase = conva_get[2] UpperCamelCase = size_pa UpperCamelCase = rate_w UpperCamelCase = rate_t UpperCamelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) UpperCamelCase = -2 * np.random.rand(self.conva[1] ) + 1 UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 UpperCamelCase = -2 * np.random.rand(self.num_bpa ) + 1 def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" # save model dict with pickle UpperCamelCase = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(_lowercase , 'wb' ) as f: pickle.dump(_lowercase , _lowercase ) print(F'''Model saved: {save_path}''' ) @classmethod def __UpperCamelCase ( cls , A_ ) -> int: """simple docstring""" # read saved model with open(_lowercase , 'rb' ) as f: UpperCamelCase = pickle.load(_lowercase ) # noqa: S301 UpperCamelCase = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) UpperCamelCase = model_dic.get('size_pooling1' ) UpperCamelCase = model_dic.get('num_bp1' ) UpperCamelCase = model_dic.get('num_bp2' ) UpperCamelCase = model_dic.get('num_bp3' ) UpperCamelCase = model_dic.get('rate_weight' ) UpperCamelCase = model_dic.get('rate_thre' ) # create model instance UpperCamelCase = CNN(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) # modify model parameter UpperCamelCase = model_dic.get('w_conv1' ) UpperCamelCase = model_dic.get('wkj' ) UpperCamelCase = model_dic.get('vji' ) UpperCamelCase = model_dic.get('thre_conv1' ) UpperCamelCase = model_dic.get('thre_bp2' ) UpperCamelCase = model_dic.get('thre_bp3' ) return conv_ins def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" return round(_lowercase , 3 ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" # convolution process UpperCamelCase = convs[0] UpperCamelCase = convs[1] UpperCamelCase = np.shape(_lowercase )[0] # get the data slice of original image data, data_focus UpperCamelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , _lowercase ): for j_focus in range(0 , size_data - size_conv + 1 , _lowercase ): UpperCamelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(_lowercase ) # calculate the feature map of every single kernel, and saved as list of matrix UpperCamelCase = [] UpperCamelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(_lowercase ): UpperCamelCase = [] for i_focus in range(len(_lowercase ) ): UpperCamelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(_lowercase ) ) UpperCamelCase = np.asmatrix(_lowercase ).reshape( _lowercase , _lowercase ) data_featuremap.append(_lowercase ) # expanding the data slice to One dimenssion UpperCamelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(_lowercase ) ) UpperCamelCase = np.asarray(_lowercase ) return focus_list, data_featuremap def __UpperCamelCase ( self , A_ , A_ , A_="average_pool" ) -> int: """simple docstring""" # pooling process UpperCamelCase = len(featuremaps[0] ) UpperCamelCase = int(size_map / size_pooling ) UpperCamelCase = [] for i_map in range(len(_lowercase ) ): UpperCamelCase = featuremaps[i_map] UpperCamelCase = [] for i_focus in range(0 , _lowercase , _lowercase ): for j_focus in range(0 , _lowercase , _lowercase ): UpperCamelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(_lowercase ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(_lowercase ) ) UpperCamelCase = np.asmatrix(_lowercase ).reshape(_lowercase , _lowercase ) featuremap_pooled.append(_lowercase ) return featuremap_pooled def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" # expanding three dimension data to one dimension list UpperCamelCase = [] for i in range(len(_lowercase ) ): UpperCamelCase = np.shape(data[i] ) UpperCamelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) UpperCamelCase = data_listed.getA().tolist()[0] data_expanded.extend(_lowercase ) UpperCamelCase = np.asarray(_lowercase ) return data_expanded def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" # expanding matrix to one dimension list UpperCamelCase = np.asarray(_lowercase ) UpperCamelCase = np.shape(_lowercase ) UpperCamelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = 0 for i_map in range(_lowercase ): UpperCamelCase = np.ones((size_map, size_map) ) for i in range(0 , _lowercase , _lowercase ): for j in range(0 , _lowercase , _lowercase ): UpperCamelCase = pd_pool[ i_pool ] UpperCamelCase = i_pool + 1 UpperCamelCase = np.multiply( _lowercase , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(_lowercase ) return pd_all def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_=bool ) -> Tuple: """simple docstring""" # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(_lowercase )) ) print((' - - Shape: Teach_Data ', np.shape(_lowercase )) ) UpperCamelCase = 0 UpperCamelCase = [] UpperCamelCase = 10_000 while rp < n_repeat and mse >= error_accuracy: UpperCamelCase = 0 print(F'''-------------Learning Time {rp}--------------''' ) for p in range(len(_lowercase ) ): # print('------------Learning Image: %d--------------'%p) UpperCamelCase = np.asmatrix(datas_train[p] ) UpperCamelCase = np.asarray(datas_teach[p] ) UpperCamelCase , UpperCamelCase = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase = self.pooling(_lowercase , self.size_poolinga ) UpperCamelCase = np.shape(_lowercase ) UpperCamelCase = self._expand(_lowercase ) UpperCamelCase = data_bp_input UpperCamelCase = np.dot(_lowercase , self.vji.T ) - self.thre_bpa UpperCamelCase = self.sig(_lowercase ) UpperCamelCase = np.dot(_lowercase , self.wkj.T ) - self.thre_bpa UpperCamelCase = self.sig(_lowercase ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- UpperCamelCase = np.multiply( (data_teach - bp_outa) , np.multiply(_lowercase , (1 - bp_outa) ) ) UpperCamelCase = np.multiply( np.dot(_lowercase , self.wkj ) , np.multiply(_lowercase , (1 - bp_outa) ) ) UpperCamelCase = np.dot(_lowercase , self.vji ) UpperCamelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) UpperCamelCase = pd_conva_pooled.T.getA().tolist() UpperCamelCase = self._calculate_gradient_from_pool( _lowercase , _lowercase , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): UpperCamelCase = self._expand_mat(pd_conva_all[k_conv] ) UpperCamelCase = self.rate_weight * np.dot(_lowercase , _lowercase ) UpperCamelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) UpperCamelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer UpperCamelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight UpperCamelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight UpperCamelCase = self.thre_bpa - pd_k_all * self.rate_thre UpperCamelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image UpperCamelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) UpperCamelCase = rp + 1 UpperCamelCase = error_count / patterns all_mse.append(_lowercase ) def draw_error(): UpperCamelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(_lowercase , '+-' ) plt.plot(_lowercase , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(_lowercase , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, F''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" # model predict UpperCamelCase = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(_lowercase )) ) for p in range(len(_lowercase ) ): UpperCamelCase = np.asmatrix(datas_test[p] ) UpperCamelCase , UpperCamelCase = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase = self.pooling(_lowercase , self.size_poolinga ) UpperCamelCase = self._expand(_lowercase ) UpperCamelCase = data_bp_input UpperCamelCase = bp_outa * self.vji.T - self.thre_bpa UpperCamelCase = self.sig(_lowercase ) UpperCamelCase = bp_outa * self.wkj.T - self.thre_bpa UpperCamelCase = self.sig(_lowercase ) produce_out.extend(bp_outa.getA().tolist() ) UpperCamelCase = [list(map(self.do_round , _lowercase ) ) for each in produce_out] return np.asarray(_lowercase ) def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" # return the data of image after convoluting process so we can check it out UpperCamelCase = np.asmatrix(_lowercase ) UpperCamelCase , UpperCamelCase = self.convolute( _lowercase , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) UpperCamelCase = self.pooling(_lowercase , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
702
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class lowercase : def __init__( self , A_ , A_=13 , A_=30 , A_=2 , A_=3 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_=3 , A_=None , A_=2 , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 2 def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = DeiTModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = DeiTForMaskedImageModeling(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase = model(lowercase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = DeiTForMaskedImageModeling(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowercase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = DeiTForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( UpperCamelCase ) = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( snake_case__ , snake_case__ , unittest.TestCase ): __lowercase : Dict = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) __lowercase : Any = ( { "feature-extraction": DeiTModel, "image-classification": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) __lowercase : Optional[Any] = False __lowercase : Optional[int] = False __lowercase : List[str] = False def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = DeiTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowercase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear ) ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowercase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> Tuple: """simple docstring""" UpperCamelCase = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" if not self.model_tester.is_training: return UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase_ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue UpperCamelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCamelCase = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCamelCase = model(**lowercase_ ).loss loss.backward() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return UpperCamelCase = False UpperCamelCase = True for model_class in self.all_model_classes: if model_class in get_values(lowercase_ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue UpperCamelCase = model_class(lowercase_ ) model.gradient_checkpointing_enable() model.to(lowercase_ ) model.train() UpperCamelCase = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) UpperCamelCase = model(**lowercase_ ).loss loss.backward() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase_ ), *get_values(lowercase_ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F'''Testing {model_class} with {problem_type['title']}''' ): UpperCamelCase = problem_type["title"] UpperCamelCase = problem_type["num_labels"] UpperCamelCase = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCamelCase = self._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ ) if problem_type["num_labels"] > 1: UpperCamelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] ) UpperCamelCase = inputs["labels"].to(problem_type['dtype'] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase_ ) as warning_list: UpperCamelCase = model(**lowercase_ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = DeiTModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A ( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to( lowercase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowercase_ , return_tensors='pt' ).to(lowercase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowercase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase_ ) UpperCamelCase = torch.tensor([-1.0266, 0.1912, -1.2861] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow @require_accelerate @require_torch_gpu def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowercase_ , return_tensors='pt' ) UpperCamelCase = inputs.pixel_values.to(lowercase_ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): UpperCamelCase = model(lowercase_ )
703
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[Any] = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "google/mobilenet_v1_1.0_224": "https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json", "google/mobilenet_v1_0.75_192": "https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowercase ( _UpperCAmelCase ): __lowercase : Dict = '''mobilenet_v1''' def __init__( self , A_=3 , A_=224 , A_=1.0 , A_=8 , A_="relu6" , A_=True , A_=0.999 , A_=0.02 , A_=0.001 , **A_ , ) -> Optional[int]: """simple docstring""" super().__init__(**A_ ) if depth_multiplier <= 0: raise ValueError('depth_multiplier must be greater than zero.' ) UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = depth_multiplier UpperCamelCase = min_depth UpperCamelCase = hidden_act UpperCamelCase = tf_padding UpperCamelCase = classifier_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps class lowercase ( _UpperCAmelCase ): __lowercase : List[str] = version.parse("1.11" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict([('pixel_values', {0: 'batch'})] ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "image-classification": return OrderedDict([('logits', {0: 'batch'})] ) else: return OrderedDict([('last_hidden_state', {0: 'batch'}), ('pooler_output', {0: 'batch'})] ) @property def __UpperCamelCase ( self ) -> float: """simple docstring""" return 1e-4
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = FlaxMTaForConditionalGeneration.from_pretrained('google/mt5-small' ) UpperCamelCase = AutoTokenizer.from_pretrained('google/mt5-small' ) UpperCamelCase = tokenizer('Hello there' , return_tensors='np' ).input_ids UpperCamelCase = tokenizer('Hi I am' , return_tensors='np' ).input_ids UpperCamelCase = shift_tokens_right(A_ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCamelCase = model(A_ , decoder_input_ids=A_ ).logits UpperCamelCase = optax.softmax_cross_entropy(A_ , onehot(A_ , logits.shape[-1] ) ).mean() UpperCamelCase = -(labels.shape[-1] * loss.item()) UpperCamelCase = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = "" __lowercase : int = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) __lowercase : Dict = None # compression type in fsspec. ex: "gzip" __lowercase : Dict = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , A_ = "" , A_ = None , A_ = None , **A_ ) -> Optional[Any]: """simple docstring""" super().__init__(self , **__UpperCamelCase ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCamelCase = fsspec.open( __UpperCamelCase , mode='rb' , protocol=__UpperCamelCase , compression=self.compression , client_kwargs={ 'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459 'trust_env': True, # Enable reading proxy env variables. **(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCamelCase = os.path.basename(self.file.path.split('::' )[0] ) UpperCamelCase = ( self.compressed_name[: self.compressed_name.rindex('.' )] if '.' in self.compressed_name else self.compressed_name ) UpperCamelCase = None @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" # compressed file paths are always relative to the archive root return super()._strip_protocol(__UpperCamelCase ).lstrip('/' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" if self.dir_cache is None: UpperCamelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name} UpperCamelCase = {f['name']: f} def __UpperCamelCase ( self , A_ ) -> List[Any]: """simple docstring""" return self.file.open().read() def __UpperCamelCase ( self , A_ , A_ = "rb" , A_=None , A_=True , A_=None , **A_ , ) -> Tuple: """simple docstring""" UpperCamelCase = self._strip_protocol(__UpperCamelCase ) if mode != "rb": raise ValueError(F'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''' ) return self.file.open() class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : List[str] = "bz2" __lowercase : Optional[Any] = "bz2" __lowercase : Dict = ".bz2" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "gzip" __lowercase : Optional[Any] = "gzip" __lowercase : Optional[int] = ".gz" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : int = "lz4" __lowercase : Optional[int] = "lz4" __lowercase : List[Any] = ".lz4" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[int] = "xz" __lowercase : str = "xz" __lowercase : List[Any] = ".xz" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = "zstd" __lowercase : Dict = "zstd" __lowercase : Any = ".zst" def __init__( self , A_ , A_ = "rb" , A_ = None , A_ = None , A_ = DEFAULT_BLOCK_SIZE , **A_ , ) -> Any: """simple docstring""" super().__init__( fo=__UpperCamelCase , mode=__UpperCamelCase , target_protocol=__UpperCamelCase , target_options=__UpperCamelCase , block_size=__UpperCamelCase , **__UpperCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCamelCase = self.file.__enter__ class lowercase : def __init__( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = file_ def __enter__( self ) -> Any: """simple docstring""" self._file.__enter__() return self def __exit__( self , *A_ , **A_ ) -> Any: """simple docstring""" self._file.__exit__(*__UpperCamelCase , **__UpperCamelCase ) def __iter__( self ) -> Union[str, Any]: """simple docstring""" return iter(self._file ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return next(self._file ) def __getattr__( self , A_ ) -> Tuple: """simple docstring""" return getattr(self._file , __UpperCamelCase ) def fixed_enter(*A_ , **A_ ): return WrappedFile(_enter(*__UpperCamelCase , **__UpperCamelCase ) ) UpperCamelCase = fixed_enter
706
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(lowercase ) UpperCamelCase = sess.run(lowercase ) return centroids, assignments
3
0
import math def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while num > 0: UpperCamelCase = num % 8 UpperCamelCase = octal + (remainder * math.floor(math.pow(10 , lowercase ) )) counter += 1 UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowercase )}''' def A ( ) -> None: '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : str = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( __A ): __lowercase : int = """unispeech-sat""" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1_500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , ) -> Any: """simple docstring""" super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = list(UpperCamelCase__ ) UpperCamelCase = xvector_output_dim @property def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
708
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase ( unittest.TestCase ): __lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __UpperCamelCase ( cls ) -> Tuple: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __UpperCamelCase ( cls ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowercase , default=lowercase , required=lowercase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowercase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowercase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowercase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowercase , default=0 , help='cuda_id.' , ) UpperCamelCase = parser.parse_args() return args def A ( lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' if not len(lowercase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) UpperCamelCase , UpperCamelCase = imgs[0].size UpperCamelCase = Image.new('RGB' , size=(cols * w, rows * h) ) UpperCamelCase , UpperCamelCase = grid.size for i, img in enumerate(lowercase ): grid.paste(lowercase , box=(i % cols * w, i // cols * h) ) return grid def A ( lowercase , lowercase="robotic cat with wings" , lowercase=7.5 , lowercase=50 , lowercase=1 , lowercase=42 , ) -> Any: '''simple docstring''' UpperCamelCase = torch.Generator(pipeline.device ).manual_seed(lowercase ) UpperCamelCase = pipeline( lowercase , guidance_scale=lowercase , num_inference_steps=lowercase , generator=lowercase , num_images_per_prompt=lowercase , ).images UpperCamelCase = int(math.sqrt(lowercase ) ) UpperCamelCase = image_grid(lowercase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images _UpperCAmelCase : List[str] = parse_args() # Load models and create wrapper for stable diffusion _UpperCAmelCase : str = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") _UpperCAmelCase : Any = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") _UpperCAmelCase : Tuple = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") _UpperCAmelCase : Any = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") _UpperCAmelCase : str = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) _UpperCAmelCase : Tuple = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): _UpperCAmelCase : str = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: _UpperCAmelCase : Dict = unet.to(torch.device("cuda", args.cuda_id)) _UpperCAmelCase : Any = pipeline.to(unet.device) _UpperCAmelCase ,_UpperCAmelCase : Optional[Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) _UpperCAmelCase : Optional[Any] = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
709
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _UpperCAmelCase : List[str] = logging.get_logger(__name__) class lowercase ( lowercase_ ): __lowercase : Optional[int] = ['''pixel_values'''] def __init__( self , A_ = True , A_ = None , A_ = PILImageResampling.BILINEAR , A_ = True , A_ = None , A_ = True , A_ = 1 / 255 , A_ = True , A_ = None , A_ = None , **A_ , ) -> Tuple: """simple docstring""" super().__init__(**UpperCamelCase__ ) UpperCamelCase = size if size is not None else {'shortest_edge': 256} UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} UpperCamelCase = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) UpperCamelCase = do_resize UpperCamelCase = size UpperCamelCase = resample UpperCamelCase = do_center_crop UpperCamelCase = crop_size UpperCamelCase = do_rescale UpperCamelCase = rescale_factor UpperCamelCase = do_normalize UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCamelCase ( self , A_ , A_ , A_ = PILImageResampling.BICUBIC , A_ = None , **A_ , ) -> List[str]: """simple docstring""" UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase = get_resize_output_image_size(UpperCamelCase__ , size=size['shortest_edge'] , default_to_square=UpperCamelCase__ ) return resize(UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = get_size_dict(UpperCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(UpperCamelCase__ , size=(size['height'], size['width']) , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __UpperCamelCase ( self , A_ , A_ , A_ = None , **A_ ) -> Optional[int]: """simple docstring""" return rescale(UpperCamelCase__ , scale=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ = None , **A_ , ) -> List[str]: """simple docstring""" return normalize(UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ , data_format=UpperCamelCase__ , **UpperCamelCase__ ) def __UpperCamelCase ( self , A_ , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = None , A_ = ChannelDimension.FIRST , **A_ , ) -> Optional[int]: """simple docstring""" UpperCamelCase = do_resize if do_resize is not None else self.do_resize UpperCamelCase = size if size is not None else self.size UpperCamelCase = get_size_dict(UpperCamelCase__ , default_to_square=UpperCamelCase__ ) UpperCamelCase = resample if resample is not None else self.resample UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase = crop_size if crop_size is not None else self.crop_size UpperCamelCase = get_size_dict(UpperCamelCase__ , param_name='crop_size' ) UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase = image_mean if image_mean is not None else self.image_mean UpperCamelCase = image_std if image_std is not None else self.image_std UpperCamelCase = make_list_of_images(UpperCamelCase__ ) if not valid_images(UpperCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. UpperCamelCase = [to_numpy_array(UpperCamelCase__ ) for image in images] if do_resize: UpperCamelCase = [self.resize(image=UpperCamelCase__ , size=UpperCamelCase__ , resample=UpperCamelCase__ ) for image in images] if do_center_crop: UpperCamelCase = [self.center_crop(image=UpperCamelCase__ , size=UpperCamelCase__ ) for image in images] if do_rescale: UpperCamelCase = [self.rescale(image=UpperCamelCase__ , scale=UpperCamelCase__ ) for image in images] if do_normalize: UpperCamelCase = [self.normalize(image=UpperCamelCase__ , mean=UpperCamelCase__ , std=UpperCamelCase__ ) for image in images] UpperCamelCase = [to_channel_dimension_format(UpperCamelCase__ , UpperCamelCase__ ) for image in images] UpperCamelCase = {'pixel_values': images} return BatchFeature(data=UpperCamelCase__ , tensor_type=UpperCamelCase__ ) def __UpperCamelCase ( self , A_ , A_ = None ) -> Optional[int]: """simple docstring""" UpperCamelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(UpperCamelCase__ ): UpperCamelCase = target_sizes.numpy() UpperCamelCase = [] for idx in range(len(UpperCamelCase__ ) ): UpperCamelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=UpperCamelCase__ ) UpperCamelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(UpperCamelCase__ ) else: UpperCamelCase = logits.argmax(dim=1 ) UpperCamelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
710
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = DonutImageProcessingTester(self ) @property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def __UpperCamelCase ( self ) -> int: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 _UpperCAmelCase : Any = get_tests_dir("fixtures") class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=lowerCAmelCase_ ) as mock_head: UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class lowercase ( unittest.TestCase ): @classmethod def __UpperCamelCase ( cls ) -> Any: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(lowerCAmelCase_ ) @classmethod def __UpperCamelCase ( cls ) -> Dict: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id='test-feature-extractor' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( lowerCAmelCase_ , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=lowerCAmelCase_ , use_auth_token=self._token ) UpperCamelCase = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(lowerCAmelCase_ , getattr(lowerCAmelCase_ , lowerCAmelCase_ ) ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() UpperCamelCase = CustomFeatureExtractor.from_pretrained(lowerCAmelCase_ ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) UpperCamelCase = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=lowerCAmelCase_ ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCAmelCase : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512} def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char UpperCamelCase = set(lowercase ) return pairs class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ ) UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ ) UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
0
import functools def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = len(a_ ) UpperCamelCase = len(a_ ) @functools.cache def min_distance(lowercase , lowercase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCamelCase = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , a_ ) , 1 + min_distance(a_ , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
712
def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = int(lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase ) UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 ) return binary_recursive(lowercase ) + str(lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = str(lowercase ).strip() if not number: raise ValueError('No input value was provided' ) UpperCamelCase = '-' if number.startswith('-' ) else '' UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(lowercase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
3
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase : def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ) -> List[str]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(_A ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = TFRegNetModel(config=_A ) UpperCamelCase = model(_A , training=_A ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFRegNetForImageClassification(_A ) UpperCamelCase = model(_A , labels=_A , training=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase ( _a , _a , unittest.TestCase ): __lowercase : Union[str, Any] = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () __lowercase : Any = ( {"feature-extraction": TFRegNetModel, "image-classification": TFRegNetForImageClassification} if is_tf_available() else {} ) __lowercase : List[str] = False __lowercase : Dict = False __lowercase : str = False __lowercase : Optional[Any] = False __lowercase : List[Any] = False def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = TFRegNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_A , has_text_modality=_A ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices('GPU' ) ) == 0 , reason='TF does not support backprop for grouped convolutions on CPU.' , ) @slow def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" super().test_keras_fit() @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" pass def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_A ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _A ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(_A ) UpperCamelCase = model(**self._prepare_for_class(_A , _A ) , training=_A ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(_A ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(_A , _A , _A ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(A_ , A_ , A_ , A_={} ): UpperCamelCase = model(_A , return_dict=_A , **_A ) UpperCamelCase = model(_A , return_dict=_A , **_A ).to_tuple() def recursive_check(A_ , A_ ): if isinstance(_A , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_A , _A ): recursive_check(_A , _A ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(_A , _A ) ) , msg=( 'Tuple and dict output are not equal. Difference:' F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(_A , _A ) for model_class in self.all_model_classes: UpperCamelCase = model_class(_A ) UpperCamelCase = self._prepare_for_class(_A , _A ) UpperCamelCase = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A ) UpperCamelCase = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCamelCase = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A ) UpperCamelCase = self._prepare_for_class(_A , _A ) UpperCamelCase = self._prepare_for_class(_A , _A ) check_equivalence(_A , _A , _A , {'output_hidden_states': True} ) UpperCamelCase = self._prepare_for_class(_A , _A , return_labels=_A ) UpperCamelCase = self._prepare_for_class(_A , _A , return_labels=_A ) check_equivalence(_A , _A , _A , {'output_hidden_states': True} ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFRegNetModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def A ( ) -> Dict: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_A , return_tensors='tf' ) # forward pass UpperCamelCase = model(**_A , training=_A ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , _A ) UpperCamelCase = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _A , atol=1e-4 )
713
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int: '''simple docstring''' if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' ) else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(lowercase , 'vocab.json' ) if not os.path.isdir(lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowercase , lowercase ) UpperCamelCase = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) UpperCamelCase = WavaVecaConformerForCTC(lowercase ) else: UpperCamelCase = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase = fairseq.tasks.setup_task(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
0
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny vocab first, and then a tiny model - so the outcome is truly tiny - # all files ~60KB. As compared to taking a full-size model, reducing to the minimum its layers and # emb dimensions, but keeping the full vocab + merges files, leading to ~3MB in total for all files. # The latter is done by `fsmt-make-super-tiny-model.py`. # # It will be used then as "stas/tiny-wmt19-en-ru" from pathlib import Path import json import tempfile from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES _UpperCAmelCase : str = "tiny-wmt19-en-ru" # Build # borrowed from a test _UpperCAmelCase : Optional[int] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "w</w>", "r</w>", "t</w>", "lo", "low", "er</w>", "low</w>", "lowest</w>", "newer</w>", "wider</w>", "<unk>", ] _UpperCAmelCase : Dict = dict(zip(vocab, range(len(vocab)))) _UpperCAmelCase : List[str] = ["l o 123", "lo w 1456", "e r</w> 1789", ""] with tempfile.TemporaryDirectory() as tmpdirname: _UpperCAmelCase : Optional[Any] = Path(tmpdirname) _UpperCAmelCase : str = build_dir / VOCAB_FILES_NAMES["src_vocab_file"] _UpperCAmelCase : Union[str, Any] = build_dir / VOCAB_FILES_NAMES["tgt_vocab_file"] _UpperCAmelCase : List[Any] = build_dir / VOCAB_FILES_NAMES["merges_file"] with open(src_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(tgt_vocab_file, "w") as fp: fp.write(json.dumps(vocab_tokens)) with open(merges_file, "w") as fp: fp.write("\n".join(merges)) _UpperCAmelCase : int = FSMTTokenizer( langs=["en", "ru"], src_vocab_size=len(vocab), tgt_vocab_size=len(vocab), src_vocab_file=src_vocab_file, tgt_vocab_file=tgt_vocab_file, merges_file=merges_file, ) _UpperCAmelCase : Tuple = FSMTConfig( langs=["ru", "en"], src_vocab_size=1_000, tgt_vocab_size=1_000, d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) _UpperCAmelCase : int = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test _UpperCAmelCase : List[str] = tokenizer(["Making tiny model"], return_tensors="pt") _UpperCAmelCase : int = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-ru
714
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
0
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : Union[str, Any] = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Any = AlbertTokenizer __lowercase : Tuple = AlbertTokenizerFast __lowercase : int = True __lowercase : str = True __lowercase : Union[str, Any] = True def __UpperCamelCase ( self ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = AlbertTokenizer(A_ ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = 'this is a test' UpperCamelCase = 'this is a test' return input_text, output_text def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = '<pad>' UpperCamelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A_ ) , A_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A_ ) , A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '▁eloquent' ) self.assertEqual(len(A_ ) , 30_000 ) def __UpperCamelCase ( self ) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 30_000 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = 'I was born in 92000, and this is falsé.' UpperCamelCase = tokenizer.tokenize(A_ ) UpperCamelCase = rust_tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = tokenizer.encode(A_ , add_special_tokens=A_ ) UpperCamelCase = rust_tokenizer.encode(A_ , add_special_tokens=A_ ) self.assertListEqual(A_ , A_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(A_ ) UpperCamelCase = rust_tokenizer.encode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = AlbertTokenizer(A_ , keep_accents=A_ ) UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(A_ , ['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , [48, 25, 21, 1_289] ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( A_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) UpperCamelCase = tokenizer.convert_tokens_to_ids(A_ ) self.assertListEqual(A_ , [31, 23, 386, 19, 561, 3_050, 15, 17, 48, 25, 8_256, 18, 1, 9] ) UpperCamelCase = tokenizer.convert_ids_to_tokens(A_ ) self.assertListEqual( A_ , ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'] , ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = AlbertTokenizer(A_ ) UpperCamelCase = tokenizer.encode('sequence builders' ) UpperCamelCase = tokenizer.encode('multi-sequence build' ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 21_970, 13, 5, 6_092, 167, 28, 7_103, 2_153, 673, 8, 7_028, 12_051, 18, 17, 7_103, 2_153, 673, 8, 3_515, 18_684, 8, 4_461, 6, 1_927, 297, 8, 12_060, 2_607, 18, 13, 5, 4_461, 15, 10_538, 38, 8, 135, 15, 822, 58, 15, 993, 10_363, 15, 1_460, 8_005, 4_461, 15, 993, 255, 2_328, 9, 9, 9, 6, 26, 1_112, 816, 3_260, 13, 5, 103, 2_377, 6, 17, 1_112, 816, 2_782, 13, 5, 103, 10_641, 6, 29, 84, 2_512, 2_430, 782, 18_684, 2_761, 19, 808, 2_430, 2_556, 17, 855, 1_480, 9_477, 4_091, 128, 11_712, 15, 7_103, 2_153, 673, 17, 24_883, 9_990, 9, 3], [2, 11_502, 25, 1_006, 20, 782, 8, 11_809, 855, 1_732, 19_393, 18_667, 37, 367, 21_018, 69, 1_854, 34, 11_860, 19_124, 27, 156, 225, 17, 193, 4_141, 19, 65, 9_124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2_231, 886, 2_385, 17_659, 84, 14, 16_792, 1_952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A_ , model_name='albert-base-v2' , revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e' , )
715
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase : str = "scheduler_config.json" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : List[Any] = 3 __lowercase : str = 4 __lowercase : Optional[Any] = 5 @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : jnp.ndarray class lowercase : __lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = ["dtype"] __lowercase : List[Any] = [] __lowercase : Dict = True @classmethod def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> int: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def A ( lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' assert len(lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase ) def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(lowercase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) ) return jnp.array(lowercase , dtype=lowercase ) @flax.struct.dataclass class lowercase : __lowercase : jnp.ndarray __lowercase : jnp.ndarray __lowercase : jnp.ndarray @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = scheduler.config if config.trained_betas is not None: UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase = 1.0 - betas UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = state.alphas_cumprod UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
3
0
import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("0.8.3"): raise Exception("requires gluonnlp == 0.8.3") if version.parse(mx.__version__) != version.parse("1.5.0"): raise Exception("requires mxnet == 1.5.0") logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : List[str] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def A ( lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = { 'attention_cell': 'multi_head', 'num_layers': 4, 'units': 1_024, 'hidden_size': 768, 'max_length': 512, 'num_heads': 8, 'scaled': True, 'dropout': 0.1, 'use_residual': True, 'embed_size': 1_024, 'embed_dropout': 0.1, 'word_embed': None, 'layer_norm_eps': 1e-5, 'token_type_vocab_size': 2, } UpperCamelCase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py UpperCamelCase = BERTEncoder( attention_cell=predefined_args['attention_cell'] , num_layers=predefined_args['num_layers'] , units=predefined_args['units'] , hidden_size=predefined_args['hidden_size'] , max_length=predefined_args['max_length'] , num_heads=predefined_args['num_heads'] , scaled=predefined_args['scaled'] , dropout=predefined_args['dropout'] , output_attention=lowercase , output_all_encodings=lowercase , use_residual=predefined_args['use_residual'] , activation=predefined_args.get('activation' , 'gelu' ) , layer_norm_eps=predefined_args.get('layer_norm_eps' , lowercase ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later UpperCamelCase = 'openwebtext_ccnews_stories_books_cased' # Specify download folder to Gluonnlp's vocab UpperCamelCase = os.path.join(get_home_dir() , 'models' ) UpperCamelCase = _load_vocab(lowercase , lowercase , lowercase , cls=lowercase ) UpperCamelCase = nlp.model.BERTModel( lowercase , len(lowercase ) , units=predefined_args['units'] , embed_size=predefined_args['embed_size'] , embed_dropout=predefined_args['embed_dropout'] , word_embed=predefined_args['word_embed'] , use_pooler=lowercase , use_token_type_embed=lowercase , token_type_vocab_size=predefined_args['token_type_vocab_size'] , use_classifier=lowercase , use_decoder=lowercase , ) original_bort.load_parameters(lowercase , cast_dtype=lowercase , ignore_extra=lowercase ) UpperCamelCase = original_bort._collect_params_with_prefix() # Build our config 🤗 UpperCamelCase = { 'architectures': ['BertForMaskedLM'], 'attention_probs_dropout_prob': predefined_args['dropout'], 'hidden_act': 'gelu', 'hidden_dropout_prob': predefined_args['dropout'], 'hidden_size': predefined_args['embed_size'], 'initializer_range': 0.0_2, 'intermediate_size': predefined_args['hidden_size'], 'layer_norm_eps': predefined_args['layer_norm_eps'], 'max_position_embeddings': predefined_args['max_length'], 'model_type': 'bort', 'num_attention_heads': predefined_args['num_heads'], 'num_hidden_layers': predefined_args['num_layers'], 'pad_token_id': 1, # 2 = BERT, 1 = RoBERTa 'type_vocab_size': 1, # 2 = BERT, 1 = RoBERTa 'vocab_size': len(lowercase ), } UpperCamelCase = BertConfig.from_dict(lowercase ) UpperCamelCase = BertForMaskedLM(lowercase ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(lowercase ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(lowercase , lowercase ): UpperCamelCase = hf_param.shape UpperCamelCase = to_torch(params[gluon_param] ) UpperCamelCase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers''' return gluon_param UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , 'word_embed.0.weight' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , 'encoder.position_weight' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , 'encoder.layer_norm.beta' ) UpperCamelCase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , 'encoder.layer_norm.gamma' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) UpperCamelCase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): UpperCamelCase = hf_bort_model.bert.encoder.layer[i] # self attention UpperCamelCase = layer.attention.self UpperCamelCase = check_and_map_params( self_attn.key.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' ) UpperCamelCase = check_and_map_params( self_attn.key.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' ) UpperCamelCase = check_and_map_params( self_attn.query.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' ) UpperCamelCase = check_and_map_params( self_attn.query.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' ) UpperCamelCase = check_and_map_params( self_attn.value.bias.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' ) UpperCamelCase = check_and_map_params( self_attn.value.weight.data , f'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' ) # self attention output UpperCamelCase = layer.attention.output UpperCamelCase = check_and_map_params( self_output.dense.bias , f'''encoder.transformer_cells.{i}.proj.bias''' ) UpperCamelCase = check_and_map_params( self_output.dense.weight , f'''encoder.transformer_cells.{i}.proj.weight''' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.layer_norm.beta''' ) UpperCamelCase = check_and_map_params( self_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.layer_norm.gamma''' ) # intermediate UpperCamelCase = layer.intermediate UpperCamelCase = check_and_map_params( intermediate.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' ) UpperCamelCase = check_and_map_params( intermediate.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' ) # output UpperCamelCase = layer.output UpperCamelCase = check_and_map_params( bert_output.dense.bias , f'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' ) UpperCamelCase = check_and_map_params( bert_output.dense.weight , f'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.bias , f'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' ) UpperCamelCase = check_and_map_params( bert_output.LayerNorm.weight , f'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models UpperCamelCase = RobertaTokenizer.from_pretrained('roberta-base' ) UpperCamelCase = tokenizer.encode_plus(lowercase )['input_ids'] # Get gluon output UpperCamelCase = mx.nd.array([input_ids] ) UpperCamelCase = original_bort(inputs=lowercase , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(lowercase ) UpperCamelCase = BertModel.from_pretrained(lowercase ) hf_bort_model.eval() UpperCamelCase = tokenizer.encode_plus(lowercase , return_tensors='pt' ) UpperCamelCase = hf_bort_model(**lowercase )[0] UpperCamelCase = output_gluon[0].asnumpy() UpperCamelCase = output_hf[0].detach().numpy() UpperCamelCase = np.max(np.abs(hf_layer - gluon_layer ) ).item() UpperCamelCase = np.allclose(lowercase , lowercase , atol=1e-3 ) if success: print('✔️ Both model do output the same tensors' ) else: print('❌ Both model do **NOT** output the same tensors' ) print('Absolute difference is:' , lowercase ) if __name__ == "__main__": _UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _UpperCAmelCase : List[Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
716
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" # test for the above condition self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
3
0
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : str = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class lowercase ( __lowerCAmelCase ): __lowercase : Any = "ernie_m" __lowercase : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self , A_ = 250_002 , A_ = 768 , A_ = 12 , A_ = 12 , A_ = 3_072 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 514 , A_ = 0.02 , A_ = 1 , A_ = 1e-05 , A_=None , A_=False , A_=0.0 , **A_ , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = classifier_dropout UpperCamelCase = is_decoder UpperCamelCase = act_dropout
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ , A_ = None , A_ = None ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def A ( ) -> Dict: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case_ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def A ( ) -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def A ( ) -> Optional[Any]: '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case_ ): http_head('https://huggingface.co' )
718
from string import ascii_uppercase _UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase)) def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = len(lowercase ) UpperCamelCase = 0 while True: if x == i: UpperCamelCase = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' UpperCamelCase = 'THE GERMAN ATTACK' UpperCamelCase = 'SECRET' UpperCamelCase = generate_key(lowercase , lowercase ) UpperCamelCase = cipher_text(lowercase , lowercase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(lowercase , lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
0
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowercase ( lowercase_ , unittest.TestCase ): __lowercase : Optional[int] = MvpTokenizer __lowercase : Optional[int] = MvpTokenizerFast __lowercase : Optional[int] = True __lowercase : Tuple = filter_roberta_detectors def __UpperCamelCase ( self ) -> str: """simple docstring""" super().setUp() UpperCamelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] UpperCamelCase = {'unk_token': '<unk>'} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(A_ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(A_ ) ) def __UpperCamelCase ( self , **A_ ) -> Any: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , **A_ ) -> str: """simple docstring""" kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" return "lower newer", "lower newer" @cached_property def __UpperCamelCase ( self ) -> int: """simple docstring""" return MvpTokenizer.from_pretrained('RUCAIBox/mvp' ) @cached_property def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return MvpTokenizerFast.from_pretrained('RUCAIBox/mvp' ) @require_torch def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCamelCase = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(A_ , max_length=len(A_ ) , padding=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(A_ , A_ ) # Test that special tokens are reset @require_torch def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(A_ , padding=A_ , return_tensors='pt' ) # check if input_ids are returned and no labels self.assertIn('input_ids' , A_ ) self.assertIn('attention_mask' , A_ ) self.assertNotIn('labels' , A_ ) self.assertNotIn('decoder_attention_mask' , A_ ) @require_torch def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [ 'Summary of the text.', 'Another summary.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(text_target=A_ , max_length=32 , padding='max_length' , return_tensors='pt' ) self.assertEqual(32 , targets['input_ids'].shape[1] ) @require_torch def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer( ['I am a small frog' * 1_024, 'I am a small frog'] , padding=A_ , truncation=A_ , return_tensors='pt' ) self.assertIsInstance(A_ , A_ ) self.assertEqual(batch.input_ids.shape , (2, 1_024) ) @require_torch def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = ['A long paragraph for summarization.'] UpperCamelCase = [ 'Summary of the text.', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase = tokenizer(A_ , text_target=A_ , return_tensors='pt' ) UpperCamelCase = inputs['input_ids'] UpperCamelCase = inputs['labels'] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass def __UpperCamelCase ( self ) -> str: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(A_ , **A_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(A_ , **A_ ) UpperCamelCase = 'A, <mask> AllenNLP sentence.' UpperCamelCase = tokenizer_r.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) UpperCamelCase = tokenizer_p.encode_plus(A_ , add_special_tokens=A_ , return_token_type_ids=A_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( A_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
719
from collections.abc import Callable def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def A ( lowercase ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
3
0
from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _UpperCAmelCase : int = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self , A_ = True ) -> None: """simple docstring""" UpperCamelCase = {} # dictionary of lists UpperCamelCase = directed def __UpperCamelCase ( self , A_ , A_ ) -> GraphAdjacencyList[T]: """simple docstring""" if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) self.adj_list[destination_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) UpperCamelCase = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(A_ ) UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: UpperCamelCase = [destination_vertex] UpperCamelCase = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(A_ ) UpperCamelCase = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: UpperCamelCase = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: UpperCamelCase = [destination_vertex] UpperCamelCase = [] return self def __repr__( self ) -> str: """simple docstring""" return pformat(self.adj_list )
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Optional[Any] = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _UpperCAmelCase : Dict = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
721
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
0
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
700
def A ( lowercase , lowercase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _UpperCAmelCase : Tuple = "sshleifer/bart-tiny-random" _UpperCAmelCase : List[str] = "patrickvonplaten/t5-tiny-random" @require_torch class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> int: """simple docstring""" return AutoConfig.from_pretrained(A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" with self.assertRaises(A_ ): create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=A_ , d=A_ )
701
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import colorsys from PIL import Image # type: ignore def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = x UpperCamelCase = y for step in range(lowercase ): # noqa: B007 UpperCamelCase = a * a - b * b + x UpperCamelCase = 2 * a * b + y UpperCamelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def A ( lowercase ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def A ( lowercase ) -> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase , 1 , 1 ) ) def A ( lowercase = 800 , lowercase = 600 , lowercase = -0.6 , lowercase = 0 , lowercase = 3.2 , lowercase = 50 , lowercase = True , ) -> Image.Image: '''simple docstring''' UpperCamelCase = Image.new('RGB' , (image_width, image_height) ) UpperCamelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase ): for image_y in range(lowercase ): # determine the figure-coordinates based on the image-coordinates UpperCamelCase = figure_width / image_width * image_height UpperCamelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCamelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCamelCase = get_distance(lowercase , lowercase , lowercase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCamelCase = get_color_coded_rgb(lowercase ) else: UpperCamelCase = get_black_and_white_rgb(lowercase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure _UpperCAmelCase : List[Any] = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
702
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[8, 16, 32, 64] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , A_=["stage2", "stage3", "stage4"] , A_=[2, 3, 4] , A_=1 , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(A_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = BitModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = BitBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowercase : Any = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Any = False __lowercase : int = False __lowercase : Dict = False __lowercase : Any = False def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return @unittest.skip(reason='Bit does not output attentions' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Bit does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='Bit does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ['preactivation', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) @unittest.skip(reason='Bit does not use feedforward chunking' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = (BitBackbone,) if is_torch_available() else () __lowercase : List[Any] = BitConfig __lowercase : int = False def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = BitModelTester(self )
703
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
0
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = ["input_features", "attention_mask"] def __init__( self , A_=80 , A_=16_000 , A_=0.0 , A_=10 , A_=25 , A_="hamming_window" , A_=32_768.0 , A_=0.97 , A_=1.0 , A_=True , A_=True , A_=False , **A_ , ) -> Optional[int]: """simple docstring""" super().__init__(feature_size=A_ , sampling_rate=A_ , padding_value=A_ , **A_ ) UpperCamelCase = feature_size UpperCamelCase = sampling_rate UpperCamelCase = padding_value UpperCamelCase = hop_length UpperCamelCase = win_length UpperCamelCase = frame_signal_scale UpperCamelCase = preemphasis_coeff UpperCamelCase = mel_floor UpperCamelCase = normalize_means UpperCamelCase = normalize_vars UpperCamelCase = win_function UpperCamelCase = return_attention_mask UpperCamelCase = win_length * sampling_rate // 1_000 UpperCamelCase = hop_length * sampling_rate // 1_000 UpperCamelCase = optimal_fft_length(self.sample_size ) UpperCamelCase = (self.n_fft // 2) + 1 def __UpperCamelCase ( self , A_ ) -> np.ndarray: """simple docstring""" if self.win_function == "hamming_window": UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function , periodic=A_ ) else: UpperCamelCase = window_function(window_length=self.sample_size , name=self.win_function ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) UpperCamelCase = spectrogram( one_waveform * self.frame_signal_scale , window=A_ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=A_ , preemphasis=self.preemphasis_coeff , mel_filters=A_ , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" # make sure we normalize float32 arrays if self.normalize_means: UpperCamelCase = x[:input_length].mean(axis=0 ) UpperCamelCase = np.subtract(A_ , A_ ) if self.normalize_vars: UpperCamelCase = x[:input_length].std(axis=0 ) UpperCamelCase = np.divide(A_ , A_ ) if input_length < x.shape[0]: UpperCamelCase = padding_value # make sure array is in float32 UpperCamelCase = x.astype(np.floataa ) return x def __UpperCamelCase ( self , A_ , A_ = None ) -> List[np.ndarray]: """simple docstring""" UpperCamelCase = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(A_ , A_ , self.padding_value ) for x, n in zip(A_ , A_ )] def __call__( self , A_ , A_ = False , A_ = None , A_ = False , A_ = None , A_ = None , A_ = None , A_ = None , **A_ , ) -> BatchFeature: """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) UpperCamelCase = isinstance(A_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) UpperCamelCase = is_batched_numpy or ( isinstance(A_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(A_ , np.ndarray ): UpperCamelCase = np.asarray(A_ , dtype=np.floataa ) elif isinstance(A_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): UpperCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: UpperCamelCase = [raw_speech] # extract fbank features UpperCamelCase = [self._extract_mfsc_features(A_ ) for one_waveform in raw_speech] # convert into correct format for padding UpperCamelCase = BatchFeature({'input_features': features} ) UpperCamelCase = self.pad( A_ , padding=A_ , max_length=A_ , truncation=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , **A_ , ) # make sure list is in array format UpperCamelCase = padded_inputs.get('input_features' ) if isinstance(input_features[0] , A_ ): UpperCamelCase = [np.asarray(A_ , dtype=np.floataa ) for feature in input_features] UpperCamelCase = padded_inputs.get('attention_mask' ) if attention_mask is not None: UpperCamelCase = [np.asarray(A_ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: UpperCamelCase = ( np.array(A_ , dtype=np.intaa ) if self._get_padding_strategies(A_ , max_length=A_ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) UpperCamelCase = self.normalize( padded_inputs['input_features'] , attention_mask=A_ ) if return_tensors is not None: UpperCamelCase = padded_inputs.convert_to_tensors(A_ ) return padded_inputs
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = 13 UpperCamelCase = 7 UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 99 UpperCamelCase = 384 UpperCamelCase = 2 UpperCamelCase = 4 UpperCamelCase = 37 UpperCamelCase = 'gelu' UpperCamelCase = 0.1 UpperCamelCase = 0.1 UpperCamelCase = 512 UpperCamelCase = 16 UpperCamelCase = 2 UpperCamelCase = 0.02 UpperCamelCase = 3 UpperCamelCase = 4 UpperCamelCase = 128 UpperCamelCase = 2 UpperCamelCase = 9 UpperCamelCase = 1 UpperCamelCase = None def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = None if self.use_input_mask: UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase = None if self.use_token_type_ids: UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFConvBertModel(config=A_ ) UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase = [input_ids, input_mask] UpperCamelCase = model(A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = TFConvBertForMaskedLM(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForSequenceClassification(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_choices UpperCamelCase = TFConvBertForMultipleChoice(config=A_ ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = TFConvBertForTokenClassification(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = TFConvBertForQuestionAnswering(config=A_ ) UpperCamelCase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } UpperCamelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = config_and_inputs UpperCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) __lowercase : Any = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) __lowercase : Tuple = False __lowercase : Any = False __lowercase : Optional[int] = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = TFConvBertModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = True if hasattr(A_ , 'use_cache' ): UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) for model_class in self.all_model_classes: UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model_class(A_ ) UpperCamelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) UpperCamelCase = os.path.join(A_ , 'saved_model' , '1' ) UpperCamelCase = tf.keras.models.load_model(A_ ) UpperCamelCase = model(A_ ) if self.is_encoder_decoder: UpperCamelCase = outputs['encoder_hidden_states'] UpperCamelCase = outputs['encoder_attentions'] else: UpperCamelCase = outputs['hidden_states'] UpperCamelCase = outputs['attentions'] self.assertEqual(len(A_ ) , A_ ) UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) def check_decoder_attentions_output(A_ ): UpperCamelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): UpperCamelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class lowercase ( unittest.TestCase ): @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) UpperCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase = model(A_ )[0] UpperCamelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) UpperCamelCase = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Optional[int] = True _UpperCAmelCase : Dict = False if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") _UpperCAmelCase : Dict = parser.parse_args() _UpperCAmelCase : Tuple = { "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } _UpperCAmelCase : List[Any] = { "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } _UpperCAmelCase : int = "" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: _UpperCAmelCase : int = reader.read() _UpperCAmelCase : int = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): _UpperCAmelCase : Tuple = UNetaDModel(**config) else: _UpperCAmelCase : int = UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel _UpperCAmelCase : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) _UpperCAmelCase : int = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: _UpperCAmelCase : str = config[key] del config[key] _UpperCAmelCase : Optional[Any] = [k.replace("UNetRes", "") for k in config["down_block_types"]] _UpperCAmelCase : Optional[int] = [k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: _UpperCAmelCase : Dict = torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) _UpperCAmelCase : str = {} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue _UpperCAmelCase : List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: _UpperCAmelCase : Optional[int] = param_value _UpperCAmelCase : List[Any] = True if not has_changed: _UpperCAmelCase : str = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
706
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(lowercase ) UpperCamelCase = sess.run(lowercase ) return centroids, assignments
3
0
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(A_ , 'width_multiplier' ) ) class lowercase : def __init__( self , A_ , A_=13 , A_=64 , A_=2 , A_=3 , A_="swish" , A_=3 , A_=32 , A_=0.1 , A_=0.02 , A_=True , A_=True , A_=10 , A_=None , A_=0.25 , A_=0.0 , A_=0.0 , ) -> Dict: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = make_divisible(512 * width_multiplier , divisor=8 ) UpperCamelCase = hidden_act UpperCamelCase = conv_kernel_size UpperCamelCase = output_stride UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = width_multiplier UpperCamelCase = ffn_dropout UpperCamelCase = attn_dropout def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTVaForImageClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTVaForSemanticSegmentation(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : int = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) __lowercase : Dict = ( { "feature-extraction": MobileViTVaModel, "image-classification": MobileViTVaForImageClassification, "image-segmentation": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : str = False __lowercase : int = False __lowercase : Optional[int] = False __lowercase : Optional[Any] = False def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = MobileViTVaModelTester(self ) UpperCamelCase = MobileViTVaConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.' ) def __UpperCamelCase ( self ) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" pass def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 5 self.assertEqual(len(A_ ) , A_ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase = 2 for i in range(len(A_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @slow def __UpperCamelCase ( self ) -> Dict: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileViTVaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-1.6336e00, -7.3204e-02, -5.1883e-01] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , A_ ) UpperCamelCase = torch.tensor( [ [[7.0863, 7.1525, 6.8201], [6.6931, 6.8770, 6.8933], [6.2978, 7.0366, 6.9636]], [[-3.7134, -3.6712, -3.6675], [-3.5825, -3.3549, -3.4777], [-3.3435, -3.3979, -3.2857]], [[-2.9329, -2.8003, -2.7369], [-3.0564, -2.4780, -2.0207], [-2.6889, -1.9298, -1.7640]], ] , device=A_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = model.to(A_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3' ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ , target_sizes=[(50, 60)] ) UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , A_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=A_ ) UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , A_ )
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
import math def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while num > 0: UpperCamelCase = num % 8 UpperCamelCase = octal + (remainder * math.floor(math.pow(10 , lowercase ) )) counter += 1 UpperCamelCase = math.floor(num / 8 ) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return f'''0o{int(lowercase )}''' def A ( ) -> None: '''simple docstring''' print('\n2 in octal is:' ) print(decimal_to_octal(2 ) ) # = 2 print('\n8 in octal is:' ) print(decimal_to_octal(8 ) ) # = 10 print('\n65 in octal is:' ) print(decimal_to_octal(65 ) ) # = 101 print('\n216 in octal is:' ) print(decimal_to_octal(216 ) ) # = 330 print('\n512 in octal is:' ) print(decimal_to_octal(512 ) ) # = 1000 print('\n' ) if __name__ == "__main__": main()
708
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase ( unittest.TestCase ): __lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __UpperCamelCase ( cls ) -> Tuple: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __UpperCamelCase ( cls ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
0
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
709
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : str = StableDiffusionXLImgaImgPipeline __lowercase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __lowercase : Any = PipelineTesterMixin.required_optional_params - {"latents"} __lowercase : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __lowercase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS __lowercase : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=A_ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) UpperCamelCase = EulerDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=32 , ) UpperCamelCase = CLIPTextModel(A_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=A_ ) UpperCamelCase = CLIPTextModelWithProjection(A_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=A_ ) UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'text_encoder_2': text_encoder_a, 'tokenizer_2': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def __UpperCamelCase ( self , A_ , A_=0 ) -> Optional[Any]: """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase = image / 2 + 0.5 if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 5.0, 'output_type': 'numpy', 'strength': 0.75, } return inputs def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**A_ ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = sd_pipe(**A_ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCamelCase = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**A_ ) UpperCamelCase = sd_pipe.to(A_ ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) # forward without prompt embeds UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = 3 * ['this is a negative prompt'] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs['prompt']] UpperCamelCase = sd_pipe(**A_ ) UpperCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = 3 * ['this is a negative prompt'] UpperCamelCase = 3 * [inputs.pop('prompt' )] ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = sd_pipe.encode_prompt(A_ , negative_prompt=A_ ) UpperCamelCase = sd_pipe( **A_ , prompt_embeds=A_ , negative_prompt_embeds=A_ , pooled_prompt_embeds=A_ , negative_pooled_prompt_embeds=A_ , ) UpperCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase ( self , A_ , A_="cpu" , A_=torch.floataa , A_=0 ) -> Any: """simple docstring""" UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = np.random.RandomState(A_ ).standard_normal((1, 4, 64, 64) ) UpperCamelCase = torch.from_numpy(A_ ).to(device=A_ , dtype=A_ ) UpperCamelCase = { 'prompt': 'a photograph of an astronaut riding a horse', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = self.get_inputs(A_ ) UpperCamelCase = pipe(**A_ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) UpperCamelCase = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
710
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = DonutImageProcessingTester(self ) @property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def __UpperCamelCase ( self ) -> int: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def A ( lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = [] for part_id in partition_order: UpperCamelCase = df.where(f'''SPARK_PARTITION_ID() = {part_id}''' ).collect() for row_idx, row in enumerate(lowercase ): expected_row_ids_and_row_dicts.append((f'''{part_id}_{row_idx}''', row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(lowercase ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> Dict: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(2 ) UpperCamelCase = [1, 0] UpperCamelCase = _generate_iterable_examples(lowercase , lowercase ) # Reverse the partitions. UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , lowercase ) for i, (row_id, row_dict) in enumerate(generate_fn() ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(10 ).repartition(1 ) UpperCamelCase = SparkExamplesIterable(lowercase ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(lowercase ): assert row_id == f'''0_{i}''' assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> str: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch('numpy.random.Generator' ) as generator_mock: UpperCamelCase = lambda lowercase : x.reverse() UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [2, 1, 0] ) UpperCamelCase = SparkExamplesIterable(lowercase ).shuffle_data_sources(lowercase ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> str: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 UpperCamelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [0, 2] ) for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 UpperCamelCase = SparkExamplesIterable(lowercase ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 UpperCamelCase = _get_expected_row_ids_and_row_dicts_for_partition_order(lowercase , [1, 3] ) for i, (row_id, row_dict) in enumerate(lowercase ): UpperCamelCase , UpperCamelCase = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def A ( ) -> List[Any]: '''simple docstring''' UpperCamelCase = pyspark.sql.SparkSession.builder.master('local[*]' ).appName('pyspark' ).getOrCreate() UpperCamelCase = spark.range(100 ).repartition(1 ) UpperCamelCase = Spark(lowercase ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCAmelCase : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512} def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char UpperCamelCase = set(lowercase ) return pairs class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ ) UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ ) UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
0
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Union[str, Any] = VideoToVideoSDPipeline __lowercase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} __lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} __lowercase : str = PipelineTesterMixin.required_optional_params - {"latents"} __lowercase : int = False # No `output_type`. __lowercase : int = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=32 , attention_head_dim=4 , ) UpperCamelCase = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=A_ , set_alpha_to_one=A_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , ) UpperCamelCase = CLIPTextModel(A_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def __UpperCamelCase ( self , A_ , A_=0 ) -> Any: """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(A_ ) else: UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'video': video, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'pt', } return inputs def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = VideoToVideoSDPipeline(**A_ ) UpperCamelCase = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase = self.get_dummy_inputs(A_ ) UpperCamelCase = 'np' UpperCamelCase = sd_pipe(**A_ ).frames UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) UpperCamelCase = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def __UpperCamelCase ( self ) -> int: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=A_ , expected_max_diff=5e-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" pass def __UpperCamelCase ( self ) -> int: """simple docstring""" return super().test_progress_bar() @slow @skip_mps class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase = torch.randn((1, 10, 3, 1_024, 576) , generator=A_ ) UpperCamelCase = video.to('cuda' ) UpperCamelCase = 'Spiderman is surfing' UpperCamelCase = pipe(A_ , video=A_ , generator=A_ , num_inference_steps=3 , output_type='pt' ).frames UpperCamelCase = np.array([-1.045_8984, -1.127_9297, -0.966_3086, -0.9150_3906, -0.7509_7656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
712
def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = int(lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase ) UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 ) return binary_recursive(lowercase ) + str(lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = str(lowercase ).strip() if not number: raise ValueError('No input value was provided' ) UpperCamelCase = '-' if number.startswith('-' ) else '' UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(lowercase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
3
0
from typing import Any def A ( lowercase ) -> list[Any]: '''simple docstring''' if not input_list: return [] UpperCamelCase = [input_list.count(lowercase ) for value in input_list] UpperCamelCase = max(lowercase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
713
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int: '''simple docstring''' if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' ) else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(lowercase , 'vocab.json' ) if not os.path.isdir(lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowercase , lowercase ) UpperCamelCase = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) UpperCamelCase = WavaVecaConformerForCTC(lowercase ) else: UpperCamelCase = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase = fairseq.tasks.setup_task(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
0
def A ( lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase , UpperCamelCase = [], [] while len(lowercase ) > 1: UpperCamelCase , UpperCamelCase = min(lowercase ), max(lowercase ) start.append(lowercase ) end.append(lowercase ) collection.remove(lowercase ) collection.remove(lowercase ) end.reverse() return start + collection + end if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase : Dict = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
714
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
0
from __future__ import annotations def A ( lowercase , lowercase ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , a % b ) UpperCamelCase = a // b return (y, x - k * y) def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m def A ( lowercase , lowercase ) -> int: '''simple docstring''' ((UpperCamelCase) , (UpperCamelCase)) = extended_euclid(lowercase , lowercase ) if b < 0: UpperCamelCase = (b % n + n) % n return b def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = invert_modulo(lowercase , lowercase ), invert_modulo(lowercase , lowercase ) UpperCamelCase = na * na UpperCamelCase = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name="chinese_remainder_theorem", verbose=True) testmod(name="chinese_remainder_theorem2", verbose=True) testmod(name="invert_modulo", verbose=True) testmod(name="extended_euclid", verbose=True)
715
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase : str = "scheduler_config.json" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : List[Any] = 3 __lowercase : str = 4 __lowercase : Optional[Any] = 5 @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : jnp.ndarray class lowercase : __lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = ["dtype"] __lowercase : List[Any] = [] __lowercase : Dict = True @classmethod def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> int: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def A ( lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' assert len(lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase ) def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(lowercase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) ) return jnp.array(lowercase , dtype=lowercase ) @flax.struct.dataclass class lowercase : __lowercase : jnp.ndarray __lowercase : jnp.ndarray __lowercase : jnp.ndarray @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = scheduler.config if config.trained_betas is not None: UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase = 1.0 - betas UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = state.alphas_cumprod UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _UpperCAmelCase : Optional[Any] = { "configuration_efficientformer": [ "EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "EfficientFormerConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = ["EfficientFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "EfficientFormerForImageClassification", "EfficientFormerForImageClassificationWithTeacher", "EfficientFormerModel", "EfficientFormerPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : int = [ "TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFEfficientFormerForImageClassification", "TFEfficientFormerForImageClassificationWithTeacher", "TFEfficientFormerModel", "TFEfficientFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_efficientformer import EFFICIENTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, EfficientFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_efficientformer import EfficientFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_efficientformer import ( EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, EfficientFormerForImageClassification, EfficientFormerForImageClassificationWithTeacher, EfficientFormerModel, EfficientFormerPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, TFEfficientFormerPreTrainedModel, ) else: import sys _UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
716
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" # test for the above condition self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
3
0
def A ( lowercase ) -> list[list[int]]: '''simple docstring''' UpperCamelCase = [] if len(lowercase ) == 1: return [nums.copy()] for _ in range(len(lowercase ) ): UpperCamelCase = nums.pop(0 ) UpperCamelCase = permute(lowercase ) for perm in permutations: perm.append(lowercase ) result.extend(lowercase ) nums.append(lowercase ) return result def A ( lowercase ) -> Optional[Any]: '''simple docstring''' def backtrack(lowercase ): if start == len(lowercase ) - 1: output.append(nums[:] ) else: for i in range(lowercase , len(lowercase ) ): UpperCamelCase , UpperCamelCase = nums[i], nums[start] backtrack(start + 1 ) UpperCamelCase , UpperCamelCase = nums[i], nums[start] # backtrack UpperCamelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _UpperCAmelCase : List[str] = permutea([1, 2, 3]) print(res) doctest.testmod()
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ , A_ = None , A_ = None ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : List[Any] = { "configuration_longformer": [ "LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "LongformerConfig", "LongformerOnnxConfig", ], "tokenization_longformer": ["LongformerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = ["LongformerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Tuple = [ "LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "LongformerForMaskedLM", "LongformerForMultipleChoice", "LongformerForQuestionAnswering", "LongformerForSequenceClassification", "LongformerForTokenClassification", "LongformerModel", "LongformerPreTrainedModel", "LongformerSelfAttention", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : str = [ "TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFLongformerForMaskedLM", "TFLongformerForMultipleChoice", "TFLongformerForQuestionAnswering", "TFLongformerForSequenceClassification", "TFLongformerForTokenClassification", "TFLongformerModel", "TFLongformerPreTrainedModel", "TFLongformerSelfAttention", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
719
from collections.abc import Callable def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def A ( lowercase ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
3
0
from __future__ import annotations _UpperCAmelCase : Any = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] _UpperCAmelCase : Any = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def A ( lowercase ) -> list[float]: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = len(lowercase ) for i in range(lowercase ): UpperCamelCase = -1 for j in range(i + 1 , lowercase ): if arr[i] < arr[j]: UpperCamelCase = arr[j] break result.append(lowercase ) return result def A ( lowercase ) -> list[float]: '''simple docstring''' UpperCamelCase = [] for i, outer in enumerate(lowercase ): UpperCamelCase = -1 for inner in arr[i + 1 :]: if outer < inner: UpperCamelCase = inner break result.append(lowercase ) return result def A ( lowercase ) -> list[float]: '''simple docstring''' UpperCamelCase = len(lowercase ) UpperCamelCase = [] UpperCamelCase = [-1] * arr_size for index in reversed(range(lowercase ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: UpperCamelCase = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) _UpperCAmelCase : List[str] = ( "from __main__ import arr, next_greatest_element_slow, " "next_greatest_element_fast, next_greatest_element" ) print( "next_greatest_element_slow():", timeit("next_greatest_element_slow(arr)", setup=setup), ) print( "next_greatest_element_fast():", timeit("next_greatest_element_fast(arr)", setup=setup), ) print( " next_greatest_element():", timeit("next_greatest_element(arr)", setup=setup), )
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( lowercase ) -> List[str]: '''simple docstring''' if is_torch_version('<' , '2.0.0' ) or not hasattr(lowercase , '_dynamo' ): return False return isinstance(lowercase , torch._dynamo.eval_frame.OptimizedModule ) def A ( lowercase , lowercase = True ) -> Any: '''simple docstring''' UpperCamelCase = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) UpperCamelCase = is_compiled_module(lowercase ) if is_compiled: UpperCamelCase = model UpperCamelCase = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowercase , lowercase ): UpperCamelCase = model.module if not keep_fpaa_wrapper: UpperCamelCase = getattr(lowercase , 'forward' ) UpperCamelCase = model.__dict__.pop('_original_forward' , lowercase ) if original_forward is not None: while hasattr(lowercase , '__wrapped__' ): UpperCamelCase = forward.__wrapped__ if forward == original_forward: break UpperCamelCase = forward if getattr(lowercase , '_converted_to_transformer_engine' , lowercase ): convert_model(lowercase , to_transformer_engine=lowercase ) if is_compiled: UpperCamelCase = model UpperCamelCase = compiled_model return model def A ( ) -> Optional[int]: '''simple docstring''' PartialState().wait_for_everyone() def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if PartialState().distributed_type == DistributedType.TPU: xm.save(lowercase , lowercase ) elif PartialState().local_process_index == 0: torch.save(lowercase , lowercase ) @contextmanager def A ( **lowercase ) -> Optional[Any]: '''simple docstring''' for key, value in kwargs.items(): UpperCamelCase = str(lowercase ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( lowercase ) -> str: '''simple docstring''' if not hasattr(lowercase , '__qualname__' ) and not hasattr(lowercase , '__name__' ): UpperCamelCase = getattr(lowercase , '__class__' , lowercase ) if hasattr(lowercase , '__qualname__' ): return obj.__qualname__ if hasattr(lowercase , '__name__' ): return obj.__name__ return str(lowercase ) def A ( lowercase , lowercase ) -> int: '''simple docstring''' for key, value in source.items(): if isinstance(lowercase , lowercase ): UpperCamelCase = destination.setdefault(lowercase , {} ) merge_dicts(lowercase , lowercase ) else: UpperCamelCase = value return destination def A ( lowercase = None ) -> bool: '''simple docstring''' if port is None: UpperCamelCase = 29_500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
721
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
0
from collections.abc import Generator def A ( ) -> Generator[int, None, None]: '''simple docstring''' UpperCamelCase , UpperCamelCase = 0, 1 while True: UpperCamelCase , UpperCamelCase = b, a + b yield b def A ( lowercase = 1_000 ) -> int: '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = fibonacci_generator() while len(str(next(lowercase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
700
def A ( lowercase , lowercase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) _UpperCAmelCase : str = { "microsoft/unispeech-sat-base-100h-libri-ft": ( "https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json" ), # See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = "unispeech-sat" def __init__( self , A_=32 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=0.1 , A_=0.0 , A_=0.0 , A_=0.1 , A_=0.1 , A_=0.02 , A_=1e-5 , A_="group" , A_="gelu" , A_=(512, 512, 512, 512, 512, 512, 512) , A_=(5, 2, 2, 2, 2, 2, 2) , A_=(10, 3, 3, 3, 3, 2, 2) , A_=False , A_=128 , A_=16 , A_=False , A_=True , A_=0.05 , A_=10 , A_=2 , A_=0.0 , A_=10 , A_=0 , A_=320 , A_=2 , A_=0.1 , A_=100 , A_=256 , A_=256 , A_=0.1 , A_="mean" , A_=False , A_=False , A_=256 , A_=(512, 512, 512, 512, 1_500) , A_=(5, 3, 3, 1, 1) , A_=(1, 2, 3, 1, 1) , A_=512 , A_=0 , A_=1 , A_=2 , A_=504 , **A_ , ) -> int: """simple docstring""" super().__init__(**A_ , pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ ) UpperCamelCase = hidden_size UpperCamelCase = feat_extract_norm UpperCamelCase = feat_extract_activation UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = conv_bias UpperCamelCase = num_conv_pos_embeddings UpperCamelCase = num_conv_pos_embedding_groups UpperCamelCase = len(self.conv_dim ) UpperCamelCase = num_hidden_layers UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = num_attention_heads UpperCamelCase = hidden_dropout UpperCamelCase = attention_dropout UpperCamelCase = activation_dropout UpperCamelCase = feat_proj_dropout UpperCamelCase = final_dropout UpperCamelCase = layerdrop UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = vocab_size UpperCamelCase = num_clusters UpperCamelCase = do_stable_layer_norm UpperCamelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase = apply_spec_augment UpperCamelCase = mask_time_prob UpperCamelCase = mask_time_length UpperCamelCase = mask_time_min_masks UpperCamelCase = mask_feature_prob UpperCamelCase = mask_feature_length UpperCamelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCamelCase = num_codevectors_per_group UpperCamelCase = num_codevector_groups UpperCamelCase = contrastive_logits_temperature UpperCamelCase = feat_quantizer_dropout UpperCamelCase = num_negatives UpperCamelCase = codevector_dim UpperCamelCase = proj_codevector_dim UpperCamelCase = diversity_loss_weight # ctc loss UpperCamelCase = ctc_loss_reduction UpperCamelCase = ctc_zero_infinity # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCamelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = xvector_output_dim @property def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
701
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_=0.01 , A_=1_000 ) -> str: """simple docstring""" UpperCamelCase = p_stop UpperCamelCase = max_length def __iter__( self ) -> Tuple: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not stop and count < self.max_length: yield count count += 1 UpperCamelCase = random.random() < self.p_stop class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self , A_ , A_ , A_=False , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = [ BatchSamplerShard(A_ , 2 , A_ , split_batches=A_ , even_batches=A_ ) for i in range(2 ) ] UpperCamelCase = [list(A_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(A_ ) for shard in batch_sampler_shards] , [len(A_ ) for e in expected] ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A_ , A_ ) UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(A_ , A_ ) UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(A_ , A_ ) UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(A_ , A_ ) UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ ) # Check the shards when the dataset is very small. UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(A_ , A_ ) UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [[], []] self.check_batch_sampler_shards(A_ , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) # Check the shards when the dataset is very small. UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [[], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(24 ) , batch_size=3 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(21 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(22 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(20 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) # Check the shards when the dataset is very small. UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(2 ) , batch_size=3 , drop_last=A_ ) UpperCamelCase = [[], []] self.check_batch_sampler_shards(A_ , A_ , even_batches=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(24 ) , batch_size=4 , drop_last=A_ ) # Expected shouldn't change self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size. UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(22 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(21 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) # Check the shards when the dataset is very small. UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [[[0, 1]], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) UpperCamelCase = BatchSampler(range(2 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = [[], []] self.check_batch_sampler_shards(A_ , A_ , split_batches=A_ , even_batches=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] UpperCamelCase = [BatchSamplerShard(A_ , 2 , A_ , even_batches=A_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def __UpperCamelCase ( self , A_ , A_ , A_ , A_=False , A_=2 , A_=False ) -> Union[str, Any]: """simple docstring""" random.seed(A_ ) UpperCamelCase = list(A_ ) UpperCamelCase = [ IterableDatasetShard( A_ , batch_size=A_ , drop_last=A_ , num_processes=A_ , process_index=A_ , split_batches=A_ , ) for i in range(A_ ) ] UpperCamelCase = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(A_ ) iterable_dataset_lists.append(list(A_ ) ) UpperCamelCase = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size UpperCamelCase = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(A_ ) , len(A_ ) ) self.assertTrue(len(A_ ) % shard_batch_size == 0 ) UpperCamelCase = [] for idx in range(0 , len(A_ ) , A_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(A_ ) < len(A_ ): reference += reference self.assertListEqual(A_ , reference[: len(A_ )] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 42 UpperCamelCase = RandomIterableDataset() self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) # Edge case with a very small dataset UpperCamelCase = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) self.check_iterable_dataset_shards(A_ , A_ , batch_size=4 , drop_last=A_ , split_batches=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = BatchSampler(range(16 ) , batch_size=4 , drop_last=A_ ) UpperCamelCase = SkipBatchSampler(A_ , 2 ) self.assertListEqual(list(A_ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = DataLoader(list(range(16 ) ) , batch_size=4 ) UpperCamelCase = skip_first_batches(A_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" Accelerator() UpperCamelCase = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(A_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
702
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
703
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer _UpperCAmelCase : Tuple = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast _UpperCAmelCase : List[str] = TaTokenizerFast _UpperCAmelCase : Tuple = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Union[str, Any] = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[Any] = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys _UpperCAmelCase : Optional[Any] = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> int: """simple docstring""" UpperCamelCase = dataset UpperCamelCase = process UpperCamelCase = params def __len__( self ) -> int: """simple docstring""" return len(self.dataset ) def __getitem__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = self.dataset[i] UpperCamelCase = self.process(A_ , **self.params ) return processed class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ , A_=None ) -> Optional[Any]: """simple docstring""" UpperCamelCase = loader UpperCamelCase = infer UpperCamelCase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether UpperCamelCase = None UpperCamelCase = loader_batch_size # Internal bookkeeping UpperCamelCase = None UpperCamelCase = None def __len__( self ) -> int: """simple docstring""" return len(self.loader ) def __iter__( self ) -> List[Any]: """simple docstring""" UpperCamelCase = iter(self.loader ) return self def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if isinstance(self._loader_batch_data , torch.Tensor ): # Batch data is simple tensor, just fetch the slice UpperCamelCase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) UpperCamelCase = {} for k, element in self._loader_batch_data.items(): if isinstance(A_ , A_ ): # Convert ModelOutput to tuple first UpperCamelCase = element.to_tuple() if isinstance(element[0] , torch.Tensor ): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(A_ , A_ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0] , torch.Tensor ): UpperCamelCase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0] , np.ndarray ): UpperCamelCase = tuple(np.expand_dims(el[self._loader_batch_index] , 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around UpperCamelCase = None elif isinstance(element[self._loader_batch_index] , torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index] , np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers UpperCamelCase = np.expand_dims(element[self._loader_batch_index] , 0 ) else: # This is typically a list, so no need to `unsqueeze`. UpperCamelCase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 UpperCamelCase = self._loader_batch_data.__class__(A_ ) self._loader_batch_index += 1 return result def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch UpperCamelCase = next(self.iterator ) UpperCamelCase = self.infer(A_ , **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(A_ , torch.Tensor ): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys() )[0] UpperCamelCase = processed[key] if isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size # Setting internal index to unwrap the batch UpperCamelCase = processed UpperCamelCase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ , A_=None ) -> Optional[Any]: """simple docstring""" super().__init__(A_ , A_ , A_ ) def __iter__( self ) -> str: """simple docstring""" UpperCamelCase = iter(self.loader ) UpperCamelCase = None return self def __UpperCamelCase ( self ) -> str: """simple docstring""" if self.subiterator is None: UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) try: # Try to return next item UpperCamelCase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) UpperCamelCase = next(self.subiterator ) return processed class lowercase ( _SCREAMING_SNAKE_CASE ): def __iter__( self ) -> Dict: """simple docstring""" UpperCamelCase = iter(self.loader ) return self def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('is_last' ) accumulator.append(A_ ) if is_last: return accumulator while not is_last: UpperCamelCase = self.infer(next(self.iterator ) , **self.params ) if self.loader_batch_size is not None: if isinstance(A_ , torch.Tensor ): UpperCamelCase = processed else: UpperCamelCase = list(processed.keys() )[0] UpperCamelCase = processed[key] if isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: UpperCamelCase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. UpperCamelCase = observed_batch_size UpperCamelCase = processed UpperCamelCase = 0 while self._loader_batch_index < self.loader_batch_size: UpperCamelCase = self.loader_batch_item() UpperCamelCase = item.pop('is_last' ) accumulator.append(A_ ) if is_last: return accumulator else: UpperCamelCase = processed UpperCamelCase = item.pop('is_last' ) accumulator.append(A_ ) return accumulator class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = dataset UpperCamelCase = key def __len__( self ) -> Union[str, Any]: """simple docstring""" return len(self.dataset ) def __getitem__( self , A_ ) -> Optional[Any]: """simple docstring""" return self.dataset[i][self.key] class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = dataset UpperCamelCase = keya UpperCamelCase = keya def __len__( self ) -> Any: """simple docstring""" return len(self.dataset ) def __getitem__( self , A_ ) -> int: """simple docstring""" return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
706
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(lowercase ) UpperCamelCase = sess.run(lowercase ) return centroids, assignments
3
0
def A ( lowercase ) -> int: '''simple docstring''' stooge(lowercase , 0 , len(lowercase ) - 1 ) return arr def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: UpperCamelCase , UpperCamelCase = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: UpperCamelCase = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(lowercase , lowercase , (h - t) ) # Recursively sort last 2/3 elements stooge(lowercase , i + t , (lowercase) ) # Recursively sort first 2/3 elements stooge(lowercase , lowercase , (h - t) ) if __name__ == "__main__": _UpperCAmelCase : int = input("Enter numbers separated by a comma:\n").strip() _UpperCAmelCase : Optional[Any] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
707
from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) _UpperCAmelCase : Tuple = _symbol_database.Default() _UpperCAmelCase : List[Any] = _descriptor_pool.Default().AddSerializedFile( b"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) _UpperCAmelCase : int = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: _UpperCAmelCase : int = None _UpperCAmelCase : List[str] = b"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" _UpperCAmelCase : Optional[Any] = 45 _UpperCAmelCase : Any = 1_581 _UpperCAmelCase : Tuple = 1_517 _UpperCAmelCase : List[str] = 1_570 _UpperCAmelCase : int = 1_584 _UpperCAmelCase : List[Any] = 1_793 _UpperCAmelCase : Optional[int] = 1_795 _UpperCAmelCase : Any = 1_916 _UpperCAmelCase : Tuple = 1_864 _UpperCAmelCase : List[Any] = 1_905 _UpperCAmelCase : Union[str, Any] = 1_919 _UpperCAmelCase : str = 2_429 _UpperCAmelCase : Any = 2_208 _UpperCAmelCase : Dict = 2_418 _UpperCAmelCase : Optional[Any] = 2_323 _UpperCAmelCase : Tuple = 2_407 # @@protoc_insertion_point(module_scope)
3
0
import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : Tuple = None try: import msvcrt except ImportError: _UpperCAmelCase : List[str] = None try: import fcntl except ImportError: _UpperCAmelCase : int = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : Optional[int] = OSError # Data # ------------------------------------------------ _UpperCAmelCase : int = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _UpperCAmelCase : List[str] = "3.0.12" _UpperCAmelCase : str = None def A ( ) -> Dict: '''simple docstring''' global _logger UpperCamelCase = _logger or logging.getLogger(__name__ ) return _logger class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = lock_file return None def __str__( self ) -> Any: """simple docstring""" UpperCamelCase = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class lowercase : def __init__( self , A_ ) -> str: """simple docstring""" UpperCamelCase = lock return None def __enter__( self ) -> Optional[int]: """simple docstring""" return self.lock def __exit__( self , A_ , A_ , A_ ) -> List[str]: """simple docstring""" self.lock.release() return None class lowercase : def __init__( self , A_ , A_=-1 , A_=None ) -> int: """simple docstring""" UpperCamelCase = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long UpperCamelCase = self.hash_filename_if_too_long(A_ , A_ ) # The path to the lock file. UpperCamelCase = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. UpperCamelCase = None # The default timeout value. UpperCamelCase = timeout # We use this lock primarily for the lock counter. UpperCamelCase = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. UpperCamelCase = 0 return None @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self._lock_file @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._timeout @timeout.setter def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = float(A_ ) return None def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" raise NotImplementedError() @property def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" return self._lock_file_fd is not None def __UpperCamelCase ( self , A_=None , A_=0.05 ) -> List[str]: """simple docstring""" # Use the default timeout, if no timeout is provided. if timeout is None: UpperCamelCase = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 UpperCamelCase = id(self ) UpperCamelCase = self._lock_file UpperCamelCase = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(A_ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: UpperCamelCase = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def __UpperCamelCase ( self , A_=False ) -> Any: """simple docstring""" with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: UpperCamelCase = id(self ) UpperCamelCase = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() UpperCamelCase = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> List[str]: """simple docstring""" self.acquire() return self def __exit__( self , A_ , A_ , A_ ) -> Optional[int]: """simple docstring""" self.release() return None def __del__( self ) -> str: """simple docstring""" self.release(force=A_ ) return None def __UpperCamelCase ( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = os.path.basename(A_ ) if len(A_ ) > max_length and max_length > 0: UpperCamelCase = os.path.dirname(A_ ) UpperCamelCase = str(hash(A_ ) ) UpperCamelCase = filename[: max_length - len(A_ ) - 8] + '...' + hashed_filename + '.lock' return os.path.join(A_ , A_ ) else: return path class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_=-1 , A_=None ) -> List[str]: """simple docstring""" from .file_utils import relative_to_absolute_path super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) UpperCamelCase = '\\\\?\\' + relative_to_absolute_path(self.lock_file ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: UpperCamelCase = os.open(self._lock_file , A_ ) except OSError: pass else: try: msvcrt.locking(A_ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(A_ ) else: UpperCamelCase = fd return None def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self._lock_file_fd UpperCamelCase = None msvcrt.locking(A_ , msvcrt.LK_UNLCK , 1 ) os.close(A_ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ , A_=-1 , A_=None ) -> Optional[int]: """simple docstring""" UpperCamelCase = os.statvfs(os.path.dirname(A_ ) ).f_namemax super().__init__(A_ , timeout=A_ , max_filename_length=A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = os.O_RDWR | os.O_CREAT | os.O_TRUNC UpperCamelCase = os.open(self._lock_file , A_ ) try: fcntl.flock(A_ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(A_ ) else: UpperCamelCase = fd return None def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self._lock_file_fd UpperCamelCase = None fcntl.flock(A_ , fcntl.LOCK_UN ) os.close(A_ ) return None class lowercase ( _SCREAMING_SNAKE_CASE ): def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: UpperCamelCase = os.open(self._lock_file , A_ ) except OSError: pass else: UpperCamelCase = fd return None def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" os.close(self._lock_file_fd ) UpperCamelCase = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : str = None if msvcrt: _UpperCAmelCase : Tuple = WindowsFileLock elif fcntl: _UpperCAmelCase : Any = UnixFileLock else: _UpperCAmelCase : int = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
708
import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # A mock response for an HTTP head request to emulate server down UpperCamelCase = mock.Mock() UpperCamelCase = 500 UpperCamelCase = {} UpperCamelCase = HTTPError UpperCamelCase = {} # Download this model to make sure it's in the cache. UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' , return_value=A_ ) as mock_head: UpperCamelCase = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 try: UpperCamelCase = tempfile.mktemp() with open(A_ , 'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' , A_ ) UpperCamelCase = AlbertTokenizer.from_pretrained(A_ ) finally: os.remove(A_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' , 'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' , A_ ) UpperCamelCase = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" # This test is for deprecated behavior and can be removed in v5 UpperCamelCase = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase ( unittest.TestCase ): __lowercase : int = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def __UpperCamelCase ( cls ) -> Tuple: """simple docstring""" UpperCamelCase = TOKEN HfFolder.save_token(A_ ) @classmethod def __UpperCamelCase ( cls ) -> Optional[int]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def __UpperCamelCase ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('test-tokenizer' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(A_ , repo_id='test-tokenizer' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained(F'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def __UpperCamelCase ( self ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizer(A_ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( A_ , repo_id='valid_org/test-tokenizer-org' , push_to_hub=A_ , use_auth_token=self._token ) UpperCamelCase = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def __UpperCamelCase ( self ) -> Dict: """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = CustomTokenizer(A_ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = os.path.join(A_ , 'vocab.txt' ) with open(A_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) UpperCamelCase = BertTokenizerFast.from_pretrained(A_ ) bert_tokenizer.save_pretrained(A_ ) UpperCamelCase = CustomTokenizerFast.from_pretrained(A_ ) tokenizer.push_to_hub('test-dynamic-tokenizer' , use_auth_token=self._token ) UpperCamelCase = AutoTokenizer.from_pretrained(F'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizerFast' ) UpperCamelCase = AutoTokenizer.from_pretrained( F'''{USER}/test-dynamic-tokenizer''' , use_fast=A_ , trust_remote_code=A_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , 'CustomTokenizer' ) class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data , {'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) , ['[CLS]', ' This is a ', 'extra_id_100'] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) , ['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) , ['BC', 'A'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) , ['This is something ', '[SPECIAL_TOKEN]'] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) , ['AB', 'C'] ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) , ['ABC', 'D'] ) def __UpperCamelCase ( self ) -> int: """simple docstring""" # Even if the offsets are wrong, we necessarily output correct string # parts. UpperCamelCase = Trie() UpperCamelCase = trie.cut_text('ABC' , [0, 0, 2, 1, 2, 3] ) self.assertEqual(A_ , ['AB', 'C'] )
3
0
import math import sys def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' try: with open(lowercase , 'rb' ) as binary_file: UpperCamelCase = binary_file.read() for dat in data: UpperCamelCase = f'''{dat:08b}''' result += curr_byte return result except OSError: print('File not accessible' ) sys.exit() def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = {'0': '0', '1': '1'} UpperCamelCase , UpperCamelCase = '', '' UpperCamelCase = len(lowercase ) for i in range(len(lowercase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue UpperCamelCase = lexicon[curr_string] result += last_match_id UpperCamelCase = last_match_id + '0' if math.loga(lowercase ).is_integer(): UpperCamelCase = {} for curr_key in list(lowercase ): UpperCamelCase = lexicon.pop(lowercase ) UpperCamelCase = new_lex UpperCamelCase = last_match_id + '1' index += 1 UpperCamelCase = '' return result def A ( lowercase , lowercase ) -> None: '''simple docstring''' UpperCamelCase = 8 try: with open(lowercase , 'wb' ) as opened_file: UpperCamelCase = [ to_write[i : i + byte_length] for i in range(0 , len(lowercase ) , lowercase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append('10000000' ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array[:-1]: opened_file.write(int(lowercase , 2 ).to_bytes(1 , byteorder='big' ) ) except OSError: print('File not accessible' ) sys.exit() def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 for letter in data_bits: if letter == "1": break counter += 1 UpperCamelCase = data_bits[counter:] UpperCamelCase = data_bits[counter + 1 :] return data_bits def A ( lowercase , lowercase ) -> None: '''simple docstring''' UpperCamelCase = read_file_binary(lowercase ) UpperCamelCase = remove_prefix(lowercase ) UpperCamelCase = decompress_data(lowercase ) write_file_binary(lowercase , lowercase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
709
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if issubclass(lowercase , lowercase ): UpperCamelCase = parquet_path elif issubclass(lowercase , lowercase ): UpperCamelCase = [parquet_path] UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def A ( lowercase , lowercase , lowercase=("train",) ) -> Tuple: '''simple docstring''' assert isinstance(lowercase , lowercase ) for split in splits: UpperCamelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def A ( lowercase , lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCamelCase = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def A ( lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = features.copy() if features else default_expected_features UpperCamelCase = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCamelCase = ParquetDatasetReader({'train': parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if split: UpperCamelCase = {split: parquet_path} else: UpperCamelCase = 'train' UpperCamelCase = {'train': parquet_path, 'test': parquet_path} UpperCamelCase = tmp_path / 'cache' UpperCamelCase = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} UpperCamelCase = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def A ( lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = pq.ParquetFile(tmp_path / 'foo.parquet' ) UpperCamelCase = pf.read() assert dataset.data.table == output_table def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = str(shared_datadir / 'test_image_rgb.jpg' ) UpperCamelCase = {'image': [image_path]} UpperCamelCase = Features({'image': Image()} ) UpperCamelCase = Dataset.from_dict(lowercase , features=lowercase ) UpperCamelCase = ParquetDatasetWriter(lowercase , tmp_path / 'foo.parquet' ) assert writer.write() > 0 UpperCamelCase = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features UpperCamelCase = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def A ( lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' assert get_writer_batch_size(lowercase ) == expected
3
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowercase : def __init__( self ) -> Any: """simple docstring""" UpperCamelCase = '' UpperCamelCase = '' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def __UpperCamelCase ( self , A_ ) -> Dict: """simple docstring""" UpperCamelCase = cva.imread(A_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase , UpperCamelCase , UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label='x' ) UpperCamelCase = np.sum(A_ ) for i in range(len(A_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(A_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite('output_data/output.jpg' , self.img ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" cva.imshow('Output-Image' , self.img ) cva.imshow('Input-Image' , self.original_image ) cva.waitKey(5_000 ) cva.destroyAllWindows() if __name__ == "__main__": _UpperCAmelCase : Any = os.path.join(os.path.basename(__file__), "image_data/input.jpg") _UpperCAmelCase : Optional[int] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
710
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ) -> Tuple: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = num_channels UpperCamelCase = image_size UpperCamelCase = min_resolution UpperCamelCase = max_resolution UpperCamelCase = do_resize UpperCamelCase = size if size is not None else {'height': 18, 'width': 20} UpperCamelCase = do_thumbnail UpperCamelCase = do_align_axis UpperCamelCase = do_pad UpperCamelCase = do_normalize UpperCamelCase = image_mean UpperCamelCase = image_std def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = DonutImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = DonutImageProcessingTester(self ) @property def __UpperCamelCase ( self ) -> Any: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_thumbnail' ) ) self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) ) self.assertTrue(hasattr(A_ , 'do_pad' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass @is_flaky() def __UpperCamelCase ( self ) -> int: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Any: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" # Initialize image_processing UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
3
0
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') UpperCamelCase = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(lowercase ): os.makedirs(lowercase ) UpperCamelCase = model.state_dict() def to_tf_var_name(lowercase ): for patt, repl in iter(lowercase ): UpperCamelCase = name.replace(lowercase , lowercase ) return f'''bert/{name}''' def create_tf_var(lowercase , lowercase , lowercase ): UpperCamelCase = tf.dtypes.as_dtype(tensor.dtype ) UpperCamelCase = tf.get_variable(dtype=lowercase , shape=tensor.shape , name=lowercase , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(lowercase ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: UpperCamelCase = to_tf_var_name(lowercase ) UpperCamelCase = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): UpperCamelCase = torch_tensor.T UpperCamelCase = create_tf_var(tensor=lowercase , name=lowercase , session=lowercase ) tf.keras.backend.set_value(lowercase , lowercase ) UpperCamelCase = session.run(lowercase ) print(f'''Successfully created {tf_name}: {np.allclose(lowercase , lowercase )}''' ) UpperCamelCase = tf.train.Saver(tf.trainable_variables() ) saver.save(lowercase , os.path.join(lowercase , model_name.replace('-' , '_' ) + '.ckpt' ) ) def A ( lowercase=None ) -> List[str]: '''simple docstring''' UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--model_name' , type=lowercase , required=lowercase , help='model name e.g. bert-base-uncased' ) parser.add_argument( '--cache_dir' , type=lowercase , default=lowercase , required=lowercase , help='Directory containing pytorch model' ) parser.add_argument('--pytorch_model_path' , type=lowercase , required=lowercase , help='/path/to/<pytorch-model-name>.bin' ) parser.add_argument('--tf_cache_dir' , type=lowercase , required=lowercase , help='Directory in which to save tensorflow model' ) UpperCamelCase = parser.parse_args(lowercase ) UpperCamelCase = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=lowercase , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
711
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _UpperCAmelCase : str = { "vocab_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json" }, "merges_file": { "facebook/blenderbot_small-90M": "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt" }, "tokenizer_config_file": { "facebook/blenderbot_small-90M": ( "https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json" ) }, } _UpperCAmelCase : List[str] = {"facebook/blenderbot_small-90M": 512} def A ( lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = set() UpperCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase = char UpperCamelCase = set(lowercase ) return pairs class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[Any] = VOCAB_FILES_NAMES __lowercase : Tuple = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Any = ["input_ids", "attention_mask"] def __init__( self , A_ , A_ , A_="__start__" , A_="__end__" , A_="__unk__" , A_="__null__" , **A_ , ) -> List[Any]: """simple docstring""" super().__init__(unk_token=A_ , bos_token=A_ , eos_token=A_ , pad_token=A_ , **A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = {v: k for k, v in self.encoder.items()} with open(A_ , encoding='utf-8' ) as merges_handle: UpperCamelCase = merges_handle.read().split('\n' )[1:-1] UpperCamelCase = [tuple(merge.split() ) for merge in merges] UpperCamelCase = dict(zip(A_ , range(len(A_ ) ) ) ) UpperCamelCase = {} @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase = re.sub('([.,!?()])' , r' \1' , A_ ) UpperCamelCase = re.sub('(\')' , r' \1 ' , A_ ) UpperCamelCase = re.sub(r'\s{2,}' , ' ' , A_ ) if "\n" in token: UpperCamelCase = token.replace('\n' , ' __newln__' ) UpperCamelCase = token.split(' ' ) UpperCamelCase = [] for token in tokens: if not len(A_ ): continue UpperCamelCase = token.lower() UpperCamelCase = tuple(A_ ) UpperCamelCase = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) UpperCamelCase = get_pairs(A_ ) if not pairs: words.append(A_ ) continue while True: UpperCamelCase = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase , UpperCamelCase = bigram UpperCamelCase = [] UpperCamelCase = 0 while i < len(A_ ): try: UpperCamelCase = word.index(A_ , A_ ) new_word.extend(word[i:j] ) UpperCamelCase = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase = tuple(A_ ) UpperCamelCase = new_word if len(A_ ) == 1: break else: UpperCamelCase = get_pairs(A_ ) UpperCamelCase = '@@ '.join(A_ ) UpperCamelCase = word[:-4] UpperCamelCase = word words.append(A_ ) return " ".join(A_ ) def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = re.findall(r'\S+\n?' , A_ ) for token in words: split_tokens.extend(list(self.bpe(A_ ).split(' ' ) ) ) return split_tokens def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" UpperCamelCase = token.lower() return self.encoder.get(A_ , self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" return self.decoder.get(A_ , self.unk_token ) def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" UpperCamelCase = ' '.join(A_ ).replace('@@ ' , '' ).strip() return out_string def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' ) UpperCamelCase = 0 with open(A_ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) UpperCamelCase = token_index writer.write(' '.join(A_ ) + '\n' ) index += 1 return vocab_file, merge_file
3
0
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _UpperCAmelCase : Dict = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _UpperCAmelCase : Any = direct_transformers_import(PATH_TO_TRANSFORMERS) _UpperCAmelCase : List[str] = transformers.models.auto.configuration_auto.CONFIG_MAPPING _UpperCAmelCase : str = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"config.{attribute}" in modeling_source or f"getattr(config, \"{attribute}\"" in modeling_source or f"getattr(self.config, \"{attribute}\"" in modeling_source ): UpperCamelCase = True # Deal with multi-line cases elif ( re.search( Rf"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , lowercase , ) is not None ): UpperCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] UpperCamelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed UpperCamelCase = True if not attribute_used: UpperCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase = True elif attribute.endswith('_token_id' ): UpperCamelCase = True # configuration class specific cases if not case_allowed: UpperCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] UpperCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase = {} if len(config_class.attribute_map ) > 0: UpperCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase = inspect.getsourcefile(lowercase ) UpperCamelCase = os.path.dirname(lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase = [os.path.join(lowercase , lowercase ) for fn in os.listdir(lowercase ) if fn.startswith('modeling_' )] # Get the source code strings UpperCamelCase = [] for path in modeling_paths: if os.path.isfile(lowercase ): with open(lowercase ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase = [] for config_param, default_value in zip(lowercase , lowercase ): # `attributes` here is all the variant names for `config_param` UpperCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(lowercase , lowercase , lowercase , lowercase ): unused_attributes.append(attributes[0] ) return sorted(lowercase ) def A ( ) -> Tuple: '''simple docstring''' UpperCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda lowercase : inspect.isclass(lowercase ) and issubclass(lowercase , lowercase ) and inspect.getmodule(lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase = check_config_attributes_being_used(lowercase ) if len(lowercase ) > 0: UpperCamelCase = unused_attributes if len(lowercase ) > 0: UpperCamelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"{name}: {attributes}\n" raise ValueError(lowercase ) if __name__ == "__main__": check_config_attributes()
712
def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = int(lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase ) UpperCamelCase , UpperCamelCase = divmod(lowercase , 2 ) return binary_recursive(lowercase ) + str(lowercase ) def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = str(lowercase ).strip() if not number: raise ValueError('No input value was provided' ) UpperCamelCase = '-' if number.startswith('-' ) else '' UpperCamelCase = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f'''{negative}0b{binary_recursive(int(lowercase ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
3
0
# Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _UpperCAmelCase : List[Any] = re.compile(R"^(?P<major>\d+)" R"\.(?P<minor>\d+)" R"\.(?P<patch>\d+)$") @total_ordering @dataclass class lowercase : __lowercase : str __lowercase : Optional[str] = None __lowercase : Optional[Union[str, int]] = None __lowercase : Optional[Union[str, int]] = None __lowercase : Optional[Union[str, int]] = None def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = _str_to_version_tuple(self.version_str ) def __repr__( self ) -> Optional[Any]: """simple docstring""" return F'''{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}''' @property def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.major, self.minor, self.patch def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if isinstance(A_ , A_ ): return Version(A_ ) elif isinstance(A_ , A_ ): return other raise TypeError(F'''{other} (type {type(A_ )}) cannot be compared to version.''' ) def __eq__( self , A_ ) -> int: """simple docstring""" try: UpperCamelCase = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , A_ ) -> Any: """simple docstring""" UpperCamelCase = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self ) -> List[Any]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __UpperCamelCase ( self ) -> str: """simple docstring""" return self.version_str def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = _VERSION_REG.match(lowercase ) if not res: raise ValueError(f'''Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.''' ) return tuple(int(lowercase ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def A ( lowercase ) -> int: '''simple docstring''' return ".".join(str(lowercase ) for v in version_tuple )
713
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.linear_k": "encoder.layers.*.self_attn.linear_k", "self_attn.linear_v": "encoder.layers.*.self_attn.linear_v", "self_attn.linear_q": "encoder.layers.*.self_attn.linear_q", "self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u", "self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v", "self_attn.linear_out": "encoder.layers.*.self_attn.linear_out", "self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos", "self_attn.rotary_emb": "encoder.embed_positions", "self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm", "conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1", "conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2", "conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv", "conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm", "conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm", "ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense", "ffn1.w_2": "encoder.layers.*.ffn1.output_dense", "ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm", "ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense", "ffn2.w_2": "encoder.layers.*.ffn2.output_dense", "ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } _UpperCAmelCase : Any = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' for attribute in key.split('.' ): UpperCamelCase = getattr(lowercase , lowercase ) if weight_type is not None: UpperCamelCase = getattr(lowercase , lowercase ).shape else: UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": UpperCamelCase = value elif weight_type == "weight_g": UpperCamelCase = value elif weight_type == "weight_v": UpperCamelCase = value elif weight_type == "bias": UpperCamelCase = value elif weight_type == "running_mean": UpperCamelCase = value elif weight_type == "running_var": UpperCamelCase = value elif weight_type == "num_batches_tracked": UpperCamelCase = value elif weight_type == "inv_freq": UpperCamelCase = value else: UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A ( lowercase , lowercase , lowercase ) -> Any: '''simple docstring''' UpperCamelCase = [] UpperCamelCase = fairseq_model.state_dict() UpperCamelCase = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCamelCase = False if "conv_layers" in name: load_conv_layer( lowercase , lowercase , lowercase , lowercase , hf_model.config.feat_extract_norm == 'group' , ) UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): UpperCamelCase = 'wav2vec2_conformer.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: UpperCamelCase = True if "*" in mapped_key: UpperCamelCase = name.split(lowercase )[0].split('.' )[-2] UpperCamelCase = mapped_key.replace('*' , lowercase ) if "pos_bias_u" in name: UpperCamelCase = None elif "pos_bias_v" in name: UpperCamelCase = None elif "weight_g" in name: UpperCamelCase = 'weight_g' elif "weight_v" in name: UpperCamelCase = 'weight_v' elif "bias" in name: UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCamelCase = 'weight' elif "running_mean" in name: UpperCamelCase = 'running_mean' elif "inv_freq" in name: UpperCamelCase = 'inv_freq' elif "running_var" in name: UpperCamelCase = 'running_var' elif "num_batches_tracked" in name: UpperCamelCase = 'num_batches_tracked' else: UpperCamelCase = None set_recursively(lowercase , lowercase , lowercase , lowercase , lowercase ) continue if not is_used: unused_weights.append(lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = full_name.split('conv_layers.' )[-1] UpperCamelCase = name.split('.' ) UpperCamelCase = int(items[0] ) UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowercase ) @torch.no_grad() def A ( lowercase , lowercase , lowercase=None , lowercase=None , lowercase=True ) -> int: '''simple docstring''' if config_path is not None: UpperCamelCase = WavaVecaConformerConfig.from_pretrained(lowercase , hidden_act='swish' ) else: UpperCamelCase = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCamelCase = 'rotary' if is_finetuned: if dict_path: UpperCamelCase = Dictionary.load(lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCamelCase = target_dict.pad_index UpperCamelCase = target_dict.bos_index UpperCamelCase = target_dict.eos_index UpperCamelCase = len(target_dict.symbols ) UpperCamelCase = os.path.join(lowercase , 'vocab.json' ) if not os.path.isdir(lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(lowercase ) ) return os.makedirs(lowercase , exist_ok=lowercase ) UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCamelCase = 0 UpperCamelCase = 1 with open(lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(lowercase , lowercase ) UpperCamelCase = WavaVecaCTCTokenizer( lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=lowercase , ) UpperCamelCase = True if config.feat_extract_norm == 'layer' else False UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowercase , return_attention_mask=lowercase , ) UpperCamelCase = WavaVecaProcessor(feature_extractor=lowercase , tokenizer=lowercase ) processor.save_pretrained(lowercase ) UpperCamelCase = WavaVecaConformerForCTC(lowercase ) else: UpperCamelCase = WavaVecaConformerForPreTraining(lowercase ) if is_finetuned: UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) UpperCamelCase = fairseq.tasks.setup_task(lowercase ) UpperCamelCase , UpperCamelCase , UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=lowercase ) UpperCamelCase = model[0].eval() recursively_load_weights(lowercase , lowercase , not is_finetuned ) hf_wavavec.save_pretrained(lowercase ) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) _UpperCAmelCase : Dict = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
3
0
import enum import warnings from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) class lowercase ( enum.Enum ): __lowercase : List[Any] = 0 __lowercase : Dict = 1 @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Any = "generated" def __init__( self , *A_ , **A_ ) -> Optional[int]: """simple docstring""" super().__init__(*A_ , **A_ ) self.check_model_type( TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING ) def __UpperCamelCase ( self , A_=None , A_=None , A_=None , A_=None , A_=None , A_=None , **A_ , ) -> Dict: """simple docstring""" UpperCamelCase = {} if truncation is not None: UpperCamelCase = truncation UpperCamelCase = generate_kwargs UpperCamelCase = {} if return_tensors is not None and return_type is None: UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT if return_type is not None: UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: UpperCamelCase = self.tokenizer.encode(A_ , add_special_tokens=A_ ) if len(A_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCamelCase ( self , A_ , A_ , A_ ) -> List[Any]: """simple docstring""" return True def __UpperCamelCase ( self , *A_ , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else '' if isinstance(args[0] , A_ ): if self.tokenizer.pad_token_id is None: raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' ) UpperCamelCase = ([prefix + arg for arg in args[0]],) UpperCamelCase = True elif isinstance(args[0] , A_ ): UpperCamelCase = (prefix + args[0],) UpperCamelCase = False else: raise ValueError( F''' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`''' ) UpperCamelCase = self.tokenizer(*A_ , padding=A_ , truncation=A_ , return_tensors=self.framework ) # This is produced by tokenizers but is an invalid generate kwargs if "token_type_ids" in inputs: del inputs["token_type_ids"] return inputs def __call__( self , *A_ , **A_ ) -> List[str]: """simple docstring""" UpperCamelCase = super().__call__(*A_ , **A_ ) if ( isinstance(args[0] , A_ ) and all(isinstance(A_ , A_ ) for el in args[0] ) and all(len(A_ ) == 1 for res in result ) ): return [res[0] for res in result] return result def __UpperCamelCase ( self , A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = self._parse_and_tokenize(A_ , truncation=A_ , **A_ ) return inputs def __UpperCamelCase ( self , A_ , **A_ ) -> int: """simple docstring""" if self.framework == "pt": UpperCamelCase , UpperCamelCase = model_inputs['input_ids'].shape elif self.framework == "tf": UpperCamelCase , UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy() UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length ) UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) self.check_inputs(A_ , generate_kwargs['min_length'] , generate_kwargs['max_length'] ) UpperCamelCase = self.model.generate(**A_ , **A_ ) UpperCamelCase = output_ids.shape[0] if self.framework == "pt": UpperCamelCase = output_ids.reshape(A_ , out_b // in_b , *output_ids.shape[1:] ) elif self.framework == "tf": UpperCamelCase = tf.reshape(A_ , (in_b, out_b // in_b, *output_ids.shape[1:]) ) return {"output_ids": output_ids} def __UpperCamelCase ( self , A_ , A_=ReturnType.TEXT , A_=False ) -> Dict: """simple docstring""" UpperCamelCase = [] for output_ids in model_outputs["output_ids"][0]: if return_type == ReturnType.TENSORS: UpperCamelCase = {F'''{self.return_name}_token_ids''': output_ids} elif return_type == ReturnType.TEXT: UpperCamelCase = { F'''{self.return_name}_text''': self.tokenizer.decode( A_ , skip_special_tokens=A_ , clean_up_tokenization_spaces=A_ , ) } records.append(A_ ) return records @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[int] = "summary" def __call__( self , *A_ , **A_ ) -> List[str]: """simple docstring""" return super().__call__(*A_ , **A_ ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> bool: """simple docstring""" if max_length < min_length: logger.warning(F'''Your min_length={min_length} must be inferior than your max_length={max_length}.''' ) if input_length < max_length: logger.warning( F'''Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is ''' 'a summarization task, where outputs shorter than the input are typically wanted, you might ' F'''consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})''' ) @add_end_docstrings(_SCREAMING_SNAKE_CASE ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : int = "translation" def __UpperCamelCase ( self , A_ , A_ , A_ ) -> str: """simple docstring""" if input_length > 0.9 * max_length: logger.warning( F'''Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider ''' 'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' ) return True def __UpperCamelCase ( self , *A_ , A_=TruncationStrategy.DO_NOT_TRUNCATE , A_=None , A_=None ) -> Optional[int]: """simple docstring""" if getattr(self.tokenizer , '_build_translation_inputs' , A_ ): return self.tokenizer._build_translation_inputs( *A_ , return_tensors=self.framework , truncation=A_ , src_lang=A_ , tgt_lang=A_ ) else: return super()._parse_and_tokenize(*A_ , truncation=A_ ) def __UpperCamelCase ( self , A_=None , A_=None , **A_ ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase , UpperCamelCase = super()._sanitize_parameters(**A_ ) if src_lang is not None: UpperCamelCase = src_lang if tgt_lang is not None: UpperCamelCase = tgt_lang if src_lang is None and tgt_lang is None: # Backward compatibility, direct arguments use is preferred. UpperCamelCase = kwargs.get('task' , self.task ) UpperCamelCase = task.split('_' ) if task and len(A_ ) == 4: # translation, XX, to YY UpperCamelCase = items[1] UpperCamelCase = items[3] return preprocess_params, forward_params, postprocess_params def __call__( self , *A_ , **A_ ) -> List[str]: """simple docstring""" return super().__call__(*A_ , **A_ )
714
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets _UpperCAmelCase : Any = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" _UpperCAmelCase : str = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" _UpperCAmelCase : List[str] = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def A ( lowercase , lowercase ) -> List[str]: '''simple docstring''' return float((preds == labels).mean() ) def A ( lowercase , lowercase ) -> Tuple: '''simple docstring''' UpperCamelCase = simple_accuracy(lowercase , lowercase ) UpperCamelCase = float(fa_score(y_true=lowercase , y_pred=lowercase ) ) return { "accuracy": acc, "f1": fa, } def A ( lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = float(pearsonr(lowercase , lowercase )[0] ) UpperCamelCase = float(spearmanr(lowercase , lowercase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def __UpperCamelCase ( self , A_ , A_ ) -> Any: """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(A_ , A_ )} elif self.config_name == "stsb": return pearson_and_spearman(A_ , A_ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(A_ , A_ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(A_ , A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
3
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/deit-base-distilled-patch16-224": ( "https://huggingface.co/facebook/deit-base-patch16-224/resolve/main/config.json" ), # See all DeiT models at https://huggingface.co/models?filter=deit } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[int] = "deit" def __init__( self , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.0 , A_=0.0 , A_=0.02 , A_=1e-12 , A_=224 , A_=16 , A_=3 , A_=True , A_=16 , **A_ , ) -> str: """simple docstring""" super().__init__(**A_ ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = encoder_stride class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = version.parse("1.11" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: """simple docstring""" return 1e-4
715
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput _UpperCAmelCase : str = "scheduler_config.json" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Tuple = 1 __lowercase : int = 2 __lowercase : List[Any] = 3 __lowercase : str = 4 __lowercase : Optional[Any] = 5 @dataclass class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : jnp.ndarray class lowercase : __lowercase : Union[str, Any] = SCHEDULER_CONFIG_NAME __lowercase : Dict = ["dtype"] __lowercase : List[Any] = [] __lowercase : Dict = True @classmethod def __UpperCamelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) UpperCamelCase , UpperCamelCase = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , 'create_state' ) and getattr(A_ , 'has_state' , A_ ): UpperCamelCase = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def __UpperCamelCase ( self , A_ , A_ = False , **A_ ) -> str: """simple docstring""" self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def __UpperCamelCase ( self ) -> int: """simple docstring""" return self._get_compatibles() @classmethod def __UpperCamelCase ( cls ) -> int: """simple docstring""" UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def A ( lowercase , lowercase ) -> jnp.ndarray: '''simple docstring''' assert len(lowercase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowercase ) - x.ndim) ) , lowercase ) def A ( lowercase , lowercase=0.9_9_9 , lowercase=jnp.floataa ) -> jnp.ndarray: '''simple docstring''' def alpha_bar(lowercase ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 UpperCamelCase = [] for i in range(lowercase ): UpperCamelCase = i / num_diffusion_timesteps UpperCamelCase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowercase ) / alpha_bar(lowercase ) , lowercase ) ) return jnp.array(lowercase , dtype=lowercase ) @flax.struct.dataclass class lowercase : __lowercase : jnp.ndarray __lowercase : jnp.ndarray __lowercase : jnp.ndarray @classmethod def __UpperCamelCase ( cls , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = scheduler.config if config.trained_betas is not None: UpperCamelCase = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": UpperCamelCase = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) UpperCamelCase = 1.0 - betas UpperCamelCase = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def A ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = state.alphas_cumprod UpperCamelCase = alphas_cumprod[timesteps] ** 0.5 UpperCamelCase = sqrt_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) UpperCamelCase = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCamelCase = sqrt_one_minus_alpha_prod.flatten() UpperCamelCase = broadcast_to_shape_from_left(lowercase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def A ( lowercase , lowercase , lowercase , lowercase ) -> Dict: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def A ( lowercase , lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase , UpperCamelCase = get_sqrt_alpha_prod(lowercase , lowercase , lowercase , lowercase ) UpperCamelCase = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
3
0
import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class lowercase : def __init__( self , A_ , A_ = 13 , A_ = 64 , A_ = 2 , A_ = 3 , A_ = 3 , A_ = True , A_ = True , A_ = 128 , A_=[16, 32, 64, 128] , A_ = 7 , A_ = 4 , A_ = 37 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 10 , A_ = 0.02 , A_ = 2 , A_ = 1 , A_ = 128 , A_ = [2, 2, 2, 2] , A_ = 2 , A_ = 2 , ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = encoder_stride UpperCamelCase = num_attention_outputs UpperCamelCase = embed_dim UpperCamelCase = embed_dim + 1 UpperCamelCase = resolution UpperCamelCase = depths UpperCamelCase = hidden_sizes UpperCamelCase = dim UpperCamelCase = mlp_expansion_ratio def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = TFEfficientFormerModel(config=A_ ) UpperCamelCase = model(A_ , training=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Any: """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = TFEfficientFormerForImageClassification(A_ ) UpperCamelCase = model(A_ , labels=A_ , training=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFEfficientFormerForImageClassification(A_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) __lowercase : Optional[int] = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) __lowercase : List[Any] = False __lowercase : int = False __lowercase : int = False __lowercase : str = False __lowercase : Dict = False def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = TFEfficientFormerModelTester(self ) UpperCamelCase = ConfigTester( self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) if hasattr(self.model_tester , 'encoder_seq_length' ): UpperCamelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: UpperCamelCase = seq_length * self.model_tester.chunk_length else: UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: UpperCamelCase = outputs.decoder_hidden_states self.asseretIsInstance(A_ , (list, tuple) ) self.assertEqual(len(A_ ) , A_ ) UpperCamelCase = getattr(self.model_tester , 'seq_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , A_ ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase = super()._prepare_for_class(A_ , A_ , return_labels=A_ ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFEfficientFormerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True UpperCamelCase = getattr(self.model_tester , 'seq_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'key_length' , A_ ) UpperCamelCase = getattr(self.model_tester , 'chunk_length' , A_ ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): UpperCamelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ ) UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) , training=A_ ) UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model UpperCamelCase = model_class(A_ ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes UpperCamelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=A_ ) for key, val in model.input_signature.items() if key in model.dummy_inputs } UpperCamelCase = model(A_ ) self.assertTrue(outputs_dict is not None ) def A ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> int: """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='tf' ) # forward pass UpperCamelCase = model(**A_ , training=A_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = tf.constant([-0.0555, 0.4825, -0.0852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='tf' ) # forward pass UpperCamelCase = model(**A_ , training=A_ ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = tf.constant([-0.1312, 0.4353, -1.0499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
716
from abc import ABC, abstractmethod from typing import List, Optional class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self ) -> Optional[Any]: """simple docstring""" # test for the above condition self.test() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = 0 UpperCamelCase = False while not completed: if counter == 1: self.reset() UpperCamelCase = self.advance() if not self.does_advance(A_ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.update(A_ ) counter += 1 if counter > 10_000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> Any: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self ) -> str: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> Any: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) UpperCamelCase = token_ids UpperCamelCase = len(self.token_ids ) UpperCamelCase = -1 # the index of the currently fulfilled step UpperCamelCase = False def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCamelCase ( self , A_ ) -> Optional[int]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.fulfilled_idx += 1 UpperCamelCase = True if self.fulfilled_idx == (self.seqlen - 1): UpperCamelCase = True UpperCamelCase = completed else: # failed to make progress. UpperCamelCase = True self.reset() return stepped, completed, reset def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = False UpperCamelCase = 0 def __UpperCamelCase ( self ) -> int: """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def __UpperCamelCase ( self , A_=False ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = PhrasalConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.fulfilled_idx UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ , A_=True ) -> List[Any]: """simple docstring""" UpperCamelCase = max([len(A_ ) for one in nested_token_ids] ) UpperCamelCase = {} for token_ids in nested_token_ids: UpperCamelCase = root for tidx, token_id in enumerate(A_ ): if token_id not in level: UpperCamelCase = {} UpperCamelCase = level[token_id] if no_subsets and self.has_subsets(A_ , A_ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) UpperCamelCase = root def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.trie for current_token in current_seq: UpperCamelCase = start[current_token] UpperCamelCase = list(start.keys() ) return next_tokens def __UpperCamelCase ( self , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.next_tokens(A_ ) return len(A_ ) == 0 def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" UpperCamelCase = list(root.values() ) if len(A_ ) == 0: return 1 else: return sum([self.count_leaves(A_ ) for nn in next_nodes] ) def __UpperCamelCase ( self , A_ , A_ ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.count_leaves(A_ ) return len(A_ ) != leaf_count class lowercase ( _SCREAMING_SNAKE_CASE ): def __init__( self , A_ ) -> str: """simple docstring""" super(A_ , self ).__init__() if not isinstance(A_ , A_ ) or len(A_ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(A_ , A_ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(A_ , A_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) UpperCamelCase = DisjunctiveTrie(A_ ) UpperCamelCase = nested_token_ids UpperCamelCase = self.trie.max_height UpperCamelCase = [] UpperCamelCase = False def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.trie.next_tokens(self.current_seq ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCamelCase ( self , A_ ) -> Optional[Any]: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(A_ )}''' ) UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False if self.does_advance(A_ ): self.current_seq.append(A_ ) UpperCamelCase = True else: UpperCamelCase = True self.reset() UpperCamelCase = self.trie.reached_leaf(self.current_seq ) UpperCamelCase = completed return stepped, completed, reset def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = False UpperCamelCase = [] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCamelCase ( self , A_=False ) -> int: """simple docstring""" UpperCamelCase = DisjunctiveConstraint(self.token_ids ) if stateful: UpperCamelCase = self.seqlen UpperCamelCase = self.current_seq UpperCamelCase = self.completed return new_constraint class lowercase : def __init__( self , A_ ) -> Tuple: """simple docstring""" UpperCamelCase = constraints # max # of steps required to fulfill a given constraint UpperCamelCase = max([c.seqlen for c in constraints] ) UpperCamelCase = len(A_ ) UpperCamelCase = False self.init_state() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = [] UpperCamelCase = None UpperCamelCase = [constraint.copy(stateful=A_ ) for constraint in self.constraints] def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" UpperCamelCase = constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) else: UpperCamelCase = self.inprogress_constraint.advance() if isinstance(A_ , A_ ): token_list.append(A_ ) elif isinstance(A_ , A_ ): token_list.extend(A_ ) if len(A_ ) == 0: return None else: return token_list def __UpperCamelCase ( self , A_ ) -> Any: """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint UpperCamelCase , UpperCamelCase = self.add(A_ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCamelCase ( self , A_ ) -> int: """simple docstring""" if not isinstance(A_ , A_ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) UpperCamelCase , UpperCamelCase = False, False if self.completed: UpperCamelCase = True UpperCamelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state UpperCamelCase , UpperCamelCase , UpperCamelCase = self.inprogress_constraint.update(A_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=A_ ) ) UpperCamelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) UpperCamelCase = None if len(self.pending_constraints ) == 0: # we're done! UpperCamelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(A_ ): UpperCamelCase , UpperCamelCase , UpperCamelCase = pending_constraint.update(A_ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(A_ ) UpperCamelCase = None if not complete and stepped: UpperCamelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". UpperCamelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. UpperCamelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCamelCase ( self , A_=True ) -> Tuple: """simple docstring""" UpperCamelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: UpperCamelCase = [ constraint.copy(stateful=A_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: UpperCamelCase = self.inprogress_constraint.copy(stateful=A_ ) UpperCamelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
3
0
def A ( lowercase ) -> bool: '''simple docstring''' if not isinstance(lowercase , lowercase ): UpperCamelCase = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowercase ) if number < 0: return False UpperCamelCase = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
717
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _UpperCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self , A_ , A_ = None , A_ = None ) -> Any: """simple docstring""" super().__init__() UpperCamelCase = learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" UpperCamelCase = torch.zeros(A_ , A_ ) else: UpperCamelCase = None UpperCamelCase = torch.nn.Parameter(A_ ) class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : VQModel __lowercase : CLIPTextModel __lowercase : CLIPTokenizer __lowercase : TransformeraDModel __lowercase : LearnedClassifierFreeSamplingEmbeddings __lowercase : VQDiffusionScheduler def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ) -> Optional[Any]: """simple docstring""" super().__init__() self.register_modules( vqvae=A_ , transformer=A_ , text_encoder=A_ , tokenizer=A_ , scheduler=A_ , learned_classifier_free_sampling_embeddings=A_ , ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = len(A_ ) if isinstance(A_ , A_ ) else 1 # get prompt text embeddings UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) UpperCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: UpperCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' F''' {self.tokenizer.model_max_length} tokens: {removed_text}''' ) UpperCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] UpperCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 UpperCamelCase = prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase = prompt_embeds.repeat_interleave(A_ , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: UpperCamelCase = self.learned_classifier_free_sampling_embeddings.embeddings UpperCamelCase = negative_prompt_embeds.unsqueeze(0 ).repeat(A_ , 1 , 1 ) else: UpperCamelCase = [''] * batch_size UpperCamelCase = text_input_ids.shape[-1] UpperCamelCase = self.tokenizer( A_ , padding='max_length' , max_length=A_ , truncation=A_ , return_tensors='pt' , ) UpperCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings UpperCamelCase = negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=A_ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method UpperCamelCase = negative_prompt_embeds.shape[1] UpperCamelCase = negative_prompt_embeds.repeat(1 , A_ , 1 ) UpperCamelCase = negative_prompt_embeds.view(batch_size * num_images_per_prompt , A_ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase = torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self , A_ , A_ = 100 , A_ = 5.0 , A_ = 1.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , A_ = None , A_ = 1 , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" if isinstance(A_ , A_ ): UpperCamelCase = 1 elif isinstance(A_ , A_ ): UpperCamelCase = len(A_ ) else: raise ValueError(F'''`prompt` has to be of type `str` or `list` but is {type(A_ )}''' ) UpperCamelCase = batch_size * num_images_per_prompt UpperCamelCase = guidance_scale > 1.0 UpperCamelCase = self._encode_prompt(A_ , A_ , A_ ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A_ , A_ ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(A_ )}.''' ) # get the initial completely masked latents unless the user supplied it UpperCamelCase = (batch_size, self.transformer.num_latent_pixels) if latents is None: UpperCamelCase = self.transformer.num_vector_embeds - 1 UpperCamelCase = torch.full(A_ , A_ ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(F'''Unexpected latents shape, got {latents.shape}, expected {latents_shape}''' ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' F''' {self.transformer.num_vector_embeds - 1} (inclusive).''' ) UpperCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(A_ , device=self.device ) UpperCamelCase = self.scheduler.timesteps.to(self.device ) UpperCamelCase = latents for i, t in enumerate(self.progress_bar(A_ ) ): # expand the sample if we are doing classifier free guidance UpperCamelCase = torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` UpperCamelCase = self.transformer(A_ , encoder_hidden_states=A_ , timestep=A_ ).sample if do_classifier_free_guidance: UpperCamelCase , UpperCamelCase = model_output.chunk(2 ) UpperCamelCase = model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(A_ , dim=1 , keepdim=A_ ) UpperCamelCase = self.truncate(A_ , A_ ) # remove `log(0)`'s (`-inf`s) UpperCamelCase = model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(A_ , timestep=A_ , sample=A_ , generator=A_ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A_ , A_ , A_ ) UpperCamelCase = self.vqvae.config.vq_embed_dim UpperCamelCase = (batch_size, self.transformer.height, self.transformer.width, embedding_channels) UpperCamelCase = self.vqvae.quantize.get_codebook_entry(A_ , shape=A_ ) UpperCamelCase = self.vqvae.decode(A_ , force_not_quantize=A_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ ) def __UpperCamelCase ( self , A_ , A_ ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase , UpperCamelCase = torch.sort(A_ , 1 , descending=A_ ) UpperCamelCase = torch.exp(A_ ) UpperCamelCase = sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out UpperCamelCase = torch.full_like(keep_mask[:, 0:1, :] , A_ ) UpperCamelCase = torch.cat((all_true, keep_mask) , dim=1 ) UpperCamelCase = keep_mask[:, :-1, :] UpperCamelCase = keep_mask.gather(1 , indices.argsort(1 ) ) UpperCamelCase = log_p_x_0.clone() UpperCamelCase = -torch.inf # -inf = log(0) return rv
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : Dict = { "configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : List[str] = [ "FALCON_PRETRAINED_MODEL_ARCHIVE_LIST", "FalconForCausalLM", "FalconModel", "FalconPreTrainedModel", "FalconForSequenceClassification", "FalconForTokenClassification", "FalconForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_falcon import ( FALCON_PRETRAINED_MODEL_ARCHIVE_LIST, FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, FalconPreTrainedModel, ) else: import sys _UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
718
from string import ascii_uppercase _UpperCAmelCase : Dict = {char: i for i, char in enumerate(ascii_uppercase)} _UpperCAmelCase : Tuple = dict(enumerate(ascii_uppercase)) def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = len(lowercase ) UpperCamelCase = 0 while True: if x == i: UpperCamelCase = 0 if len(lowercase ) == len(lowercase ): break key += key[i] i += 1 return key def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in message: if letter == " ": cipher_text += " " else: UpperCamelCase = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def A ( lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: UpperCamelCase = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def A ( ) -> None: '''simple docstring''' UpperCamelCase = 'THE GERMAN ATTACK' UpperCamelCase = 'SECRET' UpperCamelCase = generate_key(lowercase , lowercase ) UpperCamelCase = cipher_text(lowercase , lowercase ) print(f'''Encrypted Text = {s}''' ) print(f'''Original Text = {original_text(lowercase , lowercase )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
3
0
import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , A_ , A_=3 , A_=32 , A_=3 , A_=10 , A_=[10, 20, 30, 40] , A_=[1, 1, 2, 1] , A_=True , A_=True , A_="relu" , A_=3 , A_=None , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(A_ ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = self.get_config() return config, pixel_values def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def __UpperCamelCase ( self , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = FlaxRegNetModel(config=A_ ) UpperCamelCase = model(A_ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __UpperCamelCase ( self , A_ , A_ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = FlaxRegNetForImageClassification(config=A_ ) UpperCamelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class lowercase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : List[Any] = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () __lowercase : int = False __lowercase : Dict = False __lowercase : Optional[Any] = False def __UpperCamelCase ( self ) -> None: """simple docstring""" UpperCamelCase = FlaxRegNetModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ) -> Dict: """simple docstring""" return def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" pass def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCamelCase = self._prepare_for_class(A_ , A_ ) UpperCamelCase = model_class(A_ ) @jax.jit def model_jitted(A_ , **A_ ): return model(pixel_values=A_ , **A_ ) with self.subTest('JIT Enabled' ): UpperCamelCase = model_jitted(**A_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): UpperCamelCase = model_jitted(**A_ ).to_tuple() self.assertEqual(len(A_ ) , len(A_ ) ) for jitted_output, output in zip(A_ , A_ ): self.assertEqual(jitted_output.shape , output.shape ) def A ( ) -> List[str]: '''simple docstring''' UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=A_ , return_tensors='np' ) UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = (1, 1_000) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
719
from collections.abc import Callable def A ( lowercase , lowercase , lowercase ) -> float: '''simple docstring''' UpperCamelCase = a UpperCamelCase = b if function(lowercase ) == 0: # one of the a or b is a root for the function return a elif function(lowercase ) == 0: return b elif ( function(lowercase ) * function(lowercase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: UpperCamelCase = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowercase ) == 0: return mid elif function(lowercase ) * function(lowercase ) < 0: UpperCamelCase = mid else: UpperCamelCase = mid UpperCamelCase = start + (end - start) / 2.0 return mid def A ( lowercase ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
3
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
720
import os _UpperCAmelCase : int = {"I": 1, "V": 5, "X": 10, "L": 50, "C": 100, "D": 500, "M": 1_000} def A ( lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = 0 while index < len(lowercase ) - 1: UpperCamelCase = SYMBOLS[numerals[index]] UpperCamelCase = SYMBOLS[numerals[index + 1]] if current_value < next_value: total_value -= current_value else: total_value += current_value index += 1 total_value += SYMBOLS[numerals[index]] return total_value def A ( lowercase ) -> str: '''simple docstring''' UpperCamelCase = '' UpperCamelCase = num // 1_000 numerals += m_count * "M" num %= 1_000 UpperCamelCase = num // 100 if c_count == 9: numerals += "CM" c_count -= 9 elif c_count == 4: numerals += "CD" c_count -= 4 if c_count >= 5: numerals += "D" c_count -= 5 numerals += c_count * "C" num %= 100 UpperCamelCase = num // 10 if x_count == 9: numerals += "XC" x_count -= 9 elif x_count == 4: numerals += "XL" x_count -= 4 if x_count >= 5: numerals += "L" x_count -= 5 numerals += x_count * "X" num %= 10 if num == 9: numerals += "IX" num -= 9 elif num == 4: numerals += "IV" num -= 4 if num >= 5: numerals += "V" num -= 5 numerals += num * "I" return numerals def A ( lowercase = "/p089_roman.txt" ) -> int: '''simple docstring''' UpperCamelCase = 0 with open(os.path.dirname(lowercase ) + roman_numerals_filename ) as filea: UpperCamelCase = filea.readlines() for line in lines: UpperCamelCase = line.strip() UpperCamelCase = parse_roman_numerals(lowercase ) UpperCamelCase = generate_roman_numerals(lowercase ) savings += len(lowercase ) - len(lowercase ) return savings if __name__ == "__main__": print(F'''{solution() = }''')
3
0
def A ( ) -> str: '''simple docstring''' for n in range(1 , 1_000_000 ): yield n * (n + 1) // 2 def A ( lowercase ) -> List[Any]: '''simple docstring''' UpperCamelCase = 1 UpperCamelCase = 2 while i * i <= n: UpperCamelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def A ( ) -> Any: '''simple docstring''' return next(i for i in triangle_number_generator() if count_divisors(lowercase ) > 500 ) if __name__ == "__main__": print(solution())
721
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('dataset_size' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('input_in_memory_max_size' , ['default', 0, 100 * 2**20, 900 * 2**20] ) def A ( lowercase , lowercase , lowercase ) -> Union[str, Any]: '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , 'IN_MEMORY_MAX_SIZE' , lowercase ) UpperCamelCase = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase = dataset_size < in_memory_max_size else: UpperCamelCase = False UpperCamelCase = is_small_dataset(lowercase ) assert result == expected
3
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : str = logging.get_logger(__name__) _UpperCAmelCase : Optional[Any] = { "snap-research/efficientformer-l1-300": ( "https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json" ), } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Optional[int] = "efficientformer" def __init__( self , A_ = [3, 2, 6, 4] , A_ = [48, 96, 224, 448] , A_ = [True, True, True, True] , A_ = 448 , A_ = 32 , A_ = 4 , A_ = 7 , A_ = 5 , A_ = 8 , A_ = 4 , A_ = 0.0 , A_ = 16 , A_ = 3 , A_ = 3 , A_ = 3 , A_ = 2 , A_ = 1 , A_ = 0.0 , A_ = 1 , A_ = True , A_ = True , A_ = 1e-5 , A_ = "gelu" , A_ = 0.02 , A_ = 1e-12 , A_ = 224 , A_ = 1e-05 , **A_ , ) -> None: """simple docstring""" super().__init__(**A_ ) UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = hidden_sizes UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = depths UpperCamelCase = mlp_expansion_ratio UpperCamelCase = downsamples UpperCamelCase = dim UpperCamelCase = key_dim UpperCamelCase = attention_ratio UpperCamelCase = resolution UpperCamelCase = pool_size UpperCamelCase = downsample_patch_size UpperCamelCase = downsample_stride UpperCamelCase = downsample_pad UpperCamelCase = drop_path_rate UpperCamelCase = num_metaad_blocks UpperCamelCase = distillation UpperCamelCase = use_layer_scale UpperCamelCase = layer_scale_init_value UpperCamelCase = image_size UpperCamelCase = batch_norm_eps
700
def A ( lowercase , lowercase ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = str(bin(lowercase ) )[2:] # remove the leading "0b" UpperCamelCase = max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
_UpperCAmelCase : Optional[Any] = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on _UpperCAmelCase : Union[str, Any] = {value: key for key, value in MORSE_CODE_DICT.items()} def A ( lowercase ) -> str: '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def A ( lowercase ) -> str: '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def A ( ) -> None: '''simple docstring''' UpperCamelCase = 'Morse code here!' print(lowercase ) UpperCamelCase = encrypt(lowercase ) print(lowercase ) UpperCamelCase = decrypt(lowercase ) print(lowercase ) if __name__ == "__main__": main()
701
import re def A ( lowercase ) -> str: '''simple docstring''' if len(re.findall('[ATCG]' , lowercase ) ) != len(lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
3
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class lowercase : def __init__( self , A_ , A_=13 , A_=10 , A_=3 , A_=2 , A_=2 , A_=True , A_=True , A_=32 , A_=5 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=10 , A_=0.02 , A_="divided_space_time" , A_=None , ) -> Any: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = patch_size UpperCamelCase = num_frames UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = attention_type UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = (num_frames) * self.num_patches_per_frame + 1 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) UpperCamelCase = self.num_labels return config def __UpperCamelCase ( self , A_ , A_ , A_ ) -> Dict: """simple docstring""" UpperCamelCase = TimesformerModel(config=A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase ( self , A_ , A_ , A_ ) -> str: """simple docstring""" UpperCamelCase = TimesformerForVideoClassification(A_ ) model.to(A_ ) model.eval() UpperCamelCase = model(A_ ) # verify the logits shape UpperCamelCase = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase : Optional[int] = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () __lowercase : Dict = ( {"feature-extraction": TimesformerModel, "video-classification": TimesformerForVideoClassification} if is_torch_available() else {} ) __lowercase : Optional[Any] = False __lowercase : int = False __lowercase : Any = False __lowercase : Any = False def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = TimesformerModelTester(self ) UpperCamelCase = ConfigTester( self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def __UpperCamelCase ( self , A_ , A_ , A_=False ) -> Any: """simple docstring""" UpperCamelCase = copy.deepcopy(A_ ) if return_labels: if model_class in get_values(A_ ): UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) return inputs_dict def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='TimeSformer does not use inputs_embeds' ) def __UpperCamelCase ( self ) -> str: """simple docstring""" pass def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_ , nn.Linear ) ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(A_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*A_ ) @slow def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TimesformerModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" if not self.has_attentions: pass else: UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = True for model_class in self.all_model_classes: UpperCamelCase = self.model_tester.seq_length UpperCamelCase = self.model_tester.num_frames UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) UpperCamelCase = len(A_ ) # Check attention is always last and order is fine UpperCamelCase = True UpperCamelCase = True UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + 1 , len(A_ ) ) UpperCamelCase = outputs.attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __UpperCamelCase ( self ) -> Dict: """simple docstring""" def check_hidden_states_output(A_ , A_ , A_ ): UpperCamelCase = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(A_ , A_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A_ ) , A_ ) UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(A_ , A_ , A_ ) def A ( ) -> int: '''simple docstring''' UpperCamelCase = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) UpperCamelCase = np.load(lowercase ) return list(lowercase ) @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = TimesformerForVideoClassification.from_pretrained('facebook/timesformer-base-finetuned-k400' ).to( A_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_video() UpperCamelCase = image_processor(video[:8] , return_tensors='pt' ).to(A_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**A_ ) # verify the logits UpperCamelCase = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , A_ ) UpperCamelCase = torch.tensor([-0.3016, -0.7713, -0.4205] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) )
702
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = (DDPMScheduler,) def __UpperCamelCase ( self , **A_ ) -> Dict: """simple docstring""" UpperCamelCase = { 'num_train_timesteps': 1_000, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**A_ ) return config def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=A_ ) def __UpperCamelCase ( self ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=A_ , beta_end=A_ ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" self.check_over_configs(thresholding=A_ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=A_ , prediction_type=A_ , sample_max_value=A_ , ) def __UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=A_ ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=A_ ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = len(A_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter UpperCamelCase = torch.manual_seed(0 ) for t in reversed(range(A_ ) ): # 1. predict noise residual UpperCamelCase = model(A_ , A_ ) # 2. predict previous mean of sample x_t-1 UpperCamelCase = scheduler.step(A_ , A_ , A_ , generator=A_ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase = pred_prev_sample UpperCamelCase = torch.sum(torch.abs(A_ ) ) UpperCamelCase = torch.mean(torch.abs(A_ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=A_ ) UpperCamelCase = scheduler.timesteps for i, timestep in enumerate(A_ ): if i == len(A_ ) - 1: UpperCamelCase = -1 else: UpperCamelCase = timesteps[i + 1] UpperCamelCase = scheduler.previous_timestep(A_ ) UpperCamelCase = prev_t.item() self.assertEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 51, 0] with self.assertRaises(A_ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [100, 87, 50, 1, 0] UpperCamelCase = len(A_ ) with self.assertRaises(A_ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=A_ , timesteps=A_ ) def __UpperCamelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**A_ ) UpperCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( A_ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=A_ )
3
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCAmelCase : str = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys _UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
703
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCAmelCase : List[str] = None _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} _UpperCAmelCase : List[str] = { "vocab_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model", }, "tokenizer_file": { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/tokenizer.json", }, } _UpperCAmelCase : Optional[int] = { "camembert-base": 512, } _UpperCAmelCase : Union[str, Any] = "▁" class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : str = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ["input_ids", "attention_mask"] __lowercase : Tuple = CamembertTokenizer def __init__( self , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=["<s>NOTUSED", "</s>NOTUSED"] , **A_ , ) -> List[Any]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token super().__init__( A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , additional_special_tokens=A_ , **A_ , ) UpperCamelCase = vocab_file UpperCamelCase = False if not self.vocab_file else True def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase = [self.cls_token_id] UpperCamelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self , A_ , A_ = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , A_ , A_ = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ): copyfile(self.vocab_file , A_ ) return (out_vocab_file,)
3
0
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = BlipImageProcessor() UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) UpperCamelCase = BlipaProcessor(A_ , A_ ) processor.save_pretrained(self.tmpdirname ) def __UpperCamelCase ( self , **A_ ) -> int: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).tokenizer def __UpperCamelCase ( self , **A_ ) -> Optional[Any]: """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **A_ ).image_processor def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCamelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase = self.get_image_processor(do_normalize=A_ , padding_value=1.0 ) UpperCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=A_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = image_processor(A_ , return_tensors='np' ) UpperCamelCase = processor(images=A_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = processor(text=A_ ) UpperCamelCase = tokenizer(A_ , return_token_type_ids=A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase = processor.batch_decode(A_ ) UpperCamelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def __UpperCamelCase ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = self.get_image_processor() UpperCamelCase = self.get_tokenizer() UpperCamelCase = BlipaProcessor(tokenizer=A_ , image_processor=A_ ) UpperCamelCase = 'lower newer' UpperCamelCase = self.prepare_image_inputs() UpperCamelCase = processor(text=A_ , images=A_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCAmelCase : Union[str, Any] = { "configuration_git": ["GIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "GitConfig", "GitVisionConfig"], "processing_git": ["GitProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Dict = [ "GIT_PRETRAINED_MODEL_ARCHIVE_LIST", "GitForCausalLM", "GitModel", "GitPreTrainedModel", "GitVisionModel", ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys _UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
3
0
import argparse import dataclasses import json import logging import os import shutil from typing import List, Optional import datasets from accelerate import Accelerator from datasets import load_dataset from finetuning import finetune from tqdm.auto import tqdm import transformers from transformers import AutoConfig, set_seed from transformers.trainer_utils import IntervalStrategy _UpperCAmelCase : str = logging.getLogger(__name__) _UpperCAmelCase : List[str] = "pytorch_model.bin" @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co."} , ) @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field(metadata={"help": "A csv or a json file containing the training data."} ) __lowercase : str = dataclasses.field(metadata={"help": "A csv or a json file containing the data to predict on."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "A csv or a json file containing the validation data."} ) __lowercase : Optional[str] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The name of the task to train on."} , ) __lowercase : Optional[List[str]] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "The list of labels for the task."} ) @dataclasses.dataclass class lowercase : __lowercase : str = dataclasses.field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) __lowercase : Optional[str] = dataclasses.field( default="accuracy" , metadata={"help": "The evaluation metric used for the task."} ) __lowercase : Optional[str] = dataclasses.field( default="no" , metadata={ "help": "The evaluation strategy to adopt during training. Possible values are: [\"no\", \"step\", \"epoch]" } , ) __lowercase : Optional[int] = dataclasses.field( default=10 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={ "help": "How much the specified evaluation metric must improve to satisfy early stopping conditions." } , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the confidence score."} , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to filter the pseudo-labeled data based on the validation performance."} , ) __lowercase : Optional[bool] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Whether to fine-tune on labeled data after pseudo training."} , ) __lowercase : Optional[float] = dataclasses.field( default=0.0 , metadata={"help": "Confidence threshold for pseudo-labeled data filtering."} , ) __lowercase : Optional[int] = dataclasses.field( default=100 , metadata={"help": "Number of evaluation calls with no improvement after which training will be stopped."} , ) __lowercase : Optional[int] = dataclasses.field( default=_SCREAMING_SNAKE_CASE , metadata={"help": "Random seed for initialization."} , ) def A ( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: '''simple docstring''' UpperCamelCase = datasets.concatenate_datasets([infer_input, infer_output] , axis=1 ) if args.do_filter_by_confidence: UpperCamelCase = dataset.filter(lambda lowercase : example["probability"] > args.confidence_threshold ) if args.do_filter_by_val_performance: assert eval_result >= 0.0 and eval_result <= 1.0 UpperCamelCase = int(eval_result * len(lowercase ) ) print(lowercase ) UpperCamelCase = dataset.sort('probability' , reverse=lowercase ) UpperCamelCase = dataset.select(range(lowercase ) ) UpperCamelCase = dataset.remove_columns(['label', 'probability'] ) UpperCamelCase = dataset.rename_column('prediction' , 'label' ) UpperCamelCase = dataset.map(lambda lowercase : {"label": idalabel[example["label"]]} ) UpperCamelCase = dataset.shuffle(seed=args.seed ) UpperCamelCase = os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.data_file_extension == "csv": dataset.to_csv(lowercase , index=lowercase ) else: dataset.to_json(lowercase ) def A ( lowercase , lowercase , lowercase , lowercase , **lowercase ) -> int: '''simple docstring''' UpperCamelCase = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO , ) logger.info(accelerator.state ) # Setup logging, we only want one process per machine to log things on the # screen. accelerator.is_local_main_process is only True for one process per # machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() UpperCamelCase = STModelArguments(model_name_or_path=lowercase ) UpperCamelCase = STDataArguments(train_file=lowercase , infer_file=lowercase ) UpperCamelCase = STTrainingArguments(output_dir=lowercase ) UpperCamelCase = argparse.Namespace() for arg_class in (model_args, data_args, training_args): for key, value in vars(lowercase ).items(): setattr(lowercase , lowercase , lowercase ) for key, value in kwargs.items(): if hasattr(lowercase , lowercase ): setattr(lowercase , lowercase , lowercase ) # Sanity checks UpperCamelCase = {} UpperCamelCase = None # You need to provide the training data and the data to predict on assert args.train_file is not None assert args.infer_file is not None UpperCamelCase = args.train_file UpperCamelCase = args.infer_file if args.evaluation_strategy != IntervalStrategy.NO.value: assert args.eval_file is not None UpperCamelCase = args.eval_file for key in data_files: UpperCamelCase = data_files[key].split('.' )[-1] assert extension in ["csv", "json"], f'''`{key}_file` should be a csv or a json file.''' if args.data_file_extension is None: UpperCamelCase = extension else: assert extension == args.data_file_extension, f'''`{key}_file` should be a {args.data_file_extension} file`.''' assert ( args.eval_metric in datasets.list_metrics() ), f'''{args.eval_metric} not in the list of supported metrics {datasets.list_metrics()}.''' # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed ) logger.info('Creating the initial data directory for self-training...' ) UpperCamelCase = f'''{args.output_dir}/self-train_iter-{{}}'''.format UpperCamelCase = data_dir_format(0 ) if accelerator.is_main_process: if args.output_dir is not None: os.makedirs(args.output_dir , exist_ok=lowercase ) os.makedirs(lowercase , exist_ok=lowercase ) accelerator.wait_for_everyone() UpperCamelCase = None UpperCamelCase = None UpperCamelCase = 0 UpperCamelCase = False # Show the progress bar UpperCamelCase = tqdm(range(args.max_selftrain_iterations ) , disable=not accelerator.is_local_main_process ) # Self-train for iteration in range(0 , int(args.max_selftrain_iterations ) ): UpperCamelCase = data_dir_format(lowercase ) assert os.path.exists(lowercase ) # Stage 1: initial fine-tuning for iteration = 0 or pseudo-training for # iteration > 0 UpperCamelCase = os.path.join(lowercase , 'stage-1' ) UpperCamelCase = { 'accelerator': accelerator, 'model_name_or_path': args.model_name_or_path, 'cache_dir': args.cache_dir, 'do_train': True, 'train_file': data_files['train'] if iteration == 0 else data_files['train_pseudo'], 'do_eval': True if args.eval_file is not None else False, 'eval_file': data_files['eval'], 'do_predict': True, 'infer_file': data_files['infer'], 'task_name': args.task_name, 'label_list': args.label_list, 'output_dir': current_output_dir, 'eval_metric': args.eval_metric, 'evaluation_strategy': args.evaluation_strategy, 'early_stopping_patience': args.early_stopping_patience, 'early_stopping_threshold': args.early_stopping_threshold, 'seed': args.seed, } # Add additional training arguments for key, value in kwargs.items(): if key not in arguments_dict and not hasattr(lowercase , lowercase ): arguments_dict.update({key: value} ) UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' , lowercase ) if os.path.exists(lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 1.' , lowercase , lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 1 *****' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 1.' , lowercase ) if iteration > 0 and args.finetune_on_labeled_data: # Stage 2 (optional): fine-tuning on the original labeled data UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' ) UpperCamelCase = os.path.join(lowercase , 'stage-2' ) # Update arguments_dict UpperCamelCase = model_path UpperCamelCase = data_files['train'] UpperCamelCase = current_output_dir UpperCamelCase = os.path.join(lowercase , 'best-checkpoint' , lowercase ) if os.path.exists(lowercase ): logger.info( 'Found existing model checkpoint at %s. Skipping self-training: iteration: %d, stage: 2.' , lowercase , lowercase , ) else: logger.info('***** Running self-training: iteration: %d, stage: 2 *****' , lowercase ) finetune(**lowercase ) accelerator.wait_for_everyone() assert os.path.exists(lowercase ) logger.info('Self-training job completed: iteration: %d, stage: 2.' , lowercase ) UpperCamelCase = iteration UpperCamelCase = data_dir_format(iteration + 1 ) UpperCamelCase = AutoConfig.from_pretrained(os.path.join(lowercase , 'best-checkpoint' ) ) UpperCamelCase = config.idalabel UpperCamelCase = os.path.join(lowercase , 'eval_results_best-checkpoint.json' ) UpperCamelCase = os.path.join(lowercase , 'test_results_best-checkpoint.json' ) assert os.path.exists(lowercase ) with open(lowercase , 'r' ) as f: UpperCamelCase = float(json.load(lowercase )[args.eval_metric] ) UpperCamelCase = os.path.join(lowercase , 'infer_output_best-checkpoint.csv' ) assert os.path.exists(lowercase ) # Loading the dataset from local csv or json files. UpperCamelCase = load_dataset(args.data_file_extension , data_files={'data': data_files['infer']} )['data'] UpperCamelCase = load_dataset('csv' , data_files={'data': infer_output_file} )['data'] if accelerator.is_main_process: os.makedirs(lowercase , exist_ok=lowercase ) shutil.copy(lowercase , os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) ) if os.path.exists(lowercase ): shutil.copy(lowercase , os.path.join(lowercase , f'''test_results_iter-{iteration}.json''' ) ) create_pseudo_labeled_data(lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) accelerator.wait_for_everyone() UpperCamelCase = os.path.join(lowercase , f'''train_pseudo.{args.data_file_extension}''' ) if args.evaluation_strategy != IntervalStrategy.NO.value: UpperCamelCase = eval_result if best_iteration is None: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result else: if new_eval_result - best_eval_result > args.early_stopping_threshold: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result UpperCamelCase = 0 else: if new_eval_result == best_eval_result: UpperCamelCase = new_iteration UpperCamelCase = new_eval_result early_stopping_patience_counter += 1 if early_stopping_patience_counter >= args.early_stopping_patience: UpperCamelCase = True progress_bar.update(1 ) if should_training_stop: break if best_iteration is not None: # Save the best iteration logger.info('Best iteration: %d' , lowercase ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{iteration}.json''' ) , os.path.join(lowercase , 'eval_results_best-iteration.json' ) , ) else: # Assume that the last iteration is the best logger.info('Best iteration: %d' , args.max_selftrain_iterations - 1 ) logger.info('Best evaluation result: %s = %f' , args.eval_metric , lowercase ) accelerator.wait_for_everyone() if accelerator.is_main_process: shutil.copy( os.path.join(lowercase , f'''eval_results_iter-{args.max_selftrain_iterations - 1}.json''' ) , os.path.join(lowercase , 'eval_results_best-iteration.json' ) , )
705
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : Tuple = logging.get_logger(__name__) _UpperCAmelCase : Union[str, Any] = { "facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json", } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "data2vec-text" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any: """simple docstring""" super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
3
0
def A ( lowercase ) -> list[list[float]]: '''simple docstring''' UpperCamelCase = [] for data in source_data: for i, el in enumerate(lowercase ): if len(lowercase ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowercase ) ) return data_lists def A ( lowercase , lowercase ) -> list[list[float]]: '''simple docstring''' UpperCamelCase = [] for dlist, weight in zip(lowercase , lowercase ): UpperCamelCase = min(lowercase ) UpperCamelCase = max(lowercase ) UpperCamelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase = f'''Invalid weight of {weight:f} provided''' raise ValueError(lowercase ) score_lists.append(lowercase ) return score_lists def A ( lowercase ) -> list[float]: '''simple docstring''' UpperCamelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowercase ): UpperCamelCase = final_scores[j] + ele return final_scores def A ( lowercase , lowercase ) -> list[list[float]]: '''simple docstring''' UpperCamelCase = get_data(lowercase ) UpperCamelCase = calculate_each_score(lowercase , lowercase ) UpperCamelCase = generate_final_scores(lowercase ) # append scores to source data for i, ele in enumerate(lowercase ): source_data[i].append(lowercase ) return source_data
706
from random import shuffle import tensorflow as tf from numpy import array def A ( lowercase , lowercase ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = int(lowercase ) assert noofclusters < len(lowercase ) # Find out the dimensionality UpperCamelCase = len(vectors[0] ) # Will help select random centroids from among the available vectors UpperCamelCase = list(range(len(lowercase ) ) ) shuffle(lowercase ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. UpperCamelCase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION UpperCamelCase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points UpperCamelCase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase ) ] ##These nodes will assign the centroid Variables the appropriate ##values UpperCamelCase = tf.placeholder('float64' , [dim] ) UpperCamelCase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase , lowercase ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) UpperCamelCase = [tf.Variable(0 ) for i in range(len(lowercase ) )] ##These nodes will assign an assignment Variable the appropriate ##value UpperCamelCase = tf.placeholder('int32' ) UpperCamelCase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase , lowercase ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input UpperCamelCase = tf.placeholder('float' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors UpperCamelCase = tf.reduce_mean(lowercase , 0 ) ##Node for computing Euclidean distances # Placeholders for input UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.placeholder('float' , [dim] ) UpperCamelCase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase , lowercase ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input UpperCamelCase = tf.placeholder('float' , [noofclusters] ) UpperCamelCase = tf.argmin(lowercase , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. UpperCamelCase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. UpperCamelCase = 100 for _ in range(lowercase ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase ) ): UpperCamelCase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. UpperCamelCase = [ sess.run(lowercase , feed_dict={va: vect, va: sess.run(lowercase )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input UpperCamelCase = sess.run( lowercase , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase ): # Collect all the vectors assigned to this cluster UpperCamelCase = [ vectors[i] for i in range(len(lowercase ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location UpperCamelCase = sess.run( lowercase , feed_dict={mean_input: array(lowercase )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments UpperCamelCase = sess.run(lowercase ) UpperCamelCase = sess.run(lowercase ) return centroids, assignments
3
0